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Chapter

Towards Large Scale Image 
Retrieval System Using Parallel 
Frameworks
Saliha Mezzoudj

Abstract

Recently, the increasing use of mobile devices, such as cameras and smartphones, 
has resulted in a dramatic increase in the amount of images collected every day. 
Therefore, retrieving and managing these large volumes of images has become a 
major challenge in the field of computer vision. One of the solutions for efficiently 
managing image databases is an Image Content Search (CBIR) system. For this, 
we introduce in this chapter some fundamental theories of content-based image 
retrieval for large scale databases using Parallel frameworks. Section 2 and Section 3 
presents the basic methods of content-based image retrieval. Then, as the emphasis 
of this chapter, we introduce in Section 1.2 A content-based image retrieval system 
for large-scale images databases. After that, we briefly address Big Data, Big Data 
processing platforms for large scale image retrieval. In Sections 5, 6, 7, and 8. Finally, 
we draw a conclusion in Section 9.

Keywords: big data processing platforms, image retrieval system, big data, parallel 
frameworks

1. Introduction

Computer vision (also called artificial vision or digital vision) is a branch of artificial 
intelligence whose main goal is to allow a machine to analyze, process and understand 
one or more images taken by an acquisition system (example: cameras, mobile, etc.) 
[1]. It is used to automate the tasks that the human visual system can do: recognition, 
motion analysis, scene reconstruction, and image restoration [1]. In this chapter, we are 
interested in the recognition task, there are several specialized applications based on 
recognition exist, such as content image search (CBIR) and image classification systems. 
Image classification is an important task in the field of computer vision, and it requires 
the development of robust classification systems, which can improve the performance 
of vision systems. Indeed, most image CBIR systems have three stages:

• The first step: it is the extraction of low-level characteristics of the images 
(extraction of descriptors). Indeed, the use of low-level image descriptors is 
the core of current image classification systems.

• the searching step, in which the feature vector of a query image is computed 
and compared to the image feature vectors of the database. As a result, the 
CBIR system returns the closest images to the user [2, 3].
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For a long time, high calculation errands caused by calculating complexity and 
gigantic amount of image during indexing, and retrieving steps have been obstacles 
for building a CBIR systems [3, 4]. Furthermore, the conventional content-based 
image retrieval systems have focused on small databases of face images. Therefore, 
it is important to generalize and train these systems on large-scale databases [5, 6]. 
Therefore, in this chapter, we will present the basics of CBIR systems for large-scale 
databases, Big Data, Big Data processing platforms for large scale image retrieval.

2. The methods for extracting visual characteristics

The extraction of features from images is the basis of any computer vision system 
that does recognizing. These characteristics can contain both text (keywords; anno-
tations, etc.), and visual characteristics (color, texture, shapes, faces, etc.). We will 
focus on techniques for extracting these visual features only. And for that the visual 
characteristics (descriptors) are classified in two categories general descriptors and 
specific domain descriptors [7, 8]:

2.1 General descriptors

They contain low-level descriptors that give a description of color, shape, 
regions, textures and movement.

Color: Color is one of the most used visual characteristics in facial recogni-
tion systems or anything like that. It is relatively robust to the complexities of 
the background and independently of the size and orientation of the image. The 
most well-known representation of color is the histogram, which denotes the 
frequencies of occurrence of the intensities of the three color channels. Many other 
representations of this characteristic exist: we speak especially of the moments of 
color. The mathematical basis of this approach is that each color distribution can be 
characterized by its color moments. Furthermore, most of the information on color 
is concentrated on lower order moments which are respectively: mean, standard 
deviation, color skewness, variance, median, etc.

Texture: A wide variety of texture descriptors have been proposed in the 
literature. These were traditionally divided into statistical, spectral, structural and 
hybrid [9] approaches. Among the most popular traditional methods are probably 
those based on histograms, Gabor filters [10], co-occurrence matrices [11] and 
models (lbp) [12]. These descriptors present various strengths and weaknesses, in 
particular as regards their invariance with respect to the acquisition conditions.

Shape: Over the past two decades, 2D shape descriptors have been actively used 
in 3D search engines and sketch-based modeling techniques. Some of the most 
popular 2D shape descriptors are curvature scale space (CSS) [13], SIFT [14], and 
SURF [15]. In fact, in the literature, 2D shape descriptors are classified into two 
main categories: contours and regions. Outline-based shape descriptors extract 
shape entities from the outline of a shape only. In contrast, region-based shape 
descriptors obtain shape characteristics of the entire region of a shape. In addition, 
hybrid techniques have also been proposed, combining techniques based on the 
contour and the [16] region.

Movement: Movement is related to the movement of objects in the sequence 
and to the movement of the camera. The latter information is provided by the 
capture device, while the rest is implemented by means of image processing. The 
set of descriptors is the following [7]: Motion Activity Descriptor (MAD), Camera 
Motion Descriptor (CMD), Motion Trajectory Descriptor (MTD), and Warp and 
Parametric Motion Descriptor (WMD and PMD).
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Location: The location of items in the image is used to describe items in the 
spatial domain. In addition, elements can also be located in the [7] time domain: 
Region Locator Descriptor (RLD), Spatio Time Locator Descriptor (STLD).

3. Image classification

Image classification is an important step in the image recognition process. 
Indeed, many image classification techniques have been proposed to date. It is 
considered to be one of the main types of machine learning. Various studies have 
been carried out in order to choose the best technique for classifying [17] images.

3.1 What is machine learning?

It is one of the subdomains of artificial intelligence (AI) which uses a series of 
techniques to let computers learn, (that is, gradually improve the performance of 
the computer on a task specific) with data, without being explicitly programmed. 
Indeed, machine learning covers a vast field of tasks. Below are the types of 
machine learning described in this section [18]:

Supervised learning (classification): In this case, the entries are tagged by 
an expert, and the algorithm must learn from the tags of these entries in order to 
predict the class of each new entry. In other words, from a set of observations X and 
another set of measures Y, we seek to estimate the dependencies between X and Y.

Unsupervised learning (clustering): In this case, the entries are not labeled, 
no expert is available, and the algorithm must predict the class of each entry. The 
objective of this type of learning is to describe how the data is organized and to 
extract homogeneous subsets.

Semi-supervised learning: the algorithm combines labeled and unlabeled 
examples to generate an appropriate function or class.

Learning to learn: where the algorithm learns its own inductive bias based on 
previous experience.

4.  A content-based image retrieval system for large-scale images 
databases

Indeed, the most of conventional CBIR systems are evaluated on small bases of 
images that fit easily in main memory, such as Caltech-101 [19], Caltech-256 [20] or 
PASCAL VOC [21].

Recently, the increase in images produced in different fields has enabled the 
acquisition and storage of a large amount of images, which offers new concepts 
such as Big Data, which are of huge volumes of images from a variety of sources, 
produced in real time and exceeding the storage capacity of a single machine. 
Indeed, these images are difficult to process with traditional image retrieval 
systems.

As digital cameras become more affordable and ubiquitous, digital images are 
growing exponentially on the Internet, such as ImageNet 1 [22] which consists of 
14,197,122 images labeled for 21,841 classes. Indeed, this enormous quantity of 
images makes the task of classification of images much more complex and difficult 
to perform, especially since traditional processing and storage methods do not 
always manage to cope with this enormous quantity of images.

This challenge motivated us to develop a new image search and classification 
system allowing the storage, management and processing of large quantities of 
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images (Big Data), this imposes a parallelisation of calculations to obtain results in 
reasonable time, and optimum precision.

Massively parallel machines are more and more available at increasingly afford-
able costs, such is the case with multiprocessors. This justifies our motivation to 
direct our research efforts in large-scale image classification towards the exploita-
tion of such architectures with new Big Data platforms that use the performance of 
these machines.

5. The basics of big data

Every day, we generate trillions of bytes of data (Big Data). This data comes 
from everywhere: from sensors used to collect climate information, messages on 
social media sites, digital images and videos posted online, transactional records of 
online purchases and GPS signals from phones mobile, to name a few sources.

Big Data is characterized by its volume (massive data); they are also known for 
their variety in terms of formats and new structures, as well as a requirement in 
terms of speed in processing. But until now, according to our research, no software 
is able to handle all this data which has many types and forms and which is growing 
very rapidly. So Big Data issues are part of our daily life, and more advanced solu-
tions are needed to manage this mass of data in a short time.

Distributed computing is concerned with processing large amounts of data. 
This processing cannot be achieved with traditional data processing paradigms, it 
requires the use of distributed platforms. In the literature, there are several solu-
tions, for the implementation of this paradigm. Among these solutions we find 
the example Google, which has developed a very reliable programming model for 
the processing of Big Data: it is the MapReduce model. This model is implemented 
on several platforms such as the Hadoop platform. Despite all these advantages, 
Hadoop suffers from latency problems which is the main cause of development of a 
new alternative to improve the performance of processing data, it is the Spark plat-
form which is more powerful, more flexible and faster than Hadoop MapReduce.

In this chapter, we will explain the basics of Big Data, Big Data processing 
platforms, as well as storage.

5.1 Definition

Big Data refers to a very large volume of often heterogeneous data which has 
several forms and formats (text, sensor data, sound, video, route data, log files, 
etc.), and including heterogeneous formats: structured data, unstructured and 
semi-structured. Big Data has a complex nature that requires powerful technolo-
gies and advanced algorithms for its processing and storage. Thus, it cannot be 
processed using tools such as the traditional DBMS [23]. Most scientists and data 
experts define big data with the concept of 3Vs as follows [23]:

• Velocity: Data is generated quickly and must be processed quickly to extract 
useful information and relevant information. For example, Wallmart (an inter-
national chain of discount retailers) generates over 2.5 petabytes (PB) of data 
every hour from its customers’ transactions. YouTube is another good example 
of the fast speed of big data.

• Variety: Big data are generated from various sources distributed in multiple 
formats (e.g. videos, documents, commentaries, journals). Large data sets 
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include structured and unstructured data, public or private, local or remote, 
shared or confidential, complete or incomplete, etc.

• Volume: it represents the amount of data generated, stored and used. The 
volume of data stored today is exploding, it is almost 800,000 petabytes, 
Twitter generates more than 7 terabytes of data every day, Facebook generates 
more than 10 terabytes and the data volume in 2020 can reach 40 zeta bytes 
(Figure 1) [24].

Thereafter, the three original dimensions are widened by two other dimensions 
of big data (also known as the “5 V Big Data”):

• Truth: Truthfulness (or validity) of data is the reliability and accuracy of data, 
and the confidence that big data inspires in decision-makers. If the users of this 
data doubt its quality or relevance, it becomes difficult to invest more in it.

• Value: This last V plays a key role in Big Data, the Big Data approach only 
makes sense to achieve strategic goals of creating value for customers and for 
companies in all areas (Figure 2).

One of the reasons for the emergence of the concept of Big Data is the need to 
realize the technical challenge of processing large volumes of information of several 
types (structured, semi-structured and unstructured) generated at high speed. Big 
Data is based on four data sources [25]:

1. The logs (connection logs) from traffic on the company’s official website: 
These data sources are the paths taken by visitors to reach the site: search 
engines, directories, bounces from other sites, etc. Businesses today have a 
web storefront through its official website. The latter generates traffic that it 
is essential to analyze, so these companies have trackers on the different pages 
in order to measure the navigation paths, or the time spent on each page, etc. 
Some of the best-known analytics solutions include: Google Analytics, Adobe 
Omniture, Coremetics.

Figure 1. 
The 3 V big data model.
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2. Social media insights: A complementary approach is to collect comments on 
posts and apply sentiment analysis algorithms to them. Let us mention a few 
avenues to follow our various accounts: Hootsuite, Radian6 or even the APIs 
made available and queried with the Power Query add-in for Excel, IRaMuTeQ 
for the analysis of textual data.

3. Behavioral data (third party data) These data are all data on Internet users 
collected via forms or cookies. Beyond traditional identity information (sex, 
age, CSP, etc.), it is now much more efficient to measure behavior (navigation, 
hardware configuration, time spent on pages, etc.). For this, there are special-
ized web players who help us collect information on our customers or pros-
pects and thus improve communication campaigns. Some players in the field 
of third party data: Bluekai, Exelate, Weborama, Datalogix, etc.

4. Open and reusable data “Open data” are all open and reusable data, it makes 
possible to put open data online, to make the data more reliable and to make 
them reusable and usable, where openness consists in making the data public: 
free of rights, downloadable, reusable and free. The opening does not apply 

Figure 2. 
The 5 V big data model.

Figure 3. 
The four sources of big data.
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to private data, sensitive and security information, documents protected by 
copyright, etc. (Figure 3).1

5.2 Big data processing and storage technologies

Big Data requires redefining the data storage and processing systems that can 
support this volume of data. Indeed, several technologies have been proposed in 
order to represent this data, these technologies take at least one axis between the 
two, either improving storage capacities or improving computing power [23]:

• Improved computing power: the goal of these techniques is to allow process-
ing on a large set of data, at considerable cost, and to improve execution 
performance such as processing time and tolerance breakdowns. Before the 
appearance of the Hadoop platform, there were several technologies such 
as Could Computing, massively parallel MPP architectures and In-Memory 
technologies.

• Improvement of storage capacities: improvement of storage of distributed 
systems, where the same file can be distributed over several hard drives, this 
allows storage volumes to be increased by using basic hardware. These storage 
technologies are always evolving to offer faster access to data such as NoSQL, 
HDFS from the Hadoop platform, HBase, Cloud Computing, etc.

6. MapReduce

6.1 Why MapReduce?

Traditional business systems normally have a centralized server to store and 
process data. The traditional model is certainly not suited to handling large volumes 
of scalable data and cannot be handled by standard database servers. In addition, 
the centralized system creates too much bottleneck when processing multiple files 
simultaneously. Google solved this bottleneck issue using MapReduce template.

6.2 MapReduce model definition

It was designed in the 2000s by Google engineers. It is a programming model 
designed to process several terabytes of data on thousands of computing nodes in 
a [26] cluster. MapReduce can process terabytes and petabytes of data faster and 
more efficiently. Therefore, its popularity has grown rapidly for various brands of 
companies in many fields. It provides a highly efficient platform for parallel execu-
tion of applications, allocation of data in distributed database systems, and fault 
tolerant network communications [27]. The main goal of MapReduce is to facilitate 
data parallelization, distribution, and load balancing in a simple [26] library.

6.3 The MapReduce model architecture

Google created MapReduce to process large quantities unstructured or semi-
structured data, such as documents and logs of requests for web pages, on large 
clusters of nodes. It produced different types of data, such as inverted indices or 

1 The four sources of big data, https://www.communication-web.net/2016/03/07/

les-4-sources-du-big-data/
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URL access frequencies [28]. The MapReduce has three main parts, including the 
Master, the Map and reduce function. An example of this data flow is shown in 
Figure 4.

The Master is responsible for the management of the Map and Reduce func-
tions and the provision of data and procedures, he organizes communication 
between mappers and reducers. The map function applies to each input record 
and produces a list of intermediate records. The Collapse function (also known 
as Reducer) is applied to each group of intermediate records with the same key 
and generates a value. Therefore, the MapReduce process includes the following  
steps:

• The input data are divided into records.

• Map functions process this data and produce key/value pairs for each  
record.

• All key/value pairs resulting from the Map function are merged together and 
grouped by a key, then they are sorted.

• The intermediate results are passed to the Reduce function, which will produce 
the final result [30].

7. Big data processing platforms

7.1 The Hadoop platform for the distributed computing of big data

First of all, Hadoop is a free framework, written in java, created and distributed 
by the Apache foundation, and intended for the processing of large data (of the 
order of petabytes and more) as well as for their intensive management. Inspired 
by several technical publications written by the giant Google, its goal is to provide 
a distributed, scalable and extensible storage and data processing system. It can 
handle a large number of data types (including unstructured data). We say that 
it is organized in a non-relational mode, it is more general than NoSQL, we can 
for example store data with two types of systems HDFS (Hadoop Distributed File 
System) and HBase which form a database management system oriented data, 
columns projected for servers distributed in clusters [31].

Hadoop parallelizes the processing of data across many nodes that are part of a 
cluster of computers, which speeds up calculations and hides the latency of input 
and output operations. Hadoop contains a reliable distributed file system that 
ensures fault tolerance through data replication.

Figure 4. 
An example of data flow in the MapReducee big data architecture [29].



9

Towards Large Scale Image Retrieval System Using Parallel Frameworks
DOI: http://dx.doi.org/10.5772/intechopen.94910

7.2 The Spark platform for the distributed computing of big data

7.2.1 Motivation of Spark

Since its inception, Hadoop has become an important technology for Big Data. 
One of the main reasons for this success is its ability to manage huge amounts of 
data regardless of their type (structured, semi-structured, unstructured). However, 
users have been consistently complaining about the high latency issue with Hadoop 
MapReduce stating that the batch response to all of these real-time applications is 
very painful when it comes to processing and analysis data.

7.2.2 History of Spark

Spark is a high-speed compute cluster developed by contributions from nearly 
250 developers from 50 AMPLab companies at UC Berkeley, to make data analysis 
faster and easier to write and thus run. Spark started in 2009 as a research project in 
the Berkeley Lab RAD, which would later become AMPLLab. Researchers in the lab 
had previously worked on Hadoop MapReduce, and observed that MapReduce was 
ineffective for iterative and interactive computing jobs. So from the start Spark was 
designed to be fast for interactive queries and iterative algorithms, bringing ideas 
like in-memory storage support and efficient fault recovery. Research papers have 
been published about Spark at academic conferences and shortly after its inception 
in 2009 it was already 10–100 times faster than MapReduce for some jobs. Some of 
the early Spark users were other groups in UC Berkeley, including researchers, such 
as the Millennium Mobile Project, which used Spark to monitor and forecast traffic 
jams in San Bay. Francisco Machine Learning. In a very short time, however, many 
external organizations have started using Spark.

In 2011, AMPLab started developing high-level components on Spark, such as 
Shark and Spark streaming. These and other components are sometimes referred to 
as Berkeley Data Analytics Stack (ODB). The Spark was open source in March 2010, 
and it was transferred to the Apache Software Foundation on June 2013, where it is 
now a high level [32] project.

7.2.3 Definition

Apache Spark is an open source processing framework, it is built around speed, 
ease of use and the ability to handle large data sets, which are of diverse nature (text 
data, graph data, etc.), Spark extends the MapReduce model to efficiently support 
multiple types of computations, including iterative processing, interactive queries, 
and flow processing (Figure 5) [32].2

7.2.4 Advantages of Spark over Hadoop MapReduce

Spark is a strong framework for future large data applications that may require low 
latency queries, iterative computing, and real-time processing. The Spark has many 
advantages over the Hadoop MapReduce Framework among them we find [32, 33]:

7.2.4.1 Speed

Spark is an open source compute environment similar to Hadoop, but it has some 
useful differences that make it superior in some workloads, it allows loading the 

2 https://meritis.fr/bigdata/larchitecture-framework-spark/
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dataset into distributed memory to optimize iterative workload and queries. Spark 
can run jobs 10 to 100 times faster than Hadoop MapReduce simply by reducing the 
number of reads and writes to disk.

7.2.4.2 Iterative processing

There are many algorithms which apply the same function to several steps. Like 
learning algorithms, Hadoop MapReduce is based on an acyclic data flow model, 
that is, the output of a previous MapReduce job is the input of the next MapReduce 
job. In this case we waste a lot of time in the I/O operation, so in Hadoop 
MapReduce between two MapReduce operations, there is a synchronization barrier 
and we need to keep the data on disk every time [33].

But with Spark, the concept of RDD (Resilient Distributed Datasets) allows data 
to be saved to memory and preserve disk only for result operations. So it does not 
have a whole synchronization barrier that could possibly slow down the process. So 
Spark allows to reduce the number of read/write on the disk.

7.2.4.3 Interactive queries

For processing in interactive data extraction algorithms where a user needs 
to run multiple queries on the same subset of data, Hadoop loads the same data 
multiple times from disk depending on the number of queries.

But Spark loads the data only once, it stores that data in distributed memory, 
then it does the proper processing. For processing in interactive data extraction 
algorithms where a user needs to run multiple queries on the same subset of data.

7.2.4.4 Richer

Spark provides concise and consistent APIs to Scala, Java and Python and 
Supports multiple functions (actions and transformations), unlike Hadoop, there 
are only two Map and Reduce functions.

7.2.4.5 Ease of use

Spark lets you quickly write applications in Java, Scala, or Python with simple, 
readable instructions.

Figure 5. 
Spark architecture [32].



11

Towards Large Scale Image Retrieval System Using Parallel Frameworks
DOI: http://dx.doi.org/10.5772/intechopen.94910

7.2.4.6 General

On the general side, Spark is designed to cover a wide range of workloads that 
previously require separate distributed systems, including real-time processing 
applications, iterative algorithms, interactive queries, and streaming. By supporting 
these workloads in the same engine, Spark makes it easy and inexpensive to com-
bine the different types of processing, which is often required in production data 
analysis pipelines.

7.2.4.7 Spark’s real-time streaming method to process streams

In case of Hadoop MapReduce, it is just possible to process a flow of stored data, 
but with Apache Spark, it is thus possible to modify the data in real time thanks to 
Spark streaming [32].

7.2.4.8 Graphics processing

Developers can now as well make use of Apache Spark for graphics process-
ing which maps relationships in data between various entities such as people and 
objects [32].

7.2.4.9 Learning algorithms

Spark comes with a learning library called MLlib, it provides several types of 
learning algorithms, including classification, regression, grouping and collabora-
tive filtering, as well as supporting features like evaluation of the template and data 
import [32]. But in Hadoop you have to integrate a learning library called Mahout.

7.2.4.10 Quick management of structured data

Spark SQL is Spark’s module for working with structured data, it allows query-
ing data structured as a Distributed Data Set (RDD) in Spark, with built-in APIs in 
Python, Scala, and Java.3

7.2.4.11 Storage general

Spark uses the HDFS file system for data storage. It also works with any Hadoop 
compatible data source, including, HBase, Cassandra, etc.

7.2.4.12 Interactive

Offers an interactive console for Scala and Python. This is not yet available in 
Java.

7.2.5 Deployment

Executing heavy processing on a cluster, controlling the slave nodes, distributing 
the tasks for them fairly, and arbitrating the amount of CPU and memory that will be 
allocated to each process, this is the role of a cluster manager. Spark currently offers 
three solutions for this: Spark standalone, YARN and Mesos. Comes with Spark, 

3 Spark Programming Guide-Spark 1.2.0 Documentation. [Online]. Available: http://spark.apache.org/

docs/1.2.0/programming-guide.html
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Spark Standalone is the easiest way to set up. This cluster manager relies on Akka for 
exchanges and on Zookeeper to guarantee the high availability of the master node. It 
has a console to supervise processing, and a mechanism to collect logs from slaves.

Alternatively, YARN the Hadoop cluster manager, Spark can run on it, and 
alongside Hadoop jobs. Finally, more sophisticated and more general, Mesos allows 
you to configure more finely the allocation of resources (memory, CPU) to different 
applications.

7.2.6 Components of Spark

Because Spark’s core engine is both fast and versatile, it powers multiple spe-
cialized high-level components for various workloads, such as SQL or machine 
learning. These components allow you to combine them like libraries in a software 
project. Spark Core: Contains the basic functionality of Spark, including com-
ponents for job scheduling, memory management, disaster recovery, interaction 
with storage systems, and more. Spark Core is also the API that defines Elastic 
Distributed Datasets (RDDs), which are the main programming abstractions in 
Spark. RDDs represent a collection of objects distributed over several compute 
nodes that can be manipulated in parallel. Spark Core offers many APIs for building 
and manipulating these collections.

Other than Spark Core API, there are additional libraries that are part of  
the Spark ecosystem and provide additional capabilities in big data analysis 6. 
These libraries are: Spark streaming, Spark SQL, Spark MLlib, Spark GraphX 
(Figure 6) [32].

7.2.7 RDD dataset resilient distributed

7.2.7.1 Definition

An RDD is a collection of objects partitioned across a set of machines, allowing 
programmers to perform in-memory calculations on large clusters in a way that 
provides fault tolerance.4

7.2.7.2 Characteristics

1. RDD achieves fault tolerance through a notion of lineage: if a partition of an RDD 
is lost, the RDD has enough information to simply rebuild that partition. This 
removes the need for replication to achieve fault tolerance.

2. There are two possibilities to create an RDD either to reference external data 
or to parallelize an existing collection. Spark allows you to create an RDD from 
any data source accepted by Hadoop (local file, HDFS, HBase, etc.).

3. You can modify an RDD with a transformation, but the transformation returns 
you a new RDD while the original RDD remains the same.

4. RDD supports two types of operations Transformations and Actions:

Transformation: Transformations do not return a single value, they return a 
new RDD. Nothing is evaluated when you call a transform function. The evaluation 

4 Spark Programming Guide - Spark 1.2.0 Documentation. [Online]. Available: http://spark.apache.org/

docs/1.2.0/programming-guide.html.
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of transformations is lazy, operations are performed only when a result must be 
returned. Action: an operation that evaluates and returns a new value. When 
an action function is called on an RDD object, all data processing requests were 
computed at that time and the result value is returned [33].

8. Storage

When processing a large amount of data, input data and results should be stored. 
Additionally, the performance of data intensive applications typically depends on 
the hardware and software infrastructure used for storage.

8.1 Classical storage

In this type of storage, the primary and easiest way to store data is a simple 
hard drive attached directly to the node. This type of storage system is sometimes 
referred to as a direct storage (DAS). On these disks, data is stored using a classic 
hierarchical file system like ext3 or ReiserFS. These file systems are typically imple-
mented by an operating system driver as a sensitive part for security, performance, 
and reliability. This type of storage allows for fast read and write operations since 
everything is done locally. It is also simple to use as it is used with any operating 
system. However, there is no easy way to exchange data between multiple nodes.

8.2 Centralized network storage

A second way to store data is centralized network storage, usually referred to as 
etworkAttached Storage (NAS). In this case, a node has one or more disk connected 
and allows other nodes to read and write files through a standard interface and serve 
them through the network. Network File System (NFS) is primarily a protocol for 
accessing files over the network. While the server is free to implement any means 
of accessing the actual data to be provided over the network, most implementations 
simply depend on whether the data is directly accessible on the server. One of the 
main advantages of this type of architecture is the ease of sharing data between 
multiple compute nodes. Since the data is stored on a server, it is easily maintained.

8.3 Parallel and distributed storage

In order to overcome the limitations of centralized network storage, data can 
be distributed across multiple storage nodes. Using multiple nodes allows access 
to multiple files at the same time without conflict. It also allows better throughput 

Figure 6. 
Spark components [32].
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to play the same file when there are replicas on multiple nodes. A distributed file 
system is usually designed to be better than centralized storing. Additionally, in 
theory, distributed storage systems can avoid the single point of the fault tolerance 
problem.

The distributed storage system often has a single entry point node that receives 
all requests to read or write data. As its role is central and critical, its work should 
be kept to a minimum. This master node generally only allows global collabora-
tion among all the nodes involved in the storage system and can store metadata 
(file name, file size, access attributes, …). Thus, when a request to read or write a 
file is received, the client is redirected to another node which will actually process 
his request. However, while the metadata can be stored on the master node, the 
actual data is still stored on other nodes and can be reproduced. The downside of 
distributed storage is that for the best performance, the application should consider 
locality. This is because even though it was thought that the default behavior of the 
storage system might be quite good, it is usually better to read or write data from the 
node closest to the system storage from’a node with a high network cost.

An example of this storage system is the Hadoop Distributed File System 
(HDFS) and Tachyon.

8.3.1 HDFS architecture

HDFS has a master/slave architecture. An HDFS cluster consists of a single mas-
ter called NameNode which manages the namespace of the file system and regulates 
access to files by clients (open, close, rename, etc.), as well as a set of DataNodes to 
manage the actual data storage (Figure 7) [30].

8.4 Definition of Tachyon

Tachyon is a memory-centric, distributed storage system that allows users to 
share data across platforms and perform read/write actions at memory speed across 
cluster processing platforms. It also achieves a write rate of 110x more than in HDFS 
[34]. To ensure fault tolerance, the lost output is recovered by rerunning the opera-
tions that created the output, called lineage [34]. Thus, the Tachyon lineage option 
is seen as a major challenge in Tachyon, and the lineage layer provides high through-
put I/O and follows the job sequence and data lineage in the storage layer.

8.4.1 Tachyon architecture

Indeed, Tachyon uses a standard master–slave architecture similar to HDFS (see 
Figure 8),5 this architecture is called master-worker.

The master manages the metadata and contains a workflow manager, the latter 
interacts with a cluster resource manager to allocate resources and recalculate. 
Whereas, workers manage local resources and report status to the master, and each 
worker uses a RAM disk to store memory-mapped files.

8.4.2 The components of Tachyon

Tachyon’s design uses a single master and multiple workers. Tachyon can be 
divided into three components, the master, the workers and the customers. The 
master and workers together constitute the Tachyon servers, which are the com-
ponents that a system administrator would maintain and manage. Customers are 

5 https://www.slideshare.net/DavidGroozman/tachyon-meetup-slides
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typically applications, such as Spark or MapReduce, or Tachyon command line users. 
So Tachyon users usually only need to interact with the client part of Tachyon [34].

a. Master: Tachyon can be deployed in one of two main modes, a single master or 
several masters. The master is primarily responsible for managing the overall 
metadata of the system, for example, the file system tree. Clients can interact 
with the master to read or modify this metadata. In addition, all workers 
periodically poll the master to maintain their participation in the cluster. The 
master does not initiate communication with the components; it only interacts 
with components responding to requests.

b. Workers: Tachyon workers are responsible for managing the local resources 
allocated to Tachyon. These resources could be local memory, SSD or hard 
drive and they are user configurable. Tachyon workers store data as blocks, and 
respond to customer requests to read or write data by reading or creating new 
blocks. However, the worker is only responsible for the data in these blocks.

c. Customer: The Tachyon client provides users with a gateway to interact with 
Tachyon servers. It initiates communication with the master to carry out 
metadata operations and with workers for reading and writing data.

9. Conclusion

In this chapter, we presented the domain of content based image retrieval system 
for large scale images using parallel platforms, we covered the basic concepts of 

Figure 7. 
HDFS architecture [30].

Figure 8. 
The Tachyon architecture [34].
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