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Chapter

Variable, Fractional-Order PID
Controller Synthesis Novelty
Method
Piotr Ostalczyk and Piotr Duch

Abstract

The novelty method of the discrete variable, fractional order PID controller is
proposed. The PID controllers are known for years. Many tuning continuous time
PID controller methods are invented. Due to different performance criteria there
are optimized three parameters: proportional, integral and differentiation gains. In
the fractional order PID controllers there are two additional parameters: fractional
order integration and differentiation. In the variable, fractional order PID controller
fractional orders are generalized to functions. Nowadays all PID controllers are
realized by microcontrollers in a discrete time version. Hence, the order functions
are discrete variable bounded ones. Such controllers offer better transient charac-
teristics of the closed loop systems. The choice of the order functions is still the open
problem. In this Section a novelty intuitive idea is proposed. As the order functions
one applies two spline functions with bounded functions defined for every time
subinterval. The main idea is that in the final time interval the variable, fractional
order PID controller transforms itself to the classical one preserving the stability
conditions and zero steady-state error signal. This means that in the last time
interval the discrete integration order is �1 and differentiation is 1.

Keywords: fractional-Calculus, PID controller, discrete system

1. Introduction

A continuous-time proportional–integral–derivative controller (PID controller)
[1] invented almost 100 years ago is one of the most widely applied controllers in
the closed-loop systems [2] with many industrial applications [3–5]. Currently the
continuous-time control is successively replaced by discrete-time one in which the
integration is replaced by a summation and differentiation by a difference evalua-
tion. So, in the discrete PID controller the classical integral is replaced by a sum and
the derivative by a backward difference, [6]. The discrete controller’s PID algorithm
is mainly realized by micro-controllers [7].

At 70s of the 20-th Century the Fractional Calculus [8] with a great success
started a considerable attention in mathematics and engineering [9–12]. Now, the
fractional-order backward-difference (FOBD) and the fractional-order backward
sum (FOBS) [6, 13] are applied in the dynamical system modeling [14] and discrete
control algorithms. The continuous-time FOPID controllers are more difficult in a
practical realization [15–18].

1



There are numerous continuous and discrete-time PID and FOPID controller
synthesis methods [16, 19–31]. One should mention that the optimisation of the
closed-loop system in this case is more complicated because of the controller optimi-
zation. Apart from the three classical gains there are two additional parameters,
namely, a fractional order of differentiation and summation [32]. The FOPID control
characterizes by slow achieving the steady state and growing calculation “tail” [12].

In the paper a novelty variable, the fractional-order PID (VFOPID) [6, 28, 33–41]
controller synthesis is proposed. It consists of dividing the closed-loop system
discrete-transient time division into the finite time intervals over which are defined
fractional orders summation and differentiation functions. The main idea is that for
the final infinite interval kL,þ∞½ Þ the difference order equals 0 and the summation is
�! preserving quick reaching the zero steady state value. Thus, in the VFOPID control
the disadvantages of FOPID are extracted. One should admit that in the FOPID or
VFOPID control the microcontrollers are numerically loaded.

Fractional-orders systems are characterized by the so called system “memory”.
This, in practice, means that in every step the FOPID controller computes its output
signals taking into account step-by-step linearly computed number of samples. This
causes in practice the micro-controllers realization problems. It is known as “Finite
memory principle” [12].

The paper is organized as follows. In Section 2 the basic information related to the
fractional calculus and variable, fractional order Grünwald-Letnikov backward differ-
ence is given. The main result of the paper includes Section 3. It contains the proposed
VFOPID controller synthesis method with the proposal of the order functions form.
The brief description of the controller parameters evaluation algorithm is given. The
investigations are supported by a numerical example presented in Chapter 4.

2. Mathematical preliminaries

In the paper the following notation will be used. 0 ¼ 0, 1, 2, 3, …f g, l ¼
l, lþ 1, lþ 2, …f g þ ¼ 0,þ∞½ Þ. 0k will denote the zero column vector of dimen-

sions kþ 1ð Þ � 1 whereas 0k,k is kþ 1ð Þ � kþ 1ð Þ zero matrix. Similarly will be
denoted a kþ 1ð Þ � kþ 1ð Þ unit matrix 1k.

In general, a fractional-order functions will be denoted byGreek letters ν �ð Þ : 0 !
 ν �ð Þwhereas the integer orders will be denoted by Latin ones n∈þ. In practice, for
l∈0: 0< ν lð Þ≤ 1. For k, l∈0 and a given order function ν lð Þ the function of two
discrete variables k, l∈0 is defined by the following formula: a ν lð Þ½ � kð Þ as follows:

Definition 2.1. For k, l∈0 and a given order function ν �ð Þ one defines the
coefficients function of two 13 discrete variables as

a ν lð Þ½ � kð Þ ¼

1 for k ¼ 0

�1ð Þk
ν lð Þ ν lð Þ � 1ð Þ⋯ ν lð Þ � kþ 1ð Þ

k!
for k∈1

8

<

:

(1)

One should mention that function (1) for ν lð Þ ¼ n lð Þ ¼ const∈0

a n½ � kð Þ ¼

1 for k ¼ 0
n n� 1ð Þ⋯ n� kþ 1ð Þ

�1ð Þk!
for k∈ 1, n½ �

0 for k∈nþ1

8

>

>

>

<

>

>

>

:

(2)

The above function will be named as: the “oblivion function” or “decay function”.
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2.1 Variable, fractional-order backward difference

Next one defines the Grünwald–Letnikov variable, fractional-order backward
difference (VFOBD). For a discrete-variable bounded real-valued function f �ð Þ
defined over a discrete interval 0, k½ � the VFOBD is defined as a sum (see for
instance [6, 9]).

Definition 2.2. The VFOBD with an order function ν, with values ν kð Þ∈ 0, 1½ �, is
defined as a finite sum, provided that the series is convergent

k0Δ
ν kð Þ
k f kð Þ ¼

X

k�k0

i¼0

aν kð Þ ið Þf k� ið Þ

¼ 1 aν kð Þ 1ð Þ aν kð Þ 2ð Þ ⋯ aν kð Þ k0ð Þ
h i

f kð Þ

f k� 1ð Þ

⋮

f k� k0ð Þ

2

6

6

6

6

6

4

3

7

7

7

7

7

5

(3)

Relating to (2) as the first special case of the defined above VFOBD and a
constant order function ν kð Þ ¼ ν ¼ const from (2.1) one gets the fractional-order
backward difference (FOBD). The second special case is for a constant integer order
function ν kð Þ ¼ ν ¼ n ¼ const where the integer-order backward difference
(IOBD) is a classical one.

Equality (3) is valid for k, k� 1, k� 2, … , k0 þ 1, k0. Hence, one gets a finite set
of equations. Collecting them in a vector matrix form one gets

GL
k0
Δ

ν kð Þ½ �
k f kð Þ¼k0A

ν kð Þ½ �
k f kð Þ, (4)

where

k0A
ν kð Þ½ �
k ¼

1 a ν kð Þ½ � 1ð Þ ⋯ a ν kð Þ½ � k� k0ð Þ

0 1 ⋯ a ν k�1ð Þ½ � k� k0 � 1ð Þ

⋮ ⋮ ⋮

0 0 ⋯ a ν k0þ1ð Þ½ � 1ð Þ

0 0 ⋯ 1

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

(5)

f kð Þ ¼

f kð Þ

f k� 1ð Þ

⋮

f k0ð Þ

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

,

GL
k0
Δ

n kð Þ½ �
k f kð Þ ¼

GL
k0
Δ

ν kð Þ½ �
k f kð Þ

⋮

GL
k0
Δ

ν k0ð Þ½ �
k0

f k0ð Þ

2

6

6

6

6

4

3

7

7

7

7

5

:

(6)
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2.2 Variable, fractional-order linear time-invariant difference equations

On the base of the Grünwald-Letnikov variable, fractional-order linear time-
invariant backward-difference the difference Eqs. (GL-VFOBE) for i ¼ 1, 2,⋯, p
and j ¼ 1, 2,⋯, q representing discrete models of real dynamical systems or discrete
control strategies are defined by the variable, fractional-order linear time-invariant
difference equation (VFODE). h>0 denotes the sampling time.

X

ni

l¼0

ai,l
GL
k0
Δ

νi,l kð Þ½ �
k y khð Þ ¼

X

mi

l¼0

bi,l
GL
k0
Δ

μi,l kð Þ½ �
k u khð Þ (7)

where mi ≤ ni, νni,l kð Þ≥ νni,l�1 kð Þ≥⋯νi,1 kð Þ≥ νi,0 kð Þ ¼ 0, μmi,l
kð Þ≥ μmi,l�1�1 kð Þ≥⋯

μi,1 kð Þ≥ μi,0 kð Þ≥0, ai,l and bi,l are constant coefficients for l ¼ 0, 1,⋯, ni and l ¼

0, 1,⋯,mi, respectively. It is assumed that a0,n0 ¼ 1.
According to the notation (5) Eq. (7) takes the form

X

ni

l¼0

ai,lk0A
νi,l kð Þ½ �
k y kð Þ ¼

X

mi

l¼0

ai,lk0A
μi,l kð Þ½ �
k u kð Þ (8)

The vector u j kð Þ satisfies the condition u j kð Þ ¼ 0k for k< k0. In the general solution

of (8) to the assumed u j kð Þ and initial conditions vector yi,k0�1 ¼ yi,k0�1 yi,k0�2 ⋯

h iT

(T denotes the transposition)must be taken into account with�∞ ¼ k00 <0≤ k0 ≤ k.
Then, the infinite number of initial conditions (8) are formed in the following vector

yi,k0�1 ¼

yi,k0�1

yi,k0�2

⋮

2

6

4

3

7

5
(9)

and the combined Eq. (8) is of the form

P

ni

l¼0
aij,lk0A

νi,l kð Þ½ �
k

P

ni

l¼0
ai,l�∞A

νi,l kð Þ½ �
k0�1

� �

�
yi khð Þ

yi,k0�1

" #

¼
X

mi

l¼0

bij,lk0A
μi,l kð Þ½ �
k u khð Þ

(10)

or after simple transformation

X

ni

l¼0

ai,lk0A
νi,l kð Þ½ �
k y khð Þ ¼

X

mi

l¼0

bi,lk0A
μi,l kð Þ½ �
k u khð Þ

�
X

ni

l¼0

ai,l�∞A
νi,l kð Þ½ �
k0�1 yi,k0�1

(11)

2.3 Main assumptions

To preserve the VFOBDE order one assumes that

1þ
X

ni�1

l¼0

ai,l 6¼ 0 for i ¼ 1, 2,⋯, p (12)
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In the transfer functions defined by the one-sided Z transform one assumes zero
initial conditions. Following this assumption equality (11) simplifies to

X

ni

l¼0

aik0A
νi kð Þ½ �
k y kð Þ ¼

X

mi

l¼0

bik0A
μi kð Þ½ �
k u kð Þ (13)

Defining matrices

k0
D νP kð Þ½ �

k ¼
X

ni

l¼0

aik0A
νi kð Þ½ �
k (14)

k0
N μP kð Þ½ �

k ¼
X

mi

l¼0

bik0A
μi kð Þ½ �
k (15)

one gets

k0D
νP kð Þ½ �
k y khð Þ¼k0N

μP kð Þ½ �
k u khð Þ (16)

Under assumption (12) k0D
ν kð Þ½ �
k is invertible, so for k0 ¼ 0 one can write

y khð Þ ¼ 0D
νP kð Þ½ �k

h i�1

0
N μP kð Þ½ �ku khð Þ (17)

Denoting

0G
νP kð Þ½ �
k ¼ 0D

νP kð Þ½ �
k

h i

0
N

μ kð Þ½ �
k (18)

one gets similar to the transfer function description

y khð Þ¼0G
νP kð Þ,μP kð Þ½ �
k u khð Þ (19)

or for simplicity

Go khð Þ¼0G
νP kð Þ,μP kð Þ½ �
k (20)

Remark 2.1. Though the relation (19) looks similar to the classical discrete trans-
fer function it is different by the real discrete variables. It relates discrete SISO
systems by vectors and matrices related to its dimensions kþ 1∈0.

2.4 VFO linear system description

One considers a closed-loop system illustrated in Figure 1. Where a plant is
described by (19) where e khð Þ and u khð Þ.

2.4.1 VFO_PID

The classical PID controller output is desribed by three terms

u khð Þ ¼ KPe khð Þ þ KI0Δ
�μ kð Þ
k e khð Þ þ KD0Δ

ν kð Þ
k e khð Þ (21)
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and in the convention proposed above as

u khð Þ ¼ KP1ke khð Þ þ KD0G
νC kð Þ½ �
k e khð Þ þ KI0G

�μC kð Þ½ �
k e khð Þ (22)

which may be expressed as

u khð Þ ¼ KP1k þ KD0G
νC kð Þ½ �
k þ KI0G

�μC kð Þ½ �
k

h i

e khð Þ (23)

where νC kð Þ, μC kð Þ≥0 and controlling and error signals are denoted as u kð Þ and
e kð Þ, respectively. Then, denoting.

Remark 2.2. The plant may be described by classical integer order, fractional or
even variable, fractional - order difference equations. The matrix - vector descrip-
tion used makes it possible.

C khð Þ ¼ KP1k þ KD0G
νC kð Þ½ �
k þ KI0G

�μC kð Þ½ �
k (24)

one gets a VFOPID controller transfer function-like description

u khð Þ ¼ C khð Þe khð Þ (25)

To simplify the description one assumes a sensor matrix as

H khð Þ ¼ 1k (26)

The closed-loop system is presented in Figure 1 from which one gets the fol-
lowing relations

y khð Þ ¼ 1k þGo khð ÞC khð ÞH khð Þ½ ��1Go khð ÞC khð Þr khð Þ

þ 1k þGo khð ÞC khð ÞH khð Þ½ ��1d khð Þ
(27)

where

• r khð Þ - a reference signal vector,

• d khð Þ - an external disturbance signal vector,

Figure 1.
Closed-loop system.
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• yo khð Þ - a plant output signal vector,

• y khð Þ - a closed-loop system output signal vector,

• e khð Þ - a closed-loop system error signal,

A system error is evaluated by the formula

e khð Þ ¼ 1k þGo khð ÞC khð ÞH khð Þ½ ��1r khð Þ

� 1k þGo khð ÞC khð ÞH khð Þ½ ��1H khð Þd khð Þ
(28)

3. Variable, fractional-order PID controller synthesis

In the synthesis of the classical PID controller there are three parameters to evalu-
ate. Namely,K,KI,KD known as the proportional, integral and differential gains. In the
fractional-order PID controllers there are two additional parameters: the differentia-
tion order ν khð Þ∈þ and the integration one �μ khð Þ∈þ. In the variable, fractional-
order PID controller the mentioned orders are generalized to functions. This means
that there are three constant coefficients and two discrete variable functions to find

KP,KI,KD, ν khð Þ, μ khð Þ (29)

In the rejection of the external disturbation one can assume that r khð Þ ¼ 0 so
Eq. (29) simplifies to

e khð Þ ¼ � 1k þGo khð ÞC khð ÞH khð Þ½ ��1H khð Þd khð Þ (30)

Usually the sensor matrixH khð Þ is treated as constant, by assumption that sensors
do not introduce its own dynamics to the system. Hence, H khð Þ ¼ H ¼ const. It may
be assumed that H ¼ h01k or further, for h0 ¼ 1, formula (30) takes a form

e khð Þ ¼ � 1k þGo khð ÞC khð Þ½ ��1d khð Þ (31)

The optimal parameters (29) are evaluated due to the assumed optymality cri-
terion. The most popular is so called ISE one (Integral of the Squared Error) or in
the discrete-system case: Sum of the Squared Error (SSE).

SSE KP,KI,KD, ν khð Þ, μ khð Þ½ � ¼
X

kmax

i¼0

e ihð Þ2h ¼ e khð ÞTe khð Þh (32)

Substitution of (31) into (32) gives

SSE KP,KI,KD, ν khð Þ, μ khð Þ½ �

¼ d khð ÞT 1k þGo khð ÞC khð Þ½ ��T 1k þGo khð ÞC khð Þ½ ��1d khð Þ
(33)

In the proposed VFOPID controller synthesis method with partially intuitive and
supported by closed-loop systems synthesis experience the classical optimisation
due to the performance criterion (32) is performed. The pre-defined differentiation
and integration order functions orders are as follows

ν khð Þ≥0 (34)
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ν khð Þ ¼

ν1 khð Þ for k∈ 0, kN1½ Þ

ν2 khð Þ for k∈ kN1, kN2½ Þ

⋮

νN khð Þ for k∈ kNN�1, kNN½ Þ

0 for k∈ kNN,þ∞½ Þ

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(35)

and

μ khð Þ≤0 (36)

μ khð Þ ¼

μ1 khð Þ for k∈ 0, kM1½ Þ

μ2 khð Þ for k∈ kM1, kM2½ Þ

⋮

μN khð Þ for k∈ kMM�1, kMM½ Þ

�1 for k∈ kMM,þ∞½ Þ

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(37)

Every function νi khð Þ for i ¼ 1, 2,⋯,N and μi khð Þ for i ¼ 1, 2,⋯,M is character-
ized by a sets of parameters cij and dij, respectively.

In the classical closed-loop system with PID controller there is introduced the
integration part preserving the steady - state error signal tending to zero. So, in (38)
there is a constant order �1 for k≥ KMM,þ∞½ Þ.

Now, for initially assumed order functions one applies the following algorithm
based on well known Gauss method.

1.Chose a starting set of coefficients KP,K � I,KD, c11,⋯ and d11,⋯,

2.Applying the classical Gauss algorithm find a minimal SSE performance index
value alongside the first variable (eg. K_P),

3.Repeat step 2 for the next parameter,

4. If the SSE value is satisfactory stop else return to step 2.

Remark 3.1. Algorithm described above can be applied also to the classical dis-
crete PID controller with three parameters.

4. Numerical example

One considers a closed-loop system depicted in Figure 1.
A plant is described by a transfer function

Go sð Þ ¼
b0

s2 þ a1sþ a0
(38)

where

• a1 ¼ 0:5

• a0 ¼ 0:1

• b0 ¼ a0

8
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The plant is discretized with the sampling time h ¼ 0:5 and a VFOPID controller
is applied

ν khð Þ ¼
ν1 khð Þ ¼ 1 for k ¼ 0

0 for k∈ 1,þ∞½ Þ

(

(39)

μ khð Þ ¼
μ1 khð Þ ¼ �1þ d1e

d2 kh�1hð Þ for k ¼ 0, 10½ �

�1 for k∈ 10,þ∞ð Þ

(

(40)

and controller gains KP, kI,KD and order function parameters d1, d2.
Hence, there are 5 parameters to evaluate. Due to the performance index (33)

the optimal parameters are as follows

• KP ¼ 1:000

• Ki ¼ 0:514

• KD ¼ 0:890
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−
o
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μ
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h
)(

r
e
d

−
.)

,
μ

F
(k

h
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(r
e
d

−
o
)(

r
e
d
)

Figure 2.
VFOPID controller order functions: ν khð Þ (in black) and μ khð Þ (in red).
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• d1 ¼ �0:35

• d2 ¼ �0:5

The VFOPID controller order functions are plotted in Figure 2 whereas the PID
and VFOPID controllers unite step responses are given in Figure 3.

The achieved VFOPID controller synthesis result is compared with the classical
discrete-time PID controller optimized due to criterion (30). The optimal
parameters are

• KP ¼ 1:00

• Ki ¼ 0:81

• KD ¼ 0:90

Figure 4 contains the closed - loop systems with PID (in blue) and VFOPID (in
red) controllers unit step responses. There is included a plant unit step response of
the plant (in black.)

In Figure 5 the controlling signals are presented (PID - in black, VFOPID - in
red). The controlling signals have typical shapes: first differentiation action and
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Figure 3.
VFOPID (in red) and IOPID (in black) controller unit step response.
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Figure 4.
The closed-loop system response with the VFOPIS (in red) and IOPID controllers (in blue).
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The closed-loop controlling signals.
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finally the classical integration preserving zero steady - state closed - loop system
error.

Remark 4.1. In the Numerical example proposed here the VFOPID and the
classical PID controllers maximal control signal values are the same reaching
assumed bounding value max uI klð Þ½ �, max uF khð Þ½ � ¼ 2.

Remark 4.2. In the Numerical example

SSE KP,KI,KD, 1,�1Þ½ � ¼ 1:3312

SSE KP,KI,KD, ν khð Þ, μ khð Þ½ � ¼ 1:2899
(41)

5. Conclusions

One should emphasize that the proposed solution of the VFOPID controller do
not guarantee the absolute optimum of the closed-loop control system synthesis. It
proves that the proposal of a physically realizable VFOPID controller by micro-
controller (with finite memory) leads to better results due to the assumed perfor-
mance criterion.

The main idea of the proposed method is to assume a priori the order functions
with unknown parameters. In the VFOPID controller synthesis essential is an
assumption that the summation order equals 1 One can express the action as the
assumption of skeleton order functions with unknown parameters evaluated fur-
ther in an SSE optimization algorithm.

Here, it is worth mentioning that there are still open problems of the VFOPID
controllers tuning.

• One should define a program evaluating the order functions.

• For evaluation of the VFOPID controller parameters one can apply another
optimization methods. It seems that optimization methods based on the
artificial intelligence will be very effective.

• Another performance index may be applied. Some penalty functions may be
introduced to SSE as well a term taking into account the minimal value of the
error signal.
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