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Chapter

Diagnosis of Fungal Plant 
Pathogens Using Conventional 
and Molecular Approaches
Monika C. Dayarathne, Amin U. Mridha and Yong Wang

Abstract

Fungi are a large group of eukaryotes found as saprophytes, pathogens or 
 endophytes, which distribute in every corner of our planet. As the main pathogens, 
fungi can cause 70–80% of total plant diseases, leading to huge crop yield reduc-
tion and economic loss. For identification of fungal plant pathogens, mycologists 
and plant pathologists have mainly gone through two stages, viz. morphological 
observation and morphology/phylogeny, and the next era might be utilizing DNA 
barcodes as the tool for rapid identification. This chapter accounts i) the brief 
history of development for fungal identification tools and main concepts, ii) the 
importance and confusion of “One fungus, one name” for pathogen identification, 
iii) more or fewer species that we need in agricultural practice, and iv) the fore-
ground of fungal plant pathogen identification. These will help to solve the practi-
cal problems of identification of fungal pathogens in agricultural production.

Keywords: DNA barcode, morphology, phylogeny, plant diseases,  
rapid identification

1. Introduction

Plant parasitic fungi are a large group of eukaryotic living organisms lack of 
photosynthetic pigment and chitinous cell wall. It has been estimated around 
15,000 species of them cause diseases in plants [1, 2], and annual crop losses exceed 
200 billion euros [3–5]. Figure 1 shows differently infected plants by various fungal 
pathogens. During occurrence of plant diseases, they produce various types of 
essential elements to complete their life cycle [6]. Most of the plants are attacked by 
one species or several phytopathogenic fungi but also the individual species of fungi 
can parasitize one or many different kinds of plants [7, 8].

In the pre-molecular era, the detection of fungal pathogens was mostly depend-
ing on microscopic, morphological and cultural approaches [9]. The culture-based 
diagnosis is time consuming and impractical when rapid results are required. With 
the advancement of molecular methods, detection and identification of phyto-
pathogenic fungi have sped up and become more reliable [4], because of its high 
degree of specificity to distinguish closely related organisms at different taxonomic 
levels [10]. Polymerase Chain Reaction (PCR) technologies include multiplex PCR, 
nested PCR, real-time PCR and reverse transcription (RT)-PCR and DNA barcod-
ing have been recently used as a molecular tool for detection and identification of 
fungal pathogens [11].
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The rapid identification of fungal disease is an effective management prac-
tice and may help control and prevent their spread and progress successfully. 
Phylogenetic analyses have been employed for rapid identification of different 
kinds of fungi. However, the accuracy and reliability of DNA based methods 
depended largely on the experience and skill of the person making the diagnosis. 

Figure 1. 
A. Leaf spot disease of Houttuynia cordata, B. Downy mildew of Cucumis sativus, C. Peach brown rot of 
Amygdalus persica, D. Rust disease of Prunus salicina, E-F. Brown rot of Cerasus pseudocerasus leaves and 
fruit.
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Besides that, few plant pathogenic fungi were sometimes also detected and identi-
fied using different types of proteomics approaches [6, 11]. In this chapter, we 
also discussed the importance and confusion of “One fungus, one name”, and its 
impacts on identification of fungal plant pathogens. Finally, some suggestions were 
referred to the foreground of molecular identification.

2.  The brief history of development for fungal identification tools and 
main concepts

[12] provided a chronological and systematic assessment of conventional 
methods of plant pathogen identification [13]. The application of light micros-
copy in the 1840s, the first evidence of plant disease was reported which was 
caused by Phytophthora infestans [14]. In the mid-nineteenth century, spore char-
acters were accepted widely in classification [15]. In the middle of the twentieth 
century, different fungal structures were given emphasis in taxonomic systems, 
and separate scientific names (e.g., Cercospora were given for more or less similar 
fungi growing on different plant genera [16]. The observations of ornamentals of 
spores through scanning electron microscope (SEM) in the mid-1960s helped in 
separation of very similar plant pathogens and it also aided in clarifying patterns 
of conidiogenesis [17]. Then when came to the era of Transmission Electron 
Microscopy (TEM) which led to the discovery of fundamental differences in the 
major groups [18]. Figures 2 and 3 represent the ultrastructural morphology of 
spongy tissue cells of tea leaves infected by fungal pathogens and control leaves 
by TEM [19].

During 1960s and 1970s thin-layer chromatography (TLC) and isozyme profiles 
were used to find out the chromosome numbers [20]. Vegetative compatibility 
groups (VCGs) were developed and it was found importance in many research 
studies on pathogenic Fusarium spp. [21]. The cluster analysis was performed 

Figure 2. 
The healthy spongy tissue of tea leaves, observed by TEM.
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after having powerful computers in the 1970s which revealed large numbers of 
morphological, cultural, and physiological characteristics should be computed and 
analyzed together. With that situation, DNA-based methodologies moved from 
occasional to common use [22].

[23] mentioned that the identification of fungi up to generic/species level or the 
formae speciales strains depended on their morphological characteristics and various 
kinds of reproductive organs. However, varieties or biotypes have to be identified by 
following pathogenicity, biochemical and immunological properties or nucleotide 
sequences of the genomic DNA, isozyme analysis, vegetative compatibility group 
(VCG) analysis and electrophoretic mobility of cell wall proteins etc. The develop-
ment of enzyme-linked immunosorbent assay (ELISA) and monoclonal antibodies 
exhibit greater sensitivity and specificity in identifying fungi [23].

The molecular technologies are widely used in identifying plant pathogenic fungi 
and have been studied by mycologist and plant pathologists throughout the world. 
Many different types of diagnostic techniques may be used for detection, identifica-
tion and quantification of fungal pathogens present in the infected above ground 
and below ground parts of plants and propagating and reproductive organs of differ-
ent types of plants [23]. The nucleotide sequences of the pathogen DNA have become 
the preferred ones, because of their greater speed, specificity, sensitivity, reliability, 
and reproducibility of the results obtained, following the development of PCR [23]. 
[24] mentioned that the researchers over the last few years devoted their affords to 
develop the methods for detecting and identifying plant pathogens based on DNA/
RNA probe technologies and PCR amplification such as [25] developed techniques 
for the rapid detection of plant pathogens; [26] used PCR for identifying plant 
pathogens; [27] used the modern assays for identification, detection and quantifica-
tion of plant pathogenic fungi: and impacts of molecular diagnostic technologies on 
plant disease management was evaluated by [28]. The RT-PCR advances are helping 
the accurate detection and quantification of plant pathogens quickly and now being 
used routinely in most of the aspects of plant pathology.

Figure 3. 
Exobasidium vexans infects spongy tissue cells of tea leaves, observed by TEM.
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In all molecular technology, DNA technology is most important in recovering 
from living cultures but is also useful to revise major groups of obligate fungi that 
cannot be cultivated, such as the powdery mildews [29], rusts and smuts [30]. 
Whole-genome sequence analyses indicated that the millions of dried fungal 
specimens preserved in different collection centers could hold great promise for 
understanding the evolution of many major fungal pathogens and their associated 
diseases and epidemics over time [31, 32]. [33] described a large number of vari-
ous important common leaf diseases (from 2004 to 2019) caused by fungal plant 
pathogens with their symptoms and references of publications. [34] mentioned 
that the PCR and flow cytometry may be used in the genetic recognition of existing 
pathogens and the identification of emergent ones. The minute quantities of DNA 
in plant pathogens may be detected because of sensitiveness of DNA-based PCR 
technologies [35]. Further, genetic investigations could detect sources of pathogen 
and host resistance in diseases such as powdery mildew. [4] mentioned the different 
molecular diagnostics techniques (Table 1) used by many researchers throughout 
the world for the identification of phytopathogenic fungi with their advances and 
disadvantages.

Accurate identification and diagnosis of plant pathogens with reliable tech-
nologies and methods are needed to control them for sustainable plant diseases 
management [84] as well as prevention of the spread of invasive pathogens [85]. 
[86] published their works on fungal protocols and the primers for the ITS were 
first introduced, and it is still valid and widely used [32] in identification of plant 
pathogens. [9] reported that species identification was frequently difficult because 
fungi are a large and diverse assemblage of eukaryotes and have complex and 

Molecular method Reference

Conventional PCR [36, 37]

Nested PCR [38–40]

Multiplex PCR [41]

Reverse transcriptase (RT) PCR [10, 42]

Real-time PCR (Q PCR) [43–45]

Serial analysis of gene expression (SAGE) [46, 47]

DNA barcoding [32, 48–51]

DNA/RNA probe-based methods [24]

Northern blotting [52–54]

In situ hybridization [55–57]

FISH [58, 59]

Post amplification techniques [60–62]

Macroarray [62–64]

The isothermal amplification-based methods [58, 65, 66]

Loop-mediated isothermal amplification (LAMP) [66–71]

Nucleic acid sequence-based amplification (NASBA): [68, 72–75]

RNA interference methods (RNAi) [76–79]

RNA-Seq-based next-generation sequencing methods [46, 80–83]

Table 1. 
PCR-based molecular methods for the detection of fungi.
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poorly understood life cycles [87]. They have mentioned that molecular (DNA 
sequence) data as an essential tool for the identification of plant pathogenic fungi 
by the nuclear ribosomal internal transcribed spacer (ITS) region. The barcode 
gene for the fungi could be used to identify a wide range of plant-pathogenic fungi 
[9]. Protein-coding genes [glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 
beta-tubulin (tub2) gene, translation elongation factor 1-alpha (tef1), actin (act), 
and histone H3 (his3)], generally prove a valuable supplement to ribosomal genes 
at the species level. More conserved gene regions such as large subunit (LSU), small 
subunit (SSU), and RNA polymerase II (RPB2) gene provide a better discrimination 
at the generic and/or family level [88–90]. The Q-bank fungal database contains 
DNA barcodes supplemented by morphological, phenotypical, and ecological data 
for more than 725 species of relevance to phytopathology. The database continues 
to be actively expanded, and parties interested in participating or contributing can 
contact its curators (http://www.q-bank.eu). The molecular identification of fungi 
(http://unite.ut.ee), is available on the basis of the results from a total of 31,954 
changes incorporated and made available through the UNITE database, standalone 
FASTA files of sequence data for local BLAST searches and also use in the next-
generation sequencing analysis platforms QIIME and mother [9]. The results were 
incorporated in UNITE made available publicly (http://unite.ut.ee/repository.php) 
e.g., local sequence similarity searches and sequence processing pipelines such as 
QIIME [91, 92], mothur [93], SCATA (http://scata.mykopat.slu.se/), CREST [94], 
and other downstream applications. UNITE also serves as one of the data provid-
ers for BLAST [95] searches in the EUBOLD fungal barcoding database (http://
www.cbs.knaw.nl/eubold/). The maximum parsimony, maximum likelihood, 
and/or Bayesian inference are currently practiced to identify in many genera of 
phytopathogenic fungi [12]. Interestingly, improvement in molecular techniques 
has begun to allow a rapid alternative rDNA sequencing to whole genome sequenc-
ing [96]. LAMP of DNA is a newer molecular technology for affordable, specific, 
highly sensitive, and rapid diagnostic testing of pathogens in both laboratory and 
field conditions [97], and subsequently been optimized for portable instruments 
in field. Recently several protocols for a rapid detection of woody pathogens, such 
as Ceratocystis platani, Fusarium circinatum, F. euwallaceae, Xylella fraxineus, and 
Phytophthora ramorum, have been established [98–100].

Additionally, the application of proteomics such as two-dimensional gel electro-
phoresis (2-DE) and mass spectrometry (MS) is used to characterize cellular and 
extracellular virulence and pathogenicity factors produced by pathogens as well 
as to identify changes in protein levels in plant hosts upon infection by pathogenic 
organisms and symbiotic counterparts [101]. Many of the techniques used in pro-
teomics, in particular the 2-DE method was developed two decades before the term 
proteomics was coined [102, 103]. Two-dimensional gel electrophoresis (2-DE) 
have been carried out to study the proteome of phytopathogenic fungi, mainly due 
to the difficulty of obtaining fungal protein extracts and/or the lack of available 
fungal protein databases [6]. In the last few years proteomic, in conjunction with 
genomic, has become one of the most relevant techniques for studying phytopatho-
genic fungi. Currently, the complete genome of over four hundred different species 
has been sequenced and this number is still increasing. With the availability of 
genome information for more and more species and the advancement in mass spec-
trometry technologies, proteomics has come into true since 1990s [104]. The advent 
of proteomics has allowed researchers to identify a broad spectrum of proteins in 
living systems.

Almost a little earlier, [86, 105–107] used immunological techniques with 
fungal plant pathogens-aspects of antigens, antibodies and assays for diagnosis. 
To speed up the identification of plant pathogens and allow their identification in 
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field, a number of serological methods have been developed, mainly based upon 
the enzyme-linked immunosorbent assay (ELISA). These methods are used to 
detect pathogens using a monoclonal antibody labeled with fluorescent compounds 
[108, 109]. Lateral flow devices (LFDs) are a simple paper-based dipstick assay able 
to detect and identify the causal agents of disease [110, 111]. [112] also described 
the methods using allozyme and isozyme markers to rapidly differentiate inter-
sterility groups of Heterobasidion annosum [113], Phytophthora cinnamomi, and 
Seiridium sp.  isolates [114].

3.  The importance and confusions of “One fungus, one name” concept in 
plant pathogen identification

3.1 “One fungus, one name” concept

Scientific names (Latin binomials) are an integral part for communicat-
ing details about fungi causing plant diseases. Assembled knowledge on fungal 
pathogens viz biology, distribution, ecology, host range, control measures and 
the risks are accessible through these names [12]. In naming new fungal species 
mycologists are governed by the ICN and, more specifically by the International 
Code for Nomenclature of plants, algae, and fungi [115]. The Code provides a platform 
to abolish any bias or taxonomic confusion where multiple names are used for 
the same species [116]. ‘1 Fungus = 1 Name’ was a meeting organized by CBS in 
the Netherlands that resulted in the ‘Amsterdam Declaration’ signed by some 80 
participants [117], that strictly proposed the move to a unified nomenclature. Each 
fungal species should have one accurate name which is nomenclaturally accepted 
in a particular classification. Any of the previously used names for a particular 
species should be considered as a synonym with the oldest epithet taking priority 
over any younger name. If there is a wish/desire/movement to use a widely known 
younger name, then such usage must be in accordance with Art. 57.2 of the Code 
and its adoption should be accepted by the Nomenclature Committee for Fungi 
(NCF). Nevertheless, application of “one fungus one name” (1F1N) is in its infancy 
in mycology because most of the fungi are commonly known in only their sexual or 
asexual morph [116].

3.2 Significance of 1F1N concept in plant pathogen identification

Pleomorphism (having diverse fungal propagules) can be seen in many patho-
genic fungi especially in Ascomycetes and in basidiomycetous rust fungi [118, 119]. 
Until the early 2000s, fungi were primarily classified on the basis of their sporing 
structures, and separate names were given to the sexual structures (formerly called 
the teleomorph) and asexual structures (formerly called the anamorph or if there 
are several asexual morphs, synanamorphs) even where the relationship between 
different morphs was proved by the culture of single spores [119]. For example, 
Calonectria with Cylindrocladium asexual morphs [120], Chaetosphaeria with 
Menispora asexual morphs [121], Cladosporium with Venturia asexual morphs [122], 
Gibberella with Fusarium asexual morphs [122], Ceratocystis with Thielaviopsis 
asexual morphs [123] and Grosmannia with Leptographium asexual morphs [124].

However, the concept of dual name became controversial to mycology in 21st 
century especially when a single DNA sequence could be attached to two names; 
one being the sexual morph name and the other under the asexual morph name 
(e.g. species of Diaporthe and Phomopsis) [125]. Many people working in fields 
related to agriculture/horticulture and plant pathology are confused by having to 



Diagnostics of Plant Diseases

8

deal with two names for a single pathogen [119]. This can be very important when 
dealing with fungi of quarantine significance and quarantine regulations linked 
to import and export requirements. Some countries may list the asexual morph 
name for an organism, whereas others list the sexual morph name. It is true that the 
two names refer to the one genetically identical organism, but quarantine officers 
are not necessarily aware of these details when dealing with constantly chang-
ing asexual–sexual morph taxonomy. For instance, identification of an invasive 
new rust (Uredo rangelii) on Myrtaceae in Australia [126]. This raised confusion 
as to whether or not the much-feared Eucalyptus rust (Puccinia psidii), a serious 
quarantine organism, and a restricted fungus on quarantine lists in countries in 
which eucalypts are cultivated [127, 128], was identical and had been introduced 
into Australia. Genetically, these names represent the same fungus or, at least, very 
closely related fungi causing the same disease, which suggests that they should be 
treated in a similar fashion when it comes to quarantine decisions. However, the 
names have not been treated equally and this has caused substantial complications 
relating to the treatment of the new P. psidii sensu lato invasion in Australia [126].

Dual nomenclature also conflicts with biological philosophy; a type is the type of a 
single organism that can have only one legitimate name [129]. The concept of permit-
ting separate names for asexual morph of fungi with a pleomorphic life-cycle has 
been also an issue for mycologists to collect and describe new fungal species, mostly 
with one morph [116]. Therefore, depending on the accepted recommendations of 
1F1N concept, all legitimate fungal names are now treated equally for the purposes of 
establishing priority. Asexual morph genera compete with sexual morph genera based 
on priority. For example, the asexual genera names Alternaria (1817) takes precedence 
over the sexual genus name Lewia (1986), Cladosporium (1816) over Davidiella (2003), 
Fusarium (1809) over Gibberella (1877), Phyllosticta (1818) over Guignardia (1892), 
Sphaceloma (1874) over Elsinoë (1900), Trichoderma (1794) over Hypocrea (1825). 
However, the reverse can also happen where an older sexual genus name takes prior-
ity over a younger asexual genus name, e.g., Diaporthe (1870) over Phomopsis (1905). 
However, there are exceptions where younger, widely used names get priority over an 
older name, for example Hypomyces (1860) over Cladobotryum (1816).

[130] documented five alternatives which can be followed when deciding on a 
single name for a fungus with a pleomorphic life cycle. These are: 1) strict prior-
ity, ignoring names originally typified by asexual morph or sexual morph by 
considering the priority of both generic names and species epithets [131, 132]; 2) 
sexual morph priority, with asexual morph species epithets [133]; 3) sexual morph 
priority without considering earlier asexual morph species epithets [134–136]; 4) 
teleotypification and 5) single species names but allowing two genera per clade 
(Hypomyces/Cladobotryum) [137, 138]. A number of sexual and asexual morph 
fungal genera have been linked by applying the oldest available name for the 
lineage (strict priority) in various studies. For example, Neofusicoccum was assigned 
for the clade with unnamed Botryosphaeria-like sexual morphs [139] included 
asexual Phialophora-like fungi in the sexual morph genus Jattaea [120, 140–142]; 
Cylindrocladium species were included under the older generic name Calonectria, 
and Phomopsi species in the older, sexual genus Diaporthe [139]. Importantly, 1F1N 
is important to link asexual morphs of pathogenic fungi to sexual morph-typified 
generic names, even without ever having seen the sexual morphs (e.g Teratosphaeria 
toledana and Phaeophleospora toledana) [119]. Further, this approach is also crucial 
for the widely emerging whole genome sequencing projects specially to compare 
species representing single entities with their closest relatives [143]. Such as com-
paring Mycosphaerella tritici (now Zymoseptoria) with Mycosphaerella fijiensis (now 
Pseudocercospora), is not instructive, as they are just two genera within a family, but 
not two species of one genus [119].
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4.  Controversies associated with one fungus one name concept in fungal 
plant pathogen identification

Although the application of 1F1N has become a reality, determination of 
which name to use for certain fungal species is somewhat more complex. Also, it is 
doubtful when accepting the other morph if it has been described elsewhere with 
a different name especially when lacking molecular data [116]. According to 1F1N 
mycologists must now select a genus name formerly applied to taxa with either 
asexual or sexual reproductive modes, that decision often influences the scope 
of genotypic and phenotypic diversity of a genus, and even its monophyly. [144] 
showed that many pairs of legitimate asexual-sexual morph names are not homo-
typic synonyms and merging them may not be justified. Therefore, dual names 
continue to be available for use following [145] e.g. the name pairs Aspergillus niveus 
– Fennellia nivea and Aspergillus flavipes – Fennellia flavipes, were not conspecific in 
a molecular study by [146].

Another problem arises when pathogenic species have one or more generic 
names for sexual morph associated with one or more asexual states. The best 
example is Aspergillus species which are mostly opportunistic pathogens. There 
are 11 sexual generic names associated with this genus; phenotypic variation and 
genetic divergence within the asexual genera are low but between sexual genera 
they are high [147]. Applying the asexual name Aspergillus to the many sexual 
genera masks information now conveyed by the sexual genus names. This would 
lead to taxonomic inconsistency in the Eurotiales because the large Aspergillus sensu 
lato would embrace more genetic divergence than neighboring clades comprised 
of two or more genera. However, [148] proposed a phylogeny combined aspect to 
apply one name to one fungal genus in a scientific manner in such a case.

Establishment and full use of the single name concept may take a long time as it is 
difficult to discard fungal names in publications before 2013, and these materials are 
still in use. The old name of some species whose name has been changed is still used in 
many publications [148]. When identifying fungi that cause diseases in humans, ani-
mals or plants, it may be difficult to determine which is the correct name because there 
are different names for these fungi in the literature. It is unlikely that all researchers 
and workers in agricultural industries, or border protection officers will have a good 
knowledge and understanding of fungal taxonomy. Acceptance and widespread use 
of the fungal names that change due to 1F1N will take time. Therefore, in some ways 
we are trapped in the past and there is difficulty in applying recent knowledge, due to 
long-standing and traditional rules that define how we name fungi.

5. More or fewer species that we need in agricultural practice

With the advent of “One fungus, one name” times from 2010s, many impor-
tant fungal genera and species, for example Gibberella, Hypocrea, Phomopsis and 
Magnaporthe grisea causing worldwide rice blast towards the end became the 
synonyms of Fusarium, Trichoderma, Diaporthe and Pyricularia grisea respectively 
approved by the Nomenclature Committee of the Fungi and the General Committee 
(Art. 14.13). [149] listed nearly 7,000 generic names for eventual adoption, which 
made up just less than 50% of the total [24, 38] legitimate generic names) from 
Index Fungorum/ MycoBank database. For these changes, molecular techniques 
play an important role in the emergence of this great change, although for the spe-
cies concept of fungi, we do still not get rid of the cruse of pragmatism. Thus, this 
has led to a very puzzling phenomenon, viz. on one side oceans of known species 
walk towards death, but on the other side mycologists spare no effort to ‘create’ 



Diagnostics of Plant Diseases

10

many new species and even many higher-level taxa (genus, family, and order, etc.). 
Trichoderma harzianum as an ubiquitous species in the environment and also effec-
tive bio-control agents against the devastating plant diseases, became an aggregate 
species recognized by [150], using genealogical concordance and recombination 
analyses confirmed there were two genetically isolated agamospecies and two hypo-
thetical holomorphic species related to T. harzinanum species-complex [151], but 
surprisingly split into at least 14 species based on morphological, ecological, 
biogeographical and phylogenetic data [152, 153]. For Alternaria and allied genera, 
even the whole Kingdom Fungi, 2013 was destined to go down in history because 
of “Alternaria redefined”, up to eighteen old generic name, for example, Embellisia, 
Nimbya, Ulocladium and Lewia turned into the synonyms of Alternaria, but in the 
meantime, 16 new Alternaria section were born [154].

Immediately, Hyde and Crous as well as their research groups open the dazzling 
“re-” doors published in Fungal Diversity, Studies in Mycology, Persoonia, IMA 
Fungus, Mycosphere. They provided a series of “backbone” trees of fungal genera, 
family, order or even higher taxonomic level based on DNA sequences from ex-
type, epitype and authoritative strains. From 2014 to 2020, “One stop shop: back-
bones trees for important phytopathogenic genera: I-IV”, were published in Fungal 
Diversity and led by [155] and [156–158] with international co-operations, which 
provided phylogenetic frameworks of 100 groups or genera of plant pathogenic 
fungi in the Ascomycota, Basidiomycota, Mucormycotina (Fungi), and Oomycota. 
Almost at the same time, in Studies in Mycology, a series of “Genera of phyto-
pathogenic fungi: GOPHY1-3”, which introduced stable platforms for the taxonomy 
of 62 phytopathogenic genera, including 5 new genera, 88 new species, 38 new 
combinations, four new names and 13 typifications of older names [159–161]. For 
these publications, the important disease information, viz. distribution, hosts and 
disease symptoms were referred, but without the key pathogenicity test (Koch’s 
postulates) to clarify whether they were real pathogens or not. In spite of this, these 
contributions still make us get rid of the embarrassment of using morphology as the 
only approach of pathogen identification and provide primary and secondary DNA 
barcodes for rapid and accurate recognition. After census of new pathogens report 
in the international mainstream journals of plant pathology, we discovered that in 
the latest three years, more than 200 new pathogens and first reports were recorded 
per year in our planet.

Now more and more mycologists and plant pathologists accepted that fungi 
causing plant or post-harvest diseases should be identified on the basis of morphol-
ogy and phylogeny or at least ITS-blast on NCBI database (for example, https://
www.apsnet.org/publications/plantdisease). Especially, [162] solemnly declared 
that the optimal identity thresholds to discriminate filamentous fungi on the species 
level were 99.6% for ITS and 99.8% for LSU regions using more than 24,000 DNA 
barcode sequences originated from 12,000 ex-type strains. Even so, for important 
plant pathogenic fungal group (Alternaria, Botrysphaeria, Colletotrichum and 
Diaporthe), if only sequences of ITS or LSU region, the result will be considered 
rash and superficial. We have to admit that for identification of fungal pathogens, 
the agricultural practitioners welcomed fewer and simpler, but mycologists always 
looked ahead into the future and back into the past to creation or elimination.

6. The foreground of fungal plant pathogen identification

Accurate identification of pathogens must be the first step of plant pathology. 
Linnaeus published “Species Plantarum” in 1753 and then “Systema Naturae” (10th 
edition) in 1758 for planting naming with binomial nomenclature, which were 
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continued in Kingdom Fungi. A dual system of fungal nomenclature for asexual 
fungi was promulgated by [15], at one time, which played an important role in 
the identification of plant pathogenic fungi but came to the end in 2013. [147] 
compared the distinction between theoretical and operational species concepts, 
and pointed that PSR (Phylogenetic Species Recognition) by genealogical concor-
dance was well suited to fungi and developed and adopted at an increasing rate 
[163]. DNA barcode, as a relative short specific DNA sequence was able to utilize in 
taxonomic practice referring to OTUs (Operational Taxonomic Units), which was 
comprehensively discussed by [164]. Urgently [165, 166] even attempted to propose 
DNA sequences without vouchered specimens to serve as types for fungal taxon 
names, but was unfortunately rejected by Nomenclature Committee for Fungi and 
International Mycological Congress (IMC 11) [167]. Almost at the same time, [168] 
further pointed out ASVs (Amplicon Sequence Variants) could replace OTUs as the 
standard units by high-throughput marker-gene sequencing data analysis.

The rapid development about identification approach of fungi has entered a 
dazzling but seemingly at a loss stage in plant pathology and other related practical 
or applied scientific fields. Although this, we have to admit the reality or the status 
quo is existing mycological research networks, especially e-books or publications do 
really facilitate the rapid development of DNA identification and information shar-
ing. We can even update our knowledge in almost days and more comprehensive. 
It can also be understood in this way, viz. easier to make mistakes but also correct 
them. Although [167] fully expounded the deficiencies of Hawksworth’s proposals, 
for identification of plant pathogenic fungi, we believe that accuracy sometimes 
gives way to quickness. Thus, DNA identification is competent to become a core or 
sole approach for fungal pathogens.

For plant pathologists in consideration of this method, we can quickly start 
the following two works, i) to make full use of the achievements of taxonomists 
to all-round confirm or correct the scientific name of old fungal pathogens, like 
“one fungus, one name” and “backbone trees” of fungal groups, which needs to 
be simultaneously done by pathologists in different countries of the world, or 
at least one continent, and 2) to standard the identification parameters of plant 
pathogenic fungi, for example the barcoding gene markers (only ITS or ITS plus 
a secondary generic marker) for PCR amplification (including forward/reverse 
primers), sequences threshold (99.6% for ITS or 99.8% for LSU is OK, or adopt the 
new standard?) and international specialized open database for rapid alignment. 
Of course, we also should keep pace with mycologists, and update our identification 
system on time.
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