We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 185,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

Chapter

Supporting Named Entity
Recognition and Document
Classification for Effective
Text Retrieval

Philippe Tamla, Florian Freund and Matthias Hemmije

Abstract

In this research paper, we present a system for named entity recognition and
automatic document classification in an innovative knowledge management system for
Applied Gaming. The objective of this project is to facilitate the management of
machine learning-based named entity recognition models, that can be used for both:
extracting different types of named entities and classifying text documents from dif-
ferent sources on the Web. We present real-world use case scenarios and derive fea-
tures for training and managing NER models with the Stanford NLP machine learning
API. Then, the integration of our developed NER system with an expert rule-based
system is presented, which allows an automatic classification of text documents into
different taxonomy categories available in the knowledge management system. Finally,
we present the results of two evaluations. First, a functional evaluation that demon-
strates the portability of our NER system using a standard text corpus in the medical
area. Second, a qualitative evaluation that was conducted to optimize the overall user
interface of our system and enable a suitable integration into the target environment.

Keywords: named entity recognition, document classification, rule-based expert
system, social network, applied gaming, knowledge management system

1. Introduction

The European research project Realizing and Applied Gaming Ecosystem (RAGE)
is an innovative online portal and service-oriented platform for accessing and retriev-
ing reusable software components and other related textual documents from the Web,
such as research publications, source code repositories, issues, and online discussions.
RAGE is used to support software reuse in the domain of applied gaming. Applied
games (AG) or serious games (SG) aim at training, educating and motivating players,
instead of pure entertainment [1]. RAGE supports the integration with various social
networks like Stack Exchange (“Hot questions™), or GitHub (“Build software better”).
For instance, RAGE includes facilities to connect with the Stack Exchange REST API
which enables an easy import of online discussions into its ecosystem. RAGE users can
easily import multiple discussions from, for instance, the Stack Overflow social site,

1 IntechOpen

The Role of Gamification in Software Development Lifecycle

describe them with further meta information, classify them using an integrated taxon-
omy management system, and then finally retrieve useful information with faceted
search that enables drilling down large set of documents. Currently, the classification
of text documents into existing taxonomies in RAGE is done manually. The user has to,
first, analyze the content of each document manually to understand the context in
which this document is used. This is done by consulting the title and description of each
imported document, as well as, analyzing all related meta-information (like keywords
and tags), which are associated with this document. Once done, the user has to search
for taxonomies that may be used to classify the imported document based on its
content and metadata. This process can be very hard and requires the full attention of
the user because he or she needs to consult the document and taxonomy each time
manually. With a large number of documents and multiple hierarchical taxonomies, it
can be very time-consuming to classify documents in RAGE.

To solve this problem, Named Entity Recognition (NER) is generally applied
because it can extract various knowledge contents (like named entities) from natu-
ral language texts [2]. The extracted knowledge content can then be used to auto-
mate the process of classifying text documents from various domains on the Web,
using, for instance, an expert rule-based system. NER has been widely used to
recognize named entities in medical reports [3], news articles [4], and software web
documents [5, 6]. Techniques for NER vary from rule-based, over machine learning
(ML), to hybrid methods. But, ML-based NER methods are more efficient on Web
contents, because they include statistical models that can automatically recognize
and classify named entities from very large and heterogeneous contents on the
Web. The training of a machine learning-based NER model is however very chal-
lenging. It requires, besides very good programming knowledge, dealing with dif-
ferent technologies and pipelines for text analysis, natural language processing
(NLP), machine learning and rule-based operations [7]. Errors in the initial stages
of the pipeline can have snowballing effects on the pipeline’s end performance.
Therefore, facilitating the development, management, and execution of all neces-
sary NER related tasks and pipelines will, not only reduce the effort to train new
NER models but also contribute to optimizing the performance of the whole system.

The goal of this research project is to develop and integrate a named entity
recognition system into the RAGE ecosystem. The efficient integration of a NER
system into the RAGE ecosystem will not only facilitate knowledge discovery
(efficient extraction and analysis of named entities and their interrelationships),
but also, enable an automatic classification of text documents into the existing
taxonomies of the RAGE ecosystem.

After reviewing and comparing common systems and tools for named entity
recognition and document classification, we present real-world use case scenarios
and derive features for training and managing NER models with the Stanford NLP
machine learning API. Then, the integration of our NER system together with the
Drools expert rule-based system is presented, allowing an automatic classification
of text documents into different taxonomy categories available in the knowledge
management system. Finally, the results of a cognitive walkthrough are shown,
serving as a qualitative evaluation and the optimization of the user interface and
enabling a suitable integration into the target system.

2. State of the art and related work

2.1 Rage

As stated earlier, the RAGE social platform can be used to import questions from
the Stack Exchange platform and other text documents from the Web, which

2

Supporting Named Entity Recognition and Document Classification for Effective Text Retrieval
DOI: http://dx.doi.org/10.5772/intechopen.95076

generally consist of a title, a description, and other metadata. RAGE includes a
taxonomy management system that serves at organizing and categorizing these docu-
ments into existing, hierarchical taxonomies found in its ecosystem. Taxonomy is
the practice and science of classifying things and concepts including the principles
underlining such classification [8]. It is used in RAGE to support faceted browsing,
which is a technique allowing users to drill down their large number of search
results, enabling faster information retrieval. However, it is hard to classify docu-
ments with multiple taxonomies. The user can easily mix up one with another while
analyzing and classifying a document into multiple hierarchical taxonomies. Each
individual document (including its metadata like title, description, tags) have to be
analyzed each time manually in order to understand the context in which the
document is used, before making a proper classification into the existing taxon-
omies. This process can be very challenging and time-consuming, especially with
multiple documents and various taxonomies having complex hierarchical struc-
tures. To fulfill the requirements of the project, a very desirable goal would be to
develop and integrate a named entity recognition system into RAGE that can auto-
matically recognize and classify various kinds of named entities from the multiple
social networks connected with the ecosystem. Then, to apply an expert rule-based
system that will enable an automatic document classification by reasoning about the
extracted named entities, the hierarchical taxonomies and other textual features
found in RAGE textual documents.

2.2 Named entity recognition techniques

NER techniques generally include handcrafted rules or statistical methods that
rely on machine learning (ML) [2], or even a combination of those. A NER tech-
nique is denoted as rule-based or handcrafted if all the parameters (including rules)
that are used to identify and categorize named entities are defined manually by a
human. Machine learning based techniques will use a computer to estimate those
parameters automatically [7]. Existing ML techniques include supervised learning
(parameter estimation is based on already annotated data), semi-supervised learning
(parameter estimation uses only a small set of annotated data), and unsupervised
learning (does not use annotated data for estimation). Most popular machine learn-
ing systems are relying on Conditional Random Fields (CRF), the state-of-the-art
statistical modeling method for sequential text labelling [9]. CRF has been widely
used with machine learning to support different NLP tasks, such as, part-of-speech
tagging [10], sentence splitting [11] and NER [12]. Developing a machine learning-
based NER system is however very challenges and requires a lot of data for model
training. Often, gazetteers (dictionaries of specific named entities) are introduced
as additional features to recognize unknown named entities - words that were not
used in the training process. Likewise, regular expressions can be applied to optimize
ML models, because they detect more complex named entities like compound
words [13].

Many factors can influence the performance of a NER system, such as a) The
language. Some NER systems were developed for one specific language like English.
b) The named entity type. For instance, the class of a datetime can be easily found if
it only contains absolute dates (2003; 6.2.2005, April 5, 2011), but it can be difficult
to detect relative dates (next Saturday, in December). c) The domain of the
processed texts (corpora). If a classifier was trained using juristic texts, it will be
difficult for this same classifier to deal with material originated from bioinformat-
ics. The standard measures for evaluation machine NER systems are precision, recall
and F1 for this task. Recall is the ratio of correct annotated NEs to the total number
of correct NEs. Precision is the ratio of correct annotated NEs to the total number
(correct and incorrect) of annotated NEs. F1 score is calculated from precision and

3

The Role of Gamification in Software Development Lifecycle

recall and describes the balance between both measures. Most NER tools have
functions to calculate precision, recall and F1 from a set of training and testing data.

2.2.1 Comparison of NER tools

Many tools have been proposed in the literature for named entity recognition.
We need to review and compare them to enable a suitable integration into our
target system. Therefore, we introduce the following selection criteria: a) the
selected tool should not be limited to a specific type of text or knowledge domain b)
should include a rich set of NLP features (including NER, POS, Tokenization,
Dependency Parsing, Sentiment Analysis), c) must be stable, extendable, distributed
as opensource, and should have an active community of developers. Our solution is
designed to classify a relatively small amount of data. The RAGE contents have a
limited size and do not consist of many gigabytes of data. Therefore, we prefer to
achieve good results with a high level of accuracy and do not need a very fast
classification process which often results in lower accuracy.

Our tool comparison is based on the work of Pinto [14]. According to our
selection criteria, we exclude from our comparison non-opensource tools, tools
without NER support, and those focusing only on specific data. To compare state-
of-the-art tools, we added SpaCy, Spark NLP and Stanza to our list, because these
tools arose in the last view years and may be relevant in our work.

GATE ANNIE' is a more general solution for various NLP tasks. It was first
developed to help software engineers and researchers working in NLP but has been
optimized to a more powerful system with an integrated user interface, which sup-
ports different data preprocessing tasks and pipeline executions. GATE is distributed
with an integrated information extraction system called ANNIE that supports NER
and many other NLP tasks. ANNIE relies on the JAPE specification language, which
provides finite state transduction over annotations based on regular expressions.
Using the GATE interface, users can capture the provenance of machine and human-
generated annotated data to create new metrics for NLP tasks like named entity
recognition. Additional metrics for more specific scenarios can be added, but this
requires an existing implementation in the RAGE architecture, which introduces the
overhead of familiarization with the entire GATE architecture.

The Natural Language Toolkit (NLTK)? is a Python library that supports most
of the common NLP tasks. It was launched in 2001 under the Apache license. Each
NLP task is performed by an independent module and it is possible to train an own
model for NER. The main disadvantage is that it lacks support for dependency
parsing and an interface for the standard Universal Dependencies® dataset is missing.

Apache OpenNLP” is written in Java and based on machine learning. Launched
in 2004 and licensed under the Apache License, the software supports NER and
many NLP tasks. But it lacks support for dependency parsing.

The Stanford CoreNLP® is a Java-based tool suite from Stanford University that
was launched in 2010. It supports all relevant NLP tasks, including NER and
dependency parsing. CoreNLP can train new NER models independently from the
data types, languages, or domain. Its API includes more than 24 different

! https://gate.ac.uk/ie/annie.html

* https://gate.ac.uk/sale/tao/splitch8.html
? https://www.nltk.org/

* https://universaldependencies.org/

> https://opennlp.apache.org/

® https://stanfordnlp.github.io/CoreNLP/

Supporting Named Entity Recognition and Document Classification for Effective Text Retrieval
DOI: http://dx.doi.org/10.5772/intechopen.95076

annotators for text annotation, regular expressions and language processing tasks.
These annotators can be easily combined and executed sequentially in different
pipelines. A REST service interface is also available, which can be used by other
external systems for different NLP tasks execution. Thus, CoreNLP may be easily
integrated with a rule-based expert system to support the automatic document
classification in RAGE. Finally, the training of NER models is very flexible and
customizable. CoreNLP includes nearly 100 parameters for CRF-based model
training and performance fine-tuning, including other options for adding gazette
lists that can recognize unknown named entities. CoreNLP is licensed under the
GPLv3 and has a very big active community. Thus, state-of-the-art NLP methods
and algorithms are permanently developed and integrated into the software.

Stanza’ is a Python Library, developed by Stanford University as a possible
successor for CoreNLP. It was launched in 2019 under the Apache license. Even the
system is rather new it supports many features needed in our work, only sentiment
analysis is missing. The ML models trained by CoreNLP are not directly supported
in Stanza and need to be trained again. Stanza brings a client to connect to the
CoreNLP server, so it is possible to use CoreNLP features over this interface, which
increases the complexity. SpaCy® is one of the newer systems for NLP that was
launched in 2015. It is written in Python and was published under the MIT license.
It is used to produce software for production usage, which should be easy to use and
fast. SpaCy supports most of the common NLP features, including dependency
parsing and features for training custom models for NER. But it lacks support for
sentiment analysis. The main disadvantage for our purpose is, it focuses on fast
classification, which leads to a lower accuracy compared to other systems. Spark
NLP? is one of the most recent NLP tools that was released in 2017. It is a library
build on top of Apache Spark and TensorFlow. It supports Python, Java and Scala
and focuses the usage in production systems. It has more dependencies to get it up
and running compared to other systems, due to the Apache Spark architecture. The
supported NLP features include all relevant features, including dependency parsing
and the training of a custom model for NER. Due to its young age, the community is
not as big and active compared to others. On Stack Overflow, only a few number of
questions are tagged with “johnsnowlabs-spark-nlp”, while the “stanford-nlp” tag
has more than 3000 questions. We decided to use the Stanford CoreNLP suite for
our project. CoreNLP is the only NLP software which met all our requirements. The
competitors may be better or faster in one or another subtask, but overall CoreNLP
seems to be the tool with the best mix of all required features. Especially the rich
feature set in combination with an active and living community is a huge advantage
of Stanford CoreNLP, compared to the other solutions.

2.3 Rule-based expert systems

Expert systems are rapidly growing technology of Artificial Intelligence (AI)
that use human expert knowledge for complex problem-solving in fields like
Health, science, engineering, business and weather forecasting [15-17]. An expert
system represents knowledge solicited by a human expert as data or production
rules within a computer program [17]. These rules and data can be used to solve
complex problems. For instance, a rule-based classification system can be applied to
classify text documents into organized groups by applying a set of linguistic rules.

’ https://stanfordnlp.github.io/stanza/
® https://spacy.io/
? https://nlp.johnsnowlabs.com/

The Role of Gamification in Software Development Lifecycle

The rules will instruct the system to use semantically relevant elements of the
document and its contents to identify useful categories for automatic classification
[18]. Over the last decades, many expert systems have been proposed but essen-
tially all of them are expressed using IF THEN-like statements which contain two
parts: the conditions and the actions. In the mathematical sense, a rule can be
defined as X == > Y, where X is the set of conditions (or antecedent) and Y is the set
of actions (or the consequent). Rules are used to represent and manipulate knowl-
edge in a declarative manner, while following the first-order logic in an unambigu-
ous, human-readable form, and at the same time retaining machine interpretability.
Rule-based systems generally include a “production memory” which contain a set of
rules that are matched against facts stored in the “working memory” of an
“inference engine” [40].

The C Language Integrated Production System (CLIPS) is a public domain
software tool for building expert systems. It was developed by the NASA in 1985
[19]. It has become one of the most used RBES in the market because of its effi-
ciency and portability [20]. CLIPS was written C, and for C programming. But, it is
now incorporating a complete object-oriented language for writing expert systems,
called COOL. COOL combines the programming paradigms of procedural, object-
oriented and logical languages. While CLIPS can separate the knowledge base (the
expert rules) from its inference logic, it is not that user friendly in the formulation
of rules like many other systems [19].

Ten years after CLIPS, the Java expert System Shell (JESS) was launched by
Ernest Friedman-Hill of Sandia National Lab [19] as a Java-based implementation of
the CLIPS system. It supports the development of rule-based expert systems that
can be tightly coupled to Java code and is often referred to as an expert system shell
[21]. JESS is compatible with the CLIPS rule language, but a declarative language
(called JessML) is also available for specifying rules in XML. JESS is free to use for
educational and governmental purpose, but it is not an opensource software. There
is no free source code under any available license'®.

The Drools expert system is an opensource software that was first developed by
Bob McWhiter (in 2001), and later on, absorbed by the JBoss organization (in
2005). Drools is based on Java and its rule definitions rely on IF...THEN statements
which are easier to understand than the syntax provided by CLIPS and JESS. Drools
rules can be also specified using a native XML format. The rule engine essentially is
based on the Rete algorithm [22], however, extended to support object-oriented
programming in the rule formulation. Drools is available under the Apache Soft-
ware Foundation’s opensource license [23]. Because its easy and far more readable
rule syntax, Drools has been widely used as an expert system in various domains
[6]. Therefore, we chose Drools to enable an automatic document classification in
the RAGE ecosystem.

3. System design

Our system design relies on the user-centered design (UCD) approach by [24],
which has proved to be very successful in the optimization of the product useful-
ness and usability [25]. Applying the UCD to design a system includes: a) under-
standing the context in which users may use the system, b) identifying and
specifying the users’ requirements, c) developing the design solutions, and finally,
d) evaluating the design against users’ context and requirements.

19 https://jess.sandia.gov/jess/FAQ.shtml

Supporting Named Entity Recognition and Document Classification for Effective Text Retrieval
DOI: http://dx.doi.org/10.5772/intechopen.95076

Our system allows any user (experts or novice developers) to customize and
train a machine learning-based NER model in their domain of expertise. In the
target system, the user starts with a named entity recognition definition, which is a
set of parameters and configuration steps to train a named entity recognition model
using machine learning. With the support of the system, the user can upload a text
corpus, define the named entity categories, and the named entity names (including
their related synonyms) based on the requirements of the target domain. Then, he/
she can customize all the conditional random fields and optimization parameters
used to train a model with machine learning. The information about the NE cate-
gories, the NE names, and their related synonyms is used for the automatic annota-
tion of the text corpus, using the BIO annotation mechanism which is integrated
into our system. This is very useful because machine learning-based NER systems
generally require a lot of annotated data for model train. However, while the system
is able to suggest a first annotation of the text corpus, which can then be used for
training and testing, it is necessary for the user to customize the testing data to
avoid overfitting issues which may lead to very poor quality of the trained model
[7]. Once a NER model is trained, the user can finally use it to construct flexible
rules (by referring to the extracted named entities in the text) for automatic docu-
ment classification in various domains. These rules are business rules and are
constructed using a rule-based expert system. They will be used to represent and
manipulate knowledge in a declarative manner using a set of WHEN ... THEN
statements in a human-readable form. The next sections will now provide an over-
view of relevant use cases and describe the overall architecture of the system.

3.1 Use case

Our use case diagram in Figure 1 describes all tasks for a user to create a NER
model definition, train a model, manage it, and finally use the trained model to
support automated document classification in RAGE. We call our system the
Standford Named Entity Recognition and Classification (SNER), as it relies on
Standford NLP for NER, and Drools for document classification. Our actor is a

= edit business rules B

manage classifier
parameter definition ¢

= automatic content
classification

edit content ————————— everify classification
L T}

AN

Use * update &
manage NER model } testing/training data
e * edit regex rules
[N

= upload data dump
s define CRF parameters
* define ME category,

names and synonyms
- wam

manage NER
model definition _/

| I
II
"l

Figure 1.
SNERC use case.

The Role of Gamification in Software Development Lifecycle

registered and logged-in user in KM-EP. There are four main actions that can be
executed by the user: 1) “Manage NER model definition”. This includes uploading
a data dump for use in the target domain, defining the corresponding NE categories,
names, and synonyms, customizing CRF and performance parameters, adding reg-
ular expressions to identify complex named entities (like Java 11.0), preparing the
NER model, which includes features for the automatic annotation of the text corpus
and the splitting of the annotated text into testing and training data. Finally, train-
ing the NER model using CronJobs and the Stanford NLP machine learning API. 2)
“Manage NER model”. This includes dealing with the management of the created
NER models, reviewing the performance indicators like precision, recall and F1,
edition and deletion of NER models, and upload of already existing NER models in
the system. 3) “Manage classifier parameter definition”. This action deals with
adding, editing or deleting business rules that are used for classifying text docu-
ments into existing taxonomies. To create new rules, the user can select the taxon-
omies and NER models that are relevant for its specific domain. 4) The “Edit
content” action describes the steps, where a KM-EP content is edited and the
automated classification suggestion is retrieved, supervised and saved.

3.2 Taxonomies in serious games development

Our system is developed to enable automatic document classification into hier-
archical taxonomies. Since, our research is applied to the domain of serious games
development, we need to review existing taxonomies and find out, which ones may
be useful to validate our approach. We can refer to our previous study about
software search during serious games development [26] to figure out which taxon-
omies may be relevant for the domain of serious games. In this research [26], we
applied the LDA statistical topic modeling to automatically discover 30 topics about
serious games development, from which the following belong to the most popular
ones: Programming and Scripting Language, 3D-Modeling, Game Design, Rendering,
Game Engines, Game Physics, Networking, Platform, and Animation. We can now
review the current state-of-the-art in taxonomies for serious games and select a list
of taxonomies to be used in our proof-of-concept.

Taxonomies in serious games have many aspects and dimensions. Most relevant
taxonomies for our work are related to 1) Game genre, 2) programming languages, 3)
video game tools, 4) machine learning algorithms, and 5) video game specification and
implementation bugs. Many researchers have proposed different hierarchical taxon-
omies in the domain of serious games. Their main objective was to elucidate the
important characteristics of popular serious games and to provide a tool through
which future research can examine their impact and ultimately contribute to their
development [27]. Our first classification taxonomy reflects the game genre [GEN],
as it is one the basic classification schemes proposed by researchers in the classifi-
cation of serious games [27-30]. A serious game can be classified based on the
market [GEN/MAR] (e.g. Education, HealthCare, Military), the game type [GEN/
TYPE] (board-game, card-game, simulation, role-playing game, toys, etc) or the
platform [GEN/PLA] in which the game runs (Browser, Mobile, Console, PC) [27].
Many Stack Overflow discussions are already tagged with specific words like “edu-
cation”, “board-game”, “simulation”, “console”. Therefore, we want to classify SG-
related discussions in the game genre dimension. Second, our analysis of SG-related
online discussions in Stack Overflow has revealed that developers of serious games
are generally concerned with finding ways to implement new features using a
specific programming language (or scripting) language [LANG]. So, a taxonomy in
the programming language dimension is essential. To classify programming lan-
guages, we refer to Roy’s work [31] and use the programming paradigm as the main

Supporting Named Entity Recognition and Document Classification for Effective Text Retrieval
DOI: http://dx.doi.org/10.5772/intechopen.95076

attribute in our work. We focus on serious game development, where existing game
engines and tools for classic video game development are used, and we want to
classify the Stack Overflow posts in this way. Third, [30] proposed a lightweight
taxonomy to standardize the definition of common tools, development environments
[TOOL/IDE], and game engines [TOOL/ENG] that are used for game development.
We can use this taxonomy as a classification scheme for the Stack Overflow posts.
Fourth, another aspect is machine learning [ML], the most trending aspect in serious
games development. Machine learning is one of the main techniques used in reus-
able software components [32] and for creating intelligent learning systems. For
instance, pedagogical systems use observational data to improve their adaptive
ability, instead of relying on theoretical guidelines [33]. This motivates us to inte-
grate a machine learning-based classification scheme in our work. [34] created such
a scheme and gave a brief overview of state-of-the-art machine learning algorithms.
We will use this in our work for classifying posts in the machine learning dimen-
sion. Our final dimension is regarding video game bugs [BUG]. As shown in our
study, one of the main concerns of serious games developers (like most of the
software developers) is to find solutions to fix their bugs, whether during the design
or implementation of their games. [35] developed in 2010 a taxonomy for video
game bugs, which differentiate between specification bugs [BUG/SPEC] and
implementation bugs [BUG/IMP]. A specification bug is generally referring to a
wrong requirement in the game design document. This may refer to missing of
critical information, conflicting requirements, or incorrectly stated requirements. A
bug in an implementation is an error found in any asset (source code, art, level
design, etc.) that is created to make the specification into a playable game [36]. A
failure in an implementation is generally a deviation of the game’s operation from
the original game specification [35].

3.3 Drools extensions for document classification

This section presents our Drools extensions that is relevant to enable a flexible
classification of text documents into the RAGE taxonomies. Our features extension
rely on techniques for Linguistic Analysis, Syntactic Pattern Matching and Document
Structure Analysis. Our classification system will be implemented as a standalone
RESTful webservice so that it can be easily integrated within RAGE and any other
external systems that may need to classify documents into predefined taxonomies.

Linguistic Analysis. We use the Stanford NLP API to support linguistic analysis
in our System. Stanford NLP supports many NLP tasks like part-of-speech tagging
(POS), tokenization, and NER. By analyzing specific part-of-speeches and recog-
nizing various mentions of named entities discussion sentences, we can analyze the
syntactic structure of each sentence. Then, we can refer to the sentence
components (subject, predicate, object), the sentence form (whether it is affirma-
tive [37] or negative), and the sentence mood (whether it is interrogative or declara-
tive) to understand the structure of each sentence and derive its meaning. A similar
approach was proposed by [37] for the classification of Stack Overflow discussions
into software engineering-related facets, but this approach relied on hand-crafted
rules for recognizing named entities in discussion posts. Instead of applying hand-
crafted rules for NER, we will rely on our NER system to extract SG-related named
entities (like game genres, programming languages, or game engines) from the
existing text documents. To detect the sentence form and determine if a sentence is
positive or negative, we will rely on the Stanford NLP Sentiment Analysis API 1 asit

™! https://nlp.stanford.edu/sentiment/index.html

The Role of Gamification in Software Development Lifecycle

includes a machine learning-based API for this purpose. We will rely on regular
expressions to determine the sentence mood. We will consider a sentence to be
interrogative, if it contains a question mark, or if it starts with an interrogative word
(what, how, why, etc.) (e.g. what is the best way to record player’s orientation?),
otherwise the sentence is declarative. Using our linguistic analysis features, we can
understand the meaning of each individual sentence, and use this information to
derive the semantic of a document. Then, it becomes easier to group documents
having similar semantic into a single taxonomy.

Syntactic Pattern Matching. Research on web content mining has demon-
strated that certain lexico-syntactic patterns matched in texts convey a specific
relation [38]. Liu’s study has revealed that many online questions belonging to
similar topics have similar syntactic patterns. They found that many programming
languages usually appear after a preposition, like with Java, in JavaScript. After
carefully analyzing the title and description of some SG-related topics in Stack
Overflow, we could easily observe similar behavior for game genres, game engines
and tools, such as for educational games, in Unity 3D, with GameMaker, etc. Thus,
the categories of a question can be derived based on the syntactic patterns of its
sentences.

Table 1 shows the list of our syntactic patterns that can be used to classify Stack
Overflow discussions into taxonomies of the RAGE system. Our syntactic pattern
definition is based on a rich set of terms, term combinations, and standardized
synonyms (Table 2), that we observed in various Stack Overflow discussions.
Applying synonyms in our approach is very important to automatically detect name
variations in text and enable a classification to perform better. For instance, we can
use a pattern that includes the term “implement” and use the same pattern to
identify texts that include the term “develop” or “build”. To achieve this goal, we
will need to create a domain dictionary with a set of semantic classes, each of which
includes a standardized term and its synonyms [37].

For each parameter in our defined template shown in Table 2, and for each
taxonomy and category that the template applies to, we will use a list of popular
terms found in Stack Overflow to instantiate our template and created a semantic

Pattern Description

PA Entity or Term appears after a preposition

PB Entity or Term appears before a preposition

SG Entity or Term appears in the subject group

PG Term appears in the predicate group

0oG Entity or Term appears in the object group

SA The sentence is affirmative

SI The sentence is interrogative

SP The sentence is positive

SN The sentence is negative

TT Term combination <terml1> <term2> appears in a sentence

TTSG Term combination <terml1> <term2> appears in the subject group

TTOB Term combination <terml1> <term2> appears in the object group

TTPB Term combination <terml> <term2> appears before a preposition
Table 1.

List of syntactic patterns.

10

Supporting Named Entity Recognition and Document Classification for Effective Text Retrieval
DOI: http://dx.doi.org/10.5772 /intechopen.95076

Taxonomy Category Term Term synonyms

Programming Language <implement > implement, develop, code, create, construct, build, set

Specification Bug <specify > design, require, define, determine, redefine

Implementation Bug <ervor > error, bug, defect, exception, warning, mistake
Specification Bug

Game Engine <configure> configure, setup, adjust, adapt, optimize
— < howto > How to, How do (I,we), How can (I,we), How should
(I,we)
... Bug <fix > fix, solve, remove, get rid of, eliminate
Table 2.

List of synonyms.

class with each term. We will rely on the WordNet API'* to create semantic classes
of candidate synonyms using standardized terms. When a new term is added, all its
synonyms should be identified using WordNet and then considered for inclusion.
By combining different terms and synonyms, we can discover a wide range of
expressions and term combinations and phrases used in the majority of SG-related
discussions. For instance, the term combination <Best> < Way> can be used to

({313

identify posts containing the expressions: “best way*, “best strategy®, “proper
design®, “optimal solution®, etc. This will allow us to have a more generic syntactic
pattern definition that can easily scale in different domains compared to [37]‘s
system (Table 3).

Document Structure Analysis. This feature is used to explore the structure of
online text documents. We can refer to specific HTML elements to find out if a
document contains a code snippets (<code > ... < /code>), bullet points
(... < /ul>), or even images (). Exploring the structure of online
discussion can help us to classify documents into specific taxonomies like Program-
ming Languages or Video Game Bugs. A quality study of Stack Overflow online
discussion [39] has revealed that explanations (generally represented using bullet
points in the question bodys) accompanying code snippets are as important as the
snippets themselves. Also, existing survey research on document structure analysis
has demonstrated that analyzing the hierarchy of physical components of a web
page can be very useful in indexing and retrieving the information contained in this
document [40]. For instance, if a Stack Overflow post, contains the word “bug” in
its title, and one or more code snippets in its body, then it may be assigned to the
Implementation Category of the Video Game Bug Taxonomy. Generally, such a dis-
cussion would include sentences like “How to fix my bug in ... ” or “How can I

Pattern Description

LS Text contains multiple bullet points as HTML list

CS Text contains one or multiple code snippets

IM Text contains one or multiple images followed by a text description
Table 3.

Patterns for document structure analysis.

!> https://wordnet.princeton.edu/

11

The Role of Gamification in Software Development Lifecycle

solve this issue... in my game” in its title or description body. Similarly, if a bug
discussion includes terms like “requirement, design, or specification” in its title
(e.g. I want to fix ... in my specification), with multiple bullet points in its
description body, then it may indicate that the user is seeking help to solve an issue
in a particular section of its design specification. In this case, the discussion post
may be classified into the Specification Bug category of the Video Game Bug
Taxonomy.

Our features extensions are very flexible and can be easily combined to con-
struct even more complex rules in the Drools language. There is also no limitations
for adding new extensions to document classification in our system (Table 4).

3.4 System architecture of SNERC

This section presents the system architecture of SNERC. Based on our use cases,
we have defined 5 main components which will want to describe here (Figure 2).

NER Model Definition Manager manages all the necessary definitions and
parameters for model training using machine learning. It includes 3 main classes.
The first two, Named Entity Category and Named Entity, hold information about
the domain-specific named entities names and categories. The third class,
NERModelDefinition, is used to stored data like the model name, text corpus,

Pattern Matching Taxonomy Examples
Categories
PA (SG || OG) && SA LANG, GENRE, ... <Howto> to do animation with <unity3d5.2> An
< Educational Game > for learning prog. Language.
(TT && SI) || PA SPB It might be an issue in the < game> <design> spec.
PB && CS IMB I am using a nstimer and it has a <bug> with my game

loop <code>...</code>

Table 4.
Pattern matching rules for matching stack overflow discussion posts.

Classifier Parameter 3 | NER Model = | NER Model 3 | NER Model 3 |
Definition Manager Manager Definition Manager Trainer

Classifier Parameter Definition] NER Model OL_‘_ NER Model Definition 1 Trainer

o 1
-id: .l | -id:i o

id: int id: int 71 | -id:int - wuid: uuid
- title: stri 1 - : stri iMee etri

title: string name: string - title: string - status: string
- rules: string - model: file - regex: string

1 1
))]
NER Classify E Categorization E Taxonomy E
Server Manager
Categorization
L Taxonom
Linguistic Analyser] ~id: int 1 Y
" R . 1 1 - id: int
+ getEntitiesAppearingAfterPreposition() title: string
+ getEntityAppearinginSubject() - title: string
- createdBy: user

Figure 2.
Model of the conceptual architecture.

12

Supporting Named Entity Recognition and Document Classification for Effective Text Retrieval
DOI: http://dx.doi.org/10.5772/intechopen.95076

gazette lists, and regex. We use the Stanford RegexNER API to construct and store
complex rules, as they can easily be combined with already trained models.

NER Model Trainer is our second component that is used to prepare a NER
model. This includes the automatic annotation of the domain text corpus (or data
dump) based on the previously defined NE categories, NE names and synonyms.
Our system is also able to split the annotated text corpus into testing and training
data. The testing data, however, needs to be reviewed by a human expert and
uploaded again to avoid overfitting, and thus a realistic calculation of precision,
recall and F1 scores. When this is done, the NER Model Trainer component can
execute the task for training a NER model using jobs and the Stanford CoreNLP. As
the NER Model Trainer is written in Java and KM-EP is a PHP project, we designed
it as a separate REST service component. This has further advantages. First, the
service can be developed independently and does not affect KM-EP. Second, this
service can be used separately from KM-EP as it is defined as a REST API. Other
external systems will just need to define the input data in a JSON format and send
them via an HTTP REST call to this service. The NER Model Trainer has a class
called NER Model Definition which represents the corresponding GUI components
in KM-EP. The Trainer class is used to control the training process.

NER Model Manager. This component is very straightforward since it only
serves the storage of the trained NER models into the KM-EP filesystem so that they
can be used by other systems like a linguistic analyzer or our document classifica-
tion system. If a model is prepared with a NER Model Definition, users can update
the created testing and training data within the NER Model Manager to get better
Precision, Recall and F1 scores. Also, the created Stanford Regex NER rules can be
edited and updated. It is also possible to upload a StanfordNLP NER model that was
trained with another system and use it in KM-EP. Figure 3 shows an example of a
recognized named entity with the NER Model Manager.

Classification Parameter Definition Manager. This component is used to
manage and store business rules in KM-EP. To construct business rules that mention
named entities and can be used to classify documents into existing taxonomy
categories, the design of the “Classification Parameter Definition Manager” com-
ponent needs to include links to the “NER Model Manager”, “Content Manager”
and “Taxonomy Manager” of KM-EP. We use the Simple Knowledge Organization
System (SKOS) as the unique connection between our business rules and the taxon-
omy categories found in KM-EP. Even each taxonomy category in KM-EP has a
SKOS persistent identifier representing the category.

NER Classifier Server. The NER Classify Server is our last component. It is
developed as a standalone RestFul service to classify documents into taxonomies. To
execute a document classification, the NER Classify Server needs information about
the document (title, description, tags), the Drools rule, and references about the
NER models, so that named entities can be used in the rule formulation. This
information is sent to the server from KM-EP in a JSON format. With the provided
document data and the references to the NER models, the server can now execute
the NER, perform the synonym detection (with WordNet), and execute Linguistic
Analysis, and Syntactic Pattern Matching on the Document structure and content.
This analysis is done in the “classify() ” method of a Java object, called Document.
The analysis result is then stored into the properties of this object and can be used

I [TOOLENGINE] (0]
How to develop a game using unity ?

Figure 3.
Example of a recognized named entity.

13

The Role of Gamification in Software Development Lifecycle

during the execution of Drools rules. The following code snippet shows the imple-
mentation of our Document.classify() method.

Server
Document
title
description
tags

classify()

LinguisticAnalyzer.check(sentence)
detectNamedEntities()
detectSynonyms()
appearsAfterPreposition()
appearsBeforePreposition()
isAffirmative()
appearsInSubject()
isSentencePostive()

DocumentStructureAnalyzer(text)

hasCodeSnippet()

hasBulletPoint()

hasImages()

3.4.1 System service implemenmtion

To make the features of our implemented REST services available to the various
KM-EP components, we created two new services in KM-EP. These services are
used as an adaptor between KM-EP and its objects and our developed REST ser-
vices. Each service bundles the features of the corresponding REST service and is
connected with the KM-EP PHP API. The big advantage of relying on this service-
based architecture is that, if we decide to change or update our REST APIs, we will
only need to change the KM-EP services and leave their underline implementations
untouched.

NER Model Trainer Service. The NER Model Trainer Service of KM-EP is used
to connect with the NER Model Trainer REST service. As already discussed in the
previous sections, this component includes the creation of a NER Model preview,
the preparation of a NER Model and model training. Because the NER Models are
created using the NER Model Trainer component, they need to be downloaded from
there into KM-EP and deleted afterwards.

Classifier Service. The Classifier Service of KM-EP is used for the communica-
tion between KM-EP and the NER Classify Server REST service. To handle the
automatic document classification, we first need to manage the NER Models using
the NER Classify Server. Then, the Classifier Service of KM-EP can trigger the
execution of the operation for adding or deleting NER Models by calling the NER
Classify Server. Furthermore, the Classifier Service will be able to trigger the
automatic classification of documents to be suggested to the user.

3.5 Proof-of-concept

After presenting our major use cases and showing details about our implemented
components, we can now present a common use case scenario where Stack Over-
flow discussions about SG topics can be classified in RAGE. With an existing NER
model in the system, a classification parameter definition can be created with the

14

Supporting Named Entity Recognition and Document Classification for Effective Text Retrieval
DOI: http://dx.doi.org/10.5772/intechopen.95076

Classification Parameter Definition Manager component to classify discussion texts
into taxonomies of the system. For instance, there may be a Stack Overflow post

like this in RAGE:

Title:
Keywords:
Description:

“bug in my game loop”
“cocoa-touch, nstimer”

“I am making a game on xcode 5. I am using a nstimer in C\# and there
may be a bug in my game loop. Can you help me please. All help is great.

<code>...</code>"

According to our previous definition, we can create Drools rules to automatically
classify this document into Video Game Bug and Programming Language taxonomies.
First, we will start with the creation of a “Classification Parameter Definition”,
where we select the desired taxonomy and NER models for named entity extraction.
Then, we will construct our classification rules using the WHEN ... THEN syntax
provided by Drools. Based on the selected taxonomy, the NER models, and our rich
set of features extensions, we can easily refer to specific named entities (like C#
(LANG), cocoa-touch (TOOL)) in our rule definitions and perform Linguistic
Analysis, Syntactic Pattern Matching, and Document Structure Analysis on the docu-
ment. Figure 4 shows an example of such classification rules in the Drools language.

* Lines 6-7 (of rule 1) refer to our WordNet integration to detect if the term
“bug” (or one of its synonyms) is included in the discussion title. Line 9
analyzes the document structure to identify if the post description includes a
code snippet. Because both conditions are true, the document is automatically
assigned to the Implementation Bug of the Video Game Bug taxonomy.

* Line 19 (of rule 2) checks the syntax of the post description to identify if a named
entity of type LANG appears after a preposition. Since it is true, the post is
assigned to the C# category of the Programming Language taxonomy.

To make it easier for the user to test the created rules, we implemented a form to
test the developed rules. The user can input some text, execute the classification
parameter definition and see a classification report with the results of the annota-
tion and classification process. There is also a visualization of the NLP features

Categorization

Serious Games Taxonomy

+ M i GameBugs
Specification Bug
v ion Bug

Game Genre
« W [Programming Language
+ W = 00P
Java

Python
Scripting
Procedural

Declarative

Select Classification

Serious Games Classification

Figure 4.

Lo~ WN B

package server, engine, textanalysis;

= rule "Implementation bug"

when
$document: Document()
$bugSynonyms : Wordnet(synonymsOf "bug")
$document: Document(titleMatches $bugSynonyms)
$text: Text() from $document.description
Text (hasSnippet)

then
$document.addCategory("IPB", "5e90316178196");

end

- rule "Programming language appears after a preposition"

when
$document: Document()
$sentence: Sentence() from $document.description.sentences
String (this matches "LANG.*") from $sentence.entitiesAfterPreposition
then
$document.addCategory("C#", "S5e%@30@elcdbb5");
end

Selected categovies and their rules.

15

The Role of Gamification in Software Development Lifecycle

detected by Stanford CoreNLP which is based on CoreNLP Brat'®. The reports
include the following information:

A list of persistent identifiers of the detected categories, an area for the
detected sentences with the results of the Stanford CoreNLP features, representa-
tion of detected Parts-of-Speech, detected NEs, detected basic dependencies and
the detected sentiment. For further analysis the original Stanford CoreNLP output
is also available in JSON format in the GUI.

4, Evaluation of SNERC

In the last chapter, we have described the implementation of our SNERC system,
and presented a proof-of-concept scenario, where a machine learning NER model is
used to support a rule-based classification of Stack Overflow discussions into tax-
onomies used in the domain of serious games. The concepts, models, designs,
specifications, architectures, and technologies used in chapter 3 has demonstrated
the feasibility of this prototype.

Now, we need to evaluate our developed system and prove that it is usable,
useful, effective, efficient, etc. Therefore, this chapter presents different evalua-
tions, that we conducted to evaluate different aspects of SNERC. There are several
evaluation methods that can be used to evaluate software systems.

Our first evaluation is introduced to test the functionality of our NER system, as
it the basic component used for NE recognition and classification, and also for
supporting automatic document classification in RAGE. Thus, we use a standard
text corpus to train a set of NER models and compare our evaluation values with
another system, that is also based on Stanford CoreNLP. We use a text corpus of the
medical area to demonstrate cross-domain portability of our approach. Precision,
recall, and F1 are also applied in this evaluation, as they are the standard evaluation
parameters for comparing machine learning-based NER models.

Our second evaluation relies on the “Cognitive Walkthrough” [41] approach,
which is a usability inspection method for identifying potential usability problems
in interactive systems. This approach focuses on how easy it is for a user to accom-
plish a task with little or no formal instruction or informal coaching. We have used
this method to identify possible issues in the SNERC user interface, while working
through a series of tasks to perform NER and classify textual documents using
business rules.

4.1 Comparison with a standard corpus

In this section, we describe the functional evaluation of our Stanford-based NER
system and demonstrate the reproductivity of our approach in the medical research
area. Thus, we refer to different text corpus previously used in the medical domain
to train NER models with our system. Then, we compare our training result with
another Stanford-based NER system applied on the same data set. Our system is
compared with the work of [42], where various NER models for discovering
emerging named entities (eNEs) were trained and applied in a medical Virtual
Research Environments (VREs). As stated in Section 2.2, eNEs in medical environ-
ments are new research terms, that are already in use in medical literature, but are
widely unknown by medical experts. The automatic recognition of eNEs (using

3 https://github.com/stanfordnlp/CoreNLP/tree/master/src/edu/stanford/nlp/pipeline/demo

16

Supporting Named Entity Recognition and Document Classification for Effective Text Retrieval
DOI: http://dx.doi.org/10.5772 /intechopen.95076

NER methods) can make them easily usable in Information Retrieval by search
queries or indexing of documents.

4.1.1 Data preparation and system setting

Duttenhofer [42] used the Stanford CoreNLP for model training with the
following data sets to train NER models in the medical context.

* CoNLL2003 (“english-training-data.txt”): a reference data set used to evaluate
NER systems dealing with English documents.

* The NE dictionary Medical Subject Headings (MeSH) (“training-data.txt”). A
dictionary (or thesaurus) of standard medical terms.

¢ User Relevance Feedback(URF) (“urfl.txt, urf2.txt, urf3.txt”). A set of known
emerging Named Entities (eNEs) provided by experts in the medical field.

Data sets from CoNLL2003 and MeSH were selected and combined with three
different variants of URF data sets. The following listing shows the parameters used
for model training using Stanford CoreNLP.

map=word=0,answer=1
maxLeft=1
useClassFeature=true
useWord=true
useNGrams=true
noMidNGrams=true
maxNGramLeng=6
useNeighborNGrams=true
usePrev=true
useNext=true
useDisjunctive=true
useSequences=true
usePrevSequences=true
useTypeSeqs=true
useTypeSeqs2=true
useTypeySequences=true
wordShape=chris2uselLC

These parameters describe the methods and features required for training NER
models using the machine learning-based system available in Stanford CoreNLP
(see chapter 2.2). These parameters include:

* map: describes the data format of the training data. The data must be separated
using tabs. Column 0 must include the word (or NE), and column 1 the

corresponding label used to annotate this NE.

* maxLeft: The number of words to be used as contextual feature for observing
words on the left of the current word during the model training [6].

* useClasses: The “NE class” should be used as an additional feature during training.

* useWord: Each “word” of the text corpus should be used as an additional
feature during training.

17

The Role of Gamification in Software Development Lifecycle

* useNGrams: Derive features from N-grams, such as Substrings of the word

* Other features includes are used for word shape like useTypeSeqs (for upper/
lower case), useTypeSeqs2, useTypeySequences. WordShape defines the word
share function to be used (here “chris2useLC”).

We use the same list of parameters for training the three models (classifierURF1,
classifierURF2 and classifierURF3) initially developed in [42] (see Table 5). For
testing these models, we use the data set (“test-document-with-O-and-NE-and-
eNE-replacedl.tok”), which is an update version of the MeSH data set used by
Duttenhofer.

4.1.2 Model training with SNERC

To train the same models developed by Duttenhéfer [42], we first defined three
“NER Model Definitions” in our SNERC system. The data sets used in [42] are
already annotated, thus, there is no need to upload a new data dump or use our
automatic annotation tool to generate training and testing data. Also, we skipped
the step for cleaning up the data dump (removal or HTML tags, code snippets,
URLs, etc.). We continued by adding all the parameters for model training in the
tab “Training Properties”, where each of them can be easily changed, if needed.
Then, we clicked on “Prepare NER Model” in the tab “Train Model” to prepare our
models. Our model preparation function generated three documents representing
the prepared models, which we renamed to remain consistent with our input data.
The input documents used for training in Duttenhofer (“training-data.txt, english-
training-data.txt, urfl.txt, urf2.txt, urf3.txt”) were combined and uploaded to the
respective prepared models. Then, we uploaded an annotated document ““est-
document-with-O-and-NE-and-eNE-replaced1.tok’ for testing to the generated
models. Finally, the training process was triggered using job. Figure 5 shows the
final result of our trained models using SNERC, which also displays the evaluation
values precision, recall and F1 (Table 6).

4.1.3 Result

Table 7 shows the evaluation values of our trained models and the comparison
with the system of Duttenhofer [42]. We have used a text corpus previously used in

Classifier Precision Recall F,

classifierURF1 93,52% 55,96% 70,02%

classifierURF2 98,92% 75,90% 85,89%

classifierURF3 97,18% 95,29% 96,22%
Table 5.

Evalutation vesults of Duttenhifer [42].

ID Name Training date Precision Recall F1 Status

44 cerc_classifier_urfl 20.08.202008:17:08 93.52% 55.96% 70.02%
45 cerc_classifier_urf2 20.08.202008:17:11 98.92% 759% 85.89% [Ead
46 cerc_classifier_urf3 2008.202008:17:15 97.18% 9529% 96.22% [IAICd

Figure 5.

SNERC evaluation of Duttenhofer trained models.

18

Supporting Named Entity Recognition and Document Classification for Effective Text Retrieval
DOI: http://dx.doi.org/10.5772 /intechopen.95076

Generated model names Renamed models Text corpus

d3dbc3839dx SNERC_classifier_urfl training-data.txt, english-training-data.txt, urfl.txt

x5dhgfb33gh SNERC_classifier_urf2 training-data.txt, english-training-data.txt, urf2.txt

bc8ac12fgdb SNERC_classifier_urf3 training-data.txt, english-training-data.txt, urf3.txt
Table 6.

Generated classifier names and text corpus for training.

Duttenhoefer SNERC
Classifier Entity P R F1 P R F1
classifierURF1 NE 93,52% 99,51% 96,42% 93,52% 99,51% 96,42%
eNE 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
total 93,52% 55,96% 70,02% 93,52% 55,96% 70,02%
classifierURF2 NE 98,50% 97,04% 97,77% 98,50% 97,04% 97,77%

eNE 100,00% 48,73% 65,53% 100,00% 48,73% 65,53%

total 98,92% 75,90% 85,89% 98,92% 75,90% 85,89%

classifierURF3 NE 98,47% 95,07% 96,74% 98,47% 95,07% 96,74%
eNE 95,57% 95,57% 95,57% 95,57% 95,57% 95,57%
total 97,18% 95,29% 96,22% 97,18% 95,29% 96,22%

Table 7.

Comparion of evaluation values (precision, vecall, F1) between SNERC and Duttenhofer system.

the medical area to train three different NER models and show the cross-domain
portability of approach. As it can be seen, all the models trained with SNERC have
the same evaluation values as in the reference work, since both systems are relying
on Stanford CoreNLP for machine learning-based NER. We also note, that all the
evaluation values shown in picture 5 are automatically computed by SNERC and can
be read in the log output function of the “NER Model Definition Manager compo-
nent” (see Section 3.4). This feature is always available and can used by a user to
check the performance of a model during the preparation or training process.

4.2 Cognitive walkthrough

After we implemented SNERC, it is needed to prove the usability of the system.
There are several evaluation methods available to perform this task. Automated and
formal methods are testing a system with a computer program, based on a formal
specification, or with formal models. As it is difficult to create such a specification
or model, we will not use one of these methods. Other methods like empirical
methods involve a crowd of potential users of the system, which will perform
common tasks in it. Such an evaluation is very resource-intensive and therefore not
appropriate to our purpose. Informal methods are based on the knowledge and
experience of the evaluating persons. It is known, that these methods create good
results and detect many problems in a given system. On the other hand, they are not
very difficult or expensive to implement, so they may be a good approach for our
project. One of these informal inspection methods is the “Cognitive Walkthrough”
[41], where a group of experts simulates a potential user of the system. The group
navigates the system and tries to perform the typical steps to achieve the results a
user tries to get. Potential problems and defects are documented and solved.

19

The Role of Gamification in Software Development Lifecycle

Afterwards, the cognitive walkthrough may be repeated. We chose the cognitive
walkthrough as an appropriate evaluation method for our system.

Our evaluation was performed in two steps. First, we performed a cognitive
walkthrough in a collaborative meeting with three experienced experts: Expert 1 is
a very experienced professor and since many years Char of Area of Multimedia and
Internet Application in the Department of Mathematics and Computer Science at
FernUniversitdt in Hagen. Expert 2 is a PhD, significantly responsible for the
concept and design of KM-EP. Expert 3 is a PhD student, researching in the area of
serious games and named entity recognition.

First, the menu structure of SNERC was navigated exploratively, to simulate the
navigation of a potential user in the system. Then each SNERC component was
tested. Finally, the creation of an automated classification was evaluated. Within
these steps, there were overall eight defects detected, which needed to be fixed.
Then, a second evaluation was performed. We extended the expert group by two
new evaluators: Expert 4 is a PhD student, researching in the medical area and
emerging named entity recognition. Expert 5 is a PhD student, researching in the
area of advanced visual interfaces and artificial intelligence.

Within the second cognitive walkthrough all typical steps where performed, as a
potential user would do it. There were no further defects detected. Expert 4 pointed
to the problem of unrealistic performance indicators due to overfitting. This could
be disproved with the possibility to supervise and edit the automatically generated
testing data within the NER Model Manager. A further note was, SNERC may not
be suitable to deal with huge data sets, because of its web-based GUI architecture.
As KM-EP does not deal with such huge data sets this is not a real problem for our
approach.

We saw the informal evaluation method lead to many results with a limited
amount of time and resources. Nevertheless, an empirical evaluation with a bigger
group of potential users should be done, to prove the usability and robustness of the
system further.

5. Conclusion and final discussion

In this research, we presented a system for named entity recognition and auto-
matic document classification that was integrated into an innovative Knowledge
Management System for Applied Gaming. After presenting various real-word use
case scenarios, we demonstrated, that it is possible to support users in the process of
automatic document classification by combining techniques, such as, semantic
analysis, natural language processing techniques (like named entity recognition)
and a rule-based expert system. Our NER system was validated using the standard
metrics for machine learning models. We demonstrated the portability of this
system by using standard text corpus for model training and testing in various
domains. Our overall system consisting of both, the NER and document classifica-
tion system, has been successfully integrated into the target environment and was
validated using Cognitive Walkthrough. A future evaluation with a bigger group of
potential users may help to gather further insights about the usage, usability and
error handling of the entire system.

20

Supporting Named Entity Recognition and Document Classification for Effective Text Retrieval
DOI: http://dx.doi.org/10.5772 /intechopen.95076

Author details

Philippe Tamla'*f, Florian Freund't and Matthias Hemmje”

1 Faculty of Multimedia and Computer Science, Hagen University, Germany

2 Research Institute for Telekommunikation and Cooperation, Dortmund, Germany
*Address all correspondence to: philippe.tamla@fernuni-hagen.de

+ These authors contributed equally.

IntechOpen

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

21

The Role of Gamification in Software Development Lifecycle

References

[1] David R, Sandra L. Serious games:
Games that educate, train, and inform.
ACM; 20065.

[2] Nadeau D, Sekine S. A survey of
named entity recognition and
classification. Lingvisticae
Investigationes. 2007;30:3-26.

3] KX, Zhou Z, Hao T, Liu W. A
bidirectional LSTM and conditional
random fields approach to medical
named entity recognition. International
Conference on Advanced Intelligent
Systems and Informatics. 2017.

[4] Newman D, Chemudugunta C,
Smyth P, Steyvers M. Analyzing entities
and topics in news articles using
statistical topic models. International
conference on intelligence and security
informatics. Springer; 2006.

[5] Ye D, Xing Z, Foo CY, Ang ZQ, Li],
Kapre N, editors. Software-specific
named entity recognition in software
engineering social content. IEEE; 2016.

[6] Tamla P, B"ohm T, Hemmje M,
Fuchs M, editors. Named Entity
Recognition supporting Serious Games
Development in Stack Overflow Social
Content. International Journal of Games
Based Learning; 2019.

[7] Konkol IM. Named entity recognition
[PhD]. PhD thesis, University of West
Bohemia; 2015.

[8] Sokal RR. The principles and practice
of numerical taxonomy. Taxon. 1963;
p. 190-199.

[9] Sutton C, McCallum A,
Rohanimanesh K. Dynamic conditional
random fields: Factorized probabilistic
models for labeling and segmenting

sequence data. Journal of Machine
Learning Research. 2007;8:693-723.

[10] Gimpel K, Schneider N,
O’Connor B, Das D, Mills D,

22

Eisenstein], editors. Part-of-speech
tagging for twitter: Annotation,
features, and experiments; 2010.

[11] Tomanek K, Wermter J, Hahn U.
Sentence and token splitting based on
conditional random fields. In:
Proceedings of the 10th Conference of
the Pacific Association for
Computational Linguistics. vol. 49.
Melbourne, Australia; 2007. p. 57.

[12] Ritter A, Clark S, Etzioni O, editors.
Named entity recognition in tweets: an
experimental study; 2011.

[13] Nagy I, Berend G, Vincze V. Noun
compound and named entity
recognition and their usability in
keyphrase extraction. In: Proceedings of
the International Conference Recent
Advances in Natural Language
Processing 2011; 2011. p. 162-169.

[14] Pinto A, Gonc,alo Oliveira H, Oliveira
Alves A. Comparing the Performance of
Different NLP Toolkits in Formal and
Social Media Text. In: 5th Symposium on
Languages, Applications and Technologies
(SLATE’16); 2016. p. 16 pages. Artwork
Size: 16 pages Medium: application/pdf
Publisher: Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik GmbH,
Wadern/Saarbruecken, Germany.
Available from: http://drops.dagstuhl.de/
opus/volltexte/2016/6008/.

[15] Koppich G, Yeng M, Ormond L.
Document management system rule-

based automation. Google Patents;
2009. US Patent 7,532,340.

[16] Awan MSK, Awais MM. Predicting
weather events using fuzzy rule based
system. Applied Soft Computing. 2011;
11(1):56-63.

[17] Abu-Nasser B. Medical expert
systems survey. International Journal of

Engineering and Information Systems
(IJEAIS). 2017;1(7):218-224.

Supporting Named Entity Recognition and Document Classification for Effective Text Retrieval

DOI: http://dx.doi.org/10.5772/intechopen.95076

[18] Blosseville MJ, Hebrail G,

Monteil MG, Penot N. Automatic
document classification: natural language
processing, statistical analysis, and expert
system techniques used together. In:
Proceedings of the 15th annual
international ACM SIGIR conference on
Research and development in
information retrieval; 1992. p. 51-58.

[19] Velickovski F. Clinical decision
support for screening, diagnosis and
assessment of respiratory diseases:
chronic obstructive pulmonary disease
as a use case [PhD]. University of
Girona; 2016. Accepted: 2017-11-27T07:
51:26Z Publisher: Universitat de Girona.
Available from: https://dugi-doc.udg.ed
u/handle/10256/14611.

[20] Batista-Navarro RTB, Bandojo DA,
Gatapia MAJK, Santos RNC,

Marcelo AB, Panganiban LCR, et al.
ESP: An expert system for poisoning
diagnosis and management. Informatics
for Health and Social Care. 2010;35(2):
53-63. Publisher: Taylor & Francis
eprint: https://doi.org/10.3109/
17538157.2010.490624. Available from:
https://doi.org/10.3109/
17538157.2010.490624.

[21] Friedman-Hill EJ. Jess, the java
expert system shell. Sandia Labs.,
Livermore, CA (United States); 1997.

[22] Forgy CL. Rete: A fast algorithm for
the many pattern/many object pattern
match problem. In: Readings in
Artificial Intelligence and Databases.
Elsevier; 1989. p. 547-559.

[23] Cavalcanti YC, Machado IdC, Neto
PAdMS, de Almeida ES, Meira SRAL.
Combining rule-based and information
retrieval techniques to assign software
change requests. In: Proceedings of the
29th ACM/IEEE international
conference on Automated software
engineering. ASE “14. Association for
Computing Machinery; 2014. p. 325-
330. Available from: https://doi.org/
10.1145/2642937.2642964.

23

[24] Norman DA, Draper SW. User
Centered System Design; New
Perspectives on Human-Computer

Interaction. L. Erlbaum Associates Inc.;
1986.

[25] Vredenburg K, Mao JY, Smith PW,
Carey T. A survey of user-centered
design practice. In: Proceedings of the
SIGCHI conference on Human factors in
computing systems; 2002. p. 471-478.

[26] Tamla P, B"ohm T, Nawroth C,
Hemmije M, Fuchs M, editors. What do
serious games developers search online?
A study of GameDev Stackexchange.
vol. VOL. 2348 of PROCEEDINGS OF
THE 5TH COLLABORATIVE
EUROPEAN RESEARCH
CONFERENCE (CERC 2019). CEUR-
WS.ORG; 2019. Available from: http://
ceur-ws.org/Vol-2348/paper09.pdf.

[27] RATAN RA, Ritterfeld U.
Classifying serious games. In: Serious
games. Routledge; 2009. p. 32-46.

[28] Buchanan L, Wolanczyk F,
Zinghini F. Blending bloom’s taxonomy
and serious game design. In:
Proceedings of the International
Conference on Security and
Management (SAM). The Steering
Committee of The World Congress in
Computer Science, Computer . . . ; 2011.

p- 1

[29] De Lope RP, Medina-Medina N. A
comprehensive taxonomy for serious

games. Journal of Educational Computing
Research. 2017;55(5):629-672.

[30] Toftedahl M, Henrik E, editors. A
Taxonomy of Game Engines and the
Tools that Drive the Industry; 2019.

[31] Van Roy P, et al. Programming
paradigms for dummies: What every
programmer should know. New
computational paradigms for computer
music. 2009;104:616-621.

[32] Van der Vegt W, Nyamsuren E,
Westera W. RAGE reusable game

The Role of Gamification in Software Development Lifecycle

software components and their
integration into serious game engines.
In: International Conference on
Software Reuse. Springer; 2016. p. 165-
180.

[33] Melo F, Mascarenhas S, Paiva A. A
tutorial on machine learning for
interactive pedagogical systems.

International Journal of Serious Games.
2018;5(3):79-112.

[34] Dasgupta A, Nath A. Classification
of Machine Learning Algorithms.
International Journal of Innovative
research in Advanced ngineering. 2016;

3(3).

[35] Lewis C, Whitehead], Wardrip-
Fruin N. What went wrong: a taxonomy
of video game bugs. In: Proceedings of
the fifth international conference on the
foundations of digital games; 2010.

p. 108-115.

[36] Varvaressos S, Lavoie K, Gaboury S,
Hall’e S. Automated bug finding in
video games: A case study for runtime
monitoring. Computers in
Entertainment (CIE). 2017;15(1):1-28.

[37] Liu M, Peng X, Jiang Q, Marcus A,
Yang J, Zhao W. Searching
StackOverflow Questions with Multi-
Faceted Categorization. In: Proceedings
of the Tenth Asia-Pacific Symposium on
Internetware; 2018. p. 1-10.

[38] Liu B, Chen-Chuan-Chang K.
Special issue on web content mining.
Acm Sigkdd explorations newsletter.
2004;6(2):1-4.

[39] Nasehi SM, Sillito J, Maurer F,
Burns C, editors. What makes a good
code example?: A study of programming
Q&A in StackOverflow. IEEE; 2012.

[40] Mao S, Rosenfeld A, Kanungo T.
Document structure analysis algorithms:
a literature survey. In: Document
Recognition and Retrieval X. vol. 5010.

24

International Society for Optics and
Photonics; 2003. p. 197-207.

[41] Polson PG, Lewis C, Rieman J,
Wharton C. Cognitive walkthroughs: a
method for theory-based evaluation of
user interfaces. International Journal of
man-machine studies. 1992;36(5):741—
773.

[42] Duttenhofer A. Automated
Feedback Based Emergent Named
Entity Recognition (ENER) in medical
Virtual Research Environments (VREs);
2020.

