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Chapter

Quantum Algorithms for
Nonlinear Equations in Fluid
Mechanics
Rene Steijl

Abstract

In recent years, significant progress has been made in the development of
quantum algorithms for linear ordinary differential equations as well as linear partial
differential equations. There has not been similar progress in the development of
quantum algorithms for nonlinear differential equations. In the present work, the
focus is on nonlinear partial differential equations arising as governing equations in
fluid mechanics. First, the key challenges related to nonlinear equations in the
context of quantum computing are discussed. Then, as the main contribution of this
work, quantum circuits are presented that represent the nonlinear convection terms
in the Navier–Stokes equations. The quantum algorithms introduced use encoding
in the computational basis, and employ arithmetic based on the Quantum Fourier
Transform. Furthermore, a floating-point type data representation is used instead
of the fixed-point representation typically employed in quantum algorithms. A
complexity analysis shows that even with the limited number of qubits available on
current and near-term quantum computers (< 100), nonlinear product terms can
be computed with good accuracy. The importance of including sub-normal num-
bers in the floating-point quantum arithmetic is demonstrated for a representative
example problem. Further development steps required to embed the introduced
algorithms into larger-scale algorithms are discussed.

Keywords: partial differential equations, fluid mechanics, nonlinear equations,
quantum Fourier transform, floating-point arithmetic

1. Introduction

Quantum computing [1] and quantum communication are research areas that
have seen significant developments and progress in recent years, as is apparent
from the work covered in this book. In this chapter, the focus is on the development
of quantum algorithms for solving nonlinear differential equations, highlighting key
challenges that arise from the non-linearity of the equations to be solved. For this
application of quantum computing, progress has so far been relatively limited and
in this work, a promising approach to deriving efficient quantum algorithms is
proposed. Although the focus is on non-linear equations related to fluid mechanics,
the approach put forward here is applicable to a much wider range of problems.
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Furthermore, in developing the proposed method, efficient quantum circuits
involving floating-point arithmetic were created, in contrast to the more commonly
used fixed-point arithmetic employed in a range of quantum algorithms. This aspect
of the work described here should also be useful for a wider audience. In this work,
the development of quantum algorithms for the nonlinear governing equations for
fluid mechanics is described with a particular focus on representing the non-linear
product terms in the equations. A key aspect of the derived quantum circuits in the
present work is the (temporary) representation of the solution in the computational
basis, along with the the use of a floating-point data representation in the arithmetic
operations. The quantum circuits for obtaining the non-linear product terms are
new developments and form the main contribution of this work. In recent years, a
small number of works have considered quantum computing applications to fluid
mechanics [2–8]. A brief review of this previous work will be presented in Section 2
and will provide context to the proposed approach. Related work on algorithms
with representation in the computational basis is reviewed in this chapter. This
chapter is structured as follows. Section 2 describes the background to the current
work. Section 3 reviews the key challenges related to treating nonlinear differential
equations in a quantum computing context, followed by a discussion of the
nonlinear governing equations in fluids dynamics in Section 4. Section 5 then
describes how nonlinear terms in governing equations can be evaluated in quantum
algorithms using the computational basis. Section 6 and Section 7 discuss the quan-
tum circuits used for computing the square of a floating-point number and the
multiplication of two floating-point numbers, respectively. The simulation and
verification of the derived quantum circuits is presented in Section 8. The com-
plexity of the circuits is analyzed in Section 9. Finally, conclusions from this work
and suggestions for further work are presented in Section 10.

2. Background of present work

For a small number of applications, quantum algorithms have been developed
that display a significant speed-up relative to classical methods. Computational
quantum chemistry is proving to be one of the key areas of application. Important
developments for a wider range of applications include quantum algorithms for
linear systems [9, 10] and the Poisson equation [11]. Applications to computational
science and engineering problems beyond quantum chemistry have only recently
begun to appear [4–6, 12–14]. Despite this research effort, progress in defining
suitable engineering applications for quantum computers has been limited.

Significant progress has been made in recent years in the development of quan-
tum algorithms for linear ordinary differential equations (ODEs) as well as linear
partial differential equations (PDEs) [15–19]. However, in contract to this progress
for linear equations, there has not been similar progress in the development of
quantum algorithms for nonlinear ODEs and nonlinear PDEs. An early work by
Leyton and Osborne [20] presented an innovative and highly ambitious algorithm.
However, the computational complexity of this work involves exponential depen-
dency on the time interval used in the time integration. A small number of more
recent works have addressed nonlinear differential equations and typically algo-
rithms for very specific problems were obtained [8]. Therefore, much research
work is needed into quantum algorithms for a wider range of nonlinear problems.

Early work in quantum computing relevant to the field of Computational Fluid
Dynamics (CFD) mainly involved the work on quantum lattice-gas models by
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Yepez and co-workers [2, 3]. This work typically used type-II quantum computers,
consisting of a large lattice of small quantum computers interconnected in nearest
neighbor fashion by classical communication channels. In contrast to these quan-
tum lattice-gas based approaches, the present study focuses on quantum algorithms
designed for near-future ‘universal’ quantum computers. The potential of quantum
computing in the context of direct numerical simulation of flows was reviewed
recently by Griffin et al. [7], showing that a number of further developments are
needed to make this approach viable.

Typically, there are two methods of encoding the result of a quantum algorithm:
encoding within the computational basis of the quantum state and encoding within
the amplitudes of the quantum state. The widely-used Quantum Fourier Transform

(QFT) uses the second approach. The QFT with complexity O log 2 Nð Þ
� �

for prob-

lem size N has exponential speed-up compared to the classical fast Fourier trans-
form (complexity O NlogNð Þ) and plays an important role in quantum computation
as an essential part of many quantum algorithms. The exponential speed-up realized
is due to superposition and quantum parallelism. However, in same quantum algo-
rithms, the Fourier coefficients may be needed in the computational basis [21].

Here, the two different encoding methods are illustrated using the discrete
Fourier Transform (DFT). The QFT performs the DFT in terms of amplitudes as,

XN�1

j¼0

x j jj i !
XN�1

k¼0

yk kj i (1)

The QFT performs a DFT on a list of complex numbers, and the result is stored
as amplitudes of a quantum state vector. In order to extract the individual Fourier
components, measurements need to be performed on the quantum state vector.
Therefore, the QFT is not directly useful for determining the Fourier-transformed
coefficients of the input state. However, the QFT is widely used as a subroutine in
larger algorithms. In contrast to the amplitude encoding in Eq. (1), Zhou et al. [21]
presented a quantum algorithm computing the Fourier transform in the computa-
tional basis (termed QFTC). This quantum algorithm encodes Fourier coefficients
with fidelity 1� δ and digit accuracy ε for each Fourier coefficient. Its time com-
plexity depends polynomially on log Nð Þ, and linearly on 1=δ and 1=ε. The QFTC,
enables the Fourier-transformed coefficient to be encoded in the computational
basis as follows,

kj i 0j i ! kj i yk
�
�

�
(2)

where yk corresponds to the fixed-point binary representation of yk ∈ �1, 1ð Þ

using two’s complement format. In the algorithm proposed by Zhou et al. [21], the

input vector x
!
is provided by an oracle Ox such that,

Ox 0j i ¼
XN�1

j¼0

x j jj i (3)

which can be efficiently implemented if x
!
is efficiently computable or by using

the qRAM that takes complexity log Nð Þ under certain conditions [21]. Comparing
Eq. (1) and Eq. (2), it is clear that encoding in the computational basis requires a
number of additional qubits depending on the required fixed-point representation.
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3. Nonlinear problems on quantum computers

An early work by Leyton and Osborne [20] introduced a quantum algorithm to
solve nonlinear differential equations with an unfavorable complexity. Since then,
very few works have considered quantum algorithms for nonlinear equations. In
contrast, algorithms for linear differential equations have continued to receive
significant attention. As an example, advanced quantum spectral methods for dif-
ferential equations were published recently by Childs and Liu [19].

A key contributing factor to the limited progress in algorithms for non-linear
problems is the inherent linearity of quantum mechanics. For quantum algorithms
encoding information as amplitudes of a quantum state vector, nonlinear (prod-
uct) terms cannot be obtained by multiplying these amplitudes by themselves, as a
result of the no-cloning theorem that prohibits the copying of an arbitrary quan-
tum state. Furthermore, all quantum-gate operations (with the exception of mea-
surements) in the quantum-circuit model used here need to be unitary and
reversible. These requirements add further challenges to representing nonlinear
terms when using the amplitude-based encoding approach. Specifically, in a nor-
malized quantum state vector all amplitudes in the vector are ≤ 1 (unless only a
single amplitude is non-zero), therefore an operator performing products of the
amplitudes cannot be unitary since the resulting quantum state vector will no
longer have a unit norm.

One possible way around these problems associated with nonlinear terms would
be a hybrid quantum-classical approach where the nonlinear products are computed
on a classical computer. However, due to the complexity introduced by measuring
the quantum state (needed before each transfer of information to the classical
computer) and the cost of (re-)initialization of the quantum computer with the
result of these products, this is not a promising line of development. It is highly
unlikely to lead to a quantum speed-up. Recently, Variational Quantum Computing
(VQC) was introduced as an effective hybrid classical-quantum approach [22, 23],
firstly for applications in quantum chemistry and more recently for a wider range of
linear and nonlinear problems [24]. The VQC approach constructs the required
solution from a layered network, as illustrated in Figure 1. As shown in Figure 1(a),
multiple layers are used (4 in the illustration), each taking as input multiple qubits
(6 in example shown). Using depth 5 in the example, the quantum circuits defined

Figure 1.
Illustration of the Variational Quantum computing (VQC) approach (adapted from Lubasch et al. [24]).
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by U λð Þ involve 13 two-qubit gates as shown in Figure 1(b). Each of these gates has
a parameter λi ∈ 1, 13½ � associated with it. A classical computer is used to create
optimized parameters λ employing an iterative approach that takes the measured
state of the ancilla qubit as input. A further key part of the approach is the problem-
specific Quantum Nonlinear Processing Unit (QNPU). Recently, Lubasch et al. [24]
published an example for the QNPU for the nonlinear Burgers equation. In applica-
tions of the VQC approach, the efficiency strongly depends on the choice of the
number of parameters λ used in U λð Þ. The work by Lubasch et al. [24] showed that
exponential speed-up is only possible if the depth of U λð Þ scales with the number of
qubits and not with the overall problem size. It is clear that the proposed VQC
approach is an important development toward QC applications to nonlinear prob-
lems. It therefore constitutes a leading candidate for applications to fluid dynamics.
However, it is also clear that further investigation is needed to further assess its
suitability for a range of applications.

4. Nonlinear governing equations in fluid mechanics

The Navier–Stokes equations for an incompressible, Newtonian fluid can be
written as,

∂U

∂t
þ U � ∇xU ¼ �

1

ρ
∇xpþ νΔU ; ∇x � U ¼ 0 (4)

where U, p, ρ and ν are the velocity, pressure, density and kinematic viscosity,
respectively. x denotes the coordinate in space. The second term on the right-hand
side of Eq. (4) is the nonlinear convection term that poses a key challenge to devel-
oping efficient quantum algorithms for the Navier–Stokes equations. Efficient quan-
tum algorithms for linear convection equations discretized on regular Cartesian
meshes with periodic boundary conditions have been devised in recent years [6].
When studying numerical methods for the Navier–Stokes equations, it is often useful
to switch to Burgers’model equation, to obtain a single nonlinear partial differential
equation that retains a nonlinear convection term similar to the Navier–Stokes equa-
tions. Using the VQC approach, Lubasch and co-workers recently published example
quantum circuits to model the Burgers equation [24]. Griffin et al. [7] discuss two
approaches for treating the nonlinear term in the Navier–Stokes equations: the VCQ
approach of Lubasch et al. [24] and a linearized approach. These authors conclude
that, at present, VQC represents the most promising approach for Navier–Stokes
equations. Their study also highlights that much further research work is needed to
create efficient algorithms for fluid dynamics applications. It is relatively easy to show
that the linearization approach to solving non-linear governing equations on a Quan-
tum Computer is generally unfeasible. In applying linearization to nonlinear
governing equations, the idea is to use a linearization about the present state of the
solution, and then advance this linearized problem in time. This creates a lineariza-
tion error, which is small if the time step is small. However, even if this linearization
error can be tolerated, the linearization approach is problematic in a quantum com-
puting context. This is due to the need for repeated measuring of the quantum state
(so that the gates that implement the linear operator may be updated with the current
solution) and repeated re-initialization of the quantum state. The complexity associ-
ated with repeated measuring and re-initialization is so large that any benefit of a
quantum algorithm over a classical algorithm is very likely to vanish.
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The development of quantum algorithms for fluid dynamics is clearly at a very
early stage and therefore it is essential that different approaches are considered.

5. Representing nonlinear terms in computational basis

In the present work, an alternative approach to introducing the nonlinear terms
of nonlinear differential equations into a quantum algorithm is investigated.
Specifically, the assumption is made that in a large-scale quantum algorithm for the
solution of the nonlinear (partial) differential equations, the solution is encoded in
terms of amplitude in the quantum state vector, i.e. the approach used in a wide
range of algorithms including the QFT. Then, for the nonlinear terms of the equa-
tions, the following steps are suggested. First, within the larger quantum algorithm,
a quantum algorithm is embedded that converts the solution from the quantum-
amplitude representation to a representation in the computational basis. Recently,
quantum algorithms for this ‘analog-to-digital conversion’ were published by
Mitarai et al. [25]. Using the representation of the solution in the computational
basis, the required nonlinear terms are then efficiently evaluated using quantum
circuits presented later in this chapter. Once computed, a conversion back to
quantum-amplitude representation is to be used, enabling the rest of the quantum
algorithm to proceed. For this ‘digital-to-analog’ conversion, quantum algorithms
were recently studied and published by SaiToh [26]. For the representation in the
computational basis, a fixed-point approach is typically employed to represent real
or complex numbers in quantum algorithms. The number of additional qubits
required when using computational-basis encoding depends directly on the number
of qubits required to represent the real and complex numbers needed in the algo-
rithm. In the present work, a different approach is put forward: instead of using
fixed-point arithmetic, a floating-point representation is used.

In the literature, quantum arithmetic using floating-point numbers has received
very little attention so far. Haener et al. [27] described an investigation into quan-
tum circuits for floating-point addition and multiplications and compared auto-
matically generated circuits from Verilog implementations with hand-crafted
optimized circuits. Their study provides evidence that floating-point arithmetic is a
viable candidate for use in quantum computing, at least for typical scientific
applications, where addition operations usually do not dominate the computation.
Following on from these conclusions, the present work investigates the use of
floating-point arithmetic as part of evaluating nonlinear terms in the computational
basis.

5.1 Previous works on algorithms in computational basis

Quantum arithmetic in the computational basis constitutes an important com-
ponent of many quantum algorithms, and as a result reversible implementations of
algebraic functions (addition, multiplication, inverse, square root, etc.) have been
widely studied. In contrast, there is relatively little work on quantum algorithm
implementation of higher-level transcendental functions, such as logarithmic,
exponential, trigonometric and inverse trigonometric functions. Examples of appli-
cations of trigonometric and inverse trigonometric functions in the computational
basis can be found in the famous HHL algorithm [9] and in the state preparation
algorithm introduced by Grover and Rudolph [28]. More recently, a quantum

6

Quantum Computing and Communications



algorithm for approximating the QR decomposition of a N �N matrix in the
computational basis was published by Ma et al. [29], with polynomial speed-up over
the best classical algorithm.

5.2 Fixed-point and floating-point arithmetic

A fixed-point number held in an nq qubit register can be defined as the following
quantum state,

wj i ¼ w nint�1ð Þ
�
�

E

⊗ w nint�2ð Þ
�
�

E

⊗ … ⊗ w 0ð Þ
�
�

Ezfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
integer

⊗ w �1ð Þ
�
�

E

⊗ … ⊗ w nint�nqð Þ
�
�
�

Ezfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
fractional

(5)

where w jð Þ ∈0, 1, j ¼ nint � nq, nint � nq þ 1, … , 0, … , nint�1 [30]. This state rep-

resents the number w ¼
P

jw
jð Þ2 j. The nint leftmost qubits are used to represent the

integer part of the number and the remaining nfrac ¼ nq � nint qubits represent its

fractional part. In this example, no sign qubit is used so that only positive numbers
can be represented (for most applications an additional sign qubit would be
required). Since fewer than nq bits may suffice for the representation of the input, a
number of the leftmost qubits in the register may be set to 0j i. Clearly, the fixed
point system is very limited in terms of the size of the numbers it can store.
Therefore, soon after computers were introduced for numerical computing the
switch to floating-point arithmetic was made. In a computer implementation of a
floating point number with base 2, a non-zero signed number x, defined through a
normalized representation, is expressed as,

x ¼ �S� 2E, where 1≤ S< 2 (6)

where the numbers S and E are the mantissa and the exponent, respectively. The
binary expansion of the mantissa is

S ¼ b0:b1b2b3 …ð Þ2 with b0 ¼ 1 (7)

Here, it is important to note that always b0 ¼ 1 for non-zero numbers in a
normalized representation. This will be used in the present work to achieve savings
in the number of required qubits, as detailed later. In the binary representation, the
bits following the binary point are the fractional part of the mantissa. Once floating-
point numerical computation on classical computers became commonplace, the
industry standard IEEE 754 was introduced [31]. A similar standard for floating-
point representations on a quantum computer does not yet exist, but is desirable
[30]. A key feature of the IEEE standard is that it requires correctly rounded
operations: correctly rounded arithmetic operations, correctly rounded remainder
and square root operations and correctly rounded format conversions. Typically,
rounding to the nearest floating pointing number available in the destination (out-
put register) is used. In the quantum circuits in the present work, rounding down to
nearest is used, for reasons of simplicity. Detailed analysis of quantum-circuits
developed here for squaring and multiplication operations shows that ‘correctly’
rounding to nearest involves a significant increase in circuit complexity (i.e. using
quantum equivalents of guard and sticky bits, that are well established in arithmetic
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on classical computers [31]). A key aspect of the IEEE 754 that has been incorpo-
rated in the present work is the definition of sub-normal numbers. To illustrate the
concept of subnormal numbers, the IEEE 754 standard representation of single
format numbers using a 32-bit word is considered. The first bit is the sign bit,
followed by 8 bits representing the exponent. Then, 23 bits are used to store a 24-bit
representation of the mantissa, i.e. b0 is not stored. Numbers with exponent bits
00000000ð Þ2 ¼ 0ð Þ10 and 11111111ð Þ2 ¼ 255ð Þ10 are defined special cases. The

smallest normalized number is 1:0…0ð Þ2 � 2�126 ¼ 2�126. Sub-normal numbers are
used to represent smaller numbers, i.e. in this case the exponent field has a zero
bit string but the fraction field has a nonzero bit string. Zero is represented with a
zero bit string for the fractional field. For all subnormal numbers, the 00000000ð Þ

used for the exponent represents 2�126 and by using the 23 fractional field bits,

equally-spaced numbers in the range 0:00…01ð Þ2 � 2�126 (with 22 zero bits after

the binary point) to 0:11… 11ð Þ2 � 2�126 (with 23 one bits after the binary point) are
encoded.

5.3 Quantum floating-point format used in present work

Based on the floating point representation defined in the IEEE standard,
the present work introduces a floating-point system with fewer bits (i.e. qubits in
this case) than the 32 used for single format numbers. This is the direct result of
the limited number of qubits available on current and near-term quantum
computers. To optimize the range of floating-point numbers that can be
represented with the approach used here, the following key aspects of the IEEE
standard were adopted:

• For the mantissa only the fractional part is stored,

• Exponent bit strings 00…00ð Þ2 and 11… 11ð Þ2 are used for special cases, i.e.
dealing with 0, subnormal numbers as well as cases with overflow,

• The remaining range of exponent bit strings is used for a range of exponential

centred around 20 ¼ 01… 11ð Þ2,

• Sub-normal numbers are used to extend the range of small numbers,

• Rounding down to nearest is used as rounding mode,

• Only unsigned numbers are considered for simplicity. Signed numbers can
easily be obtained by adding a further ‘sign’ qubit.

In this work, a floating-point number is represented as an nq ¼ NM þNE quan-
tum register. In the quantum-circuit implementation, the most significant (left-
most) mantissa qubit is not stored, using the hidden-bit approach used in the IEEE
754 standard. Therefore, NM � 1 qubits define the fractional part of the mantissa in
the developed quantum circuits. NE defines the number of qubits used to define the
exponent. In the following, examples with NE ¼ 3 and NE ¼ 4 and NM ∈ 3, 5½ � are
considered. For NE ¼ 3, the number 1:00 is defined by ∣00∣011i when NM ¼ 3.
Similarly, ∣000∣0111i defines the number 1:000 forNM ¼ 4 andNE ¼ 4. ForNE ¼ 3,
the smallest normalized number that can be represented is 1=4 independent of the
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number mantissa qubits. Then, exponent state ∣000i defines zero and sub-normal
numbers, as shown in Table 1 for NM ¼ 3, NM ¼ 4 and NM ¼ 5.

Similarly, using 4 qubits for the exponent (NE ¼ 4) means that the smallest
normalized number is 1=64. For NM ¼ 4 and NM ¼ 5, Table 2 shows the
corresponding sub-normal numbers.

In line with the IEEE 754 standard, exponent state ∣1… 1i denotes numbers for
which an overflow has occurred. For NE ¼ 3, the largest normalized number avail-
able is ∣11… 1∣110iwhich equates to 14 and 15 for NM ¼ 3 and NM ¼ 4, respectively.
Similarly, for NE ¼ 4, the largest normalized number available is ∣11… 1∣1110i
which equates to 240 and 248 for NM ¼ 4 and NM ¼ 5, respectively.

6. Quantum circuits for squaring floating-point numbers

For a floating-point number defined by NM mantissa and NE exponent bits, a
total of NM � 1þNE qubits is needed to define the state in the quantum circuits

NM ¼ 3 NM ¼ 4 NM ¼ 5

∣011∣000i ¼ 3=16 ∣0111∣000i ¼ 7=32 ∣01111∣000i ¼ 15=64

∣010∣000i ¼ 1=8 ∣0110∣000i ¼ 3=16 ∣01110∣000i ¼ 7=32

∣001∣000i ¼ 1=16 ∣0101∣000i ¼ 5=32 ∣01101∣000i ¼ 13=64

∣0100∣000i ¼ 1=8 ∣01100∣000i ¼ 3=16

∣0011∣000i ¼ 3=32 ∣01011∣000i ¼ 11=64

∣0010∣000i ¼ 1=16 ∣01010∣000i ¼ 5=32

∣0001∣000i ¼ 1=32 ∣01001∣000i ¼ 9=64

⋮

∣00010∣000i ¼ 1=32

∣00001∣000i ¼ 1=64

Table 1.
Sub-normal numbers for floating-point numbers with 3 qubits as exponential.

NM ¼ 4 NM ¼ 5

∣0111∣0000i ¼ 7=512 ∣01111∣0000i ¼ 15=1024

∣0110∣0000i ¼ 3=256 ∣01110∣0000i ¼ 7=512

∣0101∣0000i ¼ 5=512 ∣01101∣0000i ¼ 13=1024

∣0100∣0000i ¼ 1=128 ∣01100∣0000i ¼ 3=256

∣0011∣0000i ¼ 3=512 ∣01011∣0000i ¼ 11=1024

∣0010∣0000i ¼ 1=256 ∣01010∣0000i ¼ 5=512

∣0001∣0000i ¼ 1=512 ∣01001∣0000i ¼ 9=1024

⋮

∣00010∣0000i ¼ 1=512

∣00001∣0000i ¼ 1=1024

Table 2.
Sub-normal numbers for floating-point numbers with 4 qubits as exponential.
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introduced here. An example with NM ¼ 3 and NE ¼ 3 will now considered, using
registers ∣imb1∣imb0i and ∣ieb2∣ieb1∣ieb1i to define the fractional part of the mantissa
and the exponent of the input number, respectively. For the multiplication opera-
tion described later a second input floating-point number is defined using
∣ima1∣ima0i and ∣iea2∣iea1∣iea1i. The output of the squaring and multiplication
operations is a floating-point number r defined by ∣imr1∣imr0i and ∣ier2∣ier1∣ier1i
(initialized at ∣0i). In addition to the input and output registers, the quantum
circuits will need additional qubits to hold results of intermediate results, e.g. for
NM ¼ 3 a 6-qubit sub-register ∣imp5∣… ∣imp0i is used. To facilitate the quantum-
multiplication operations, a further ancilla qubit ∣a0i is used. For quantum circuits
without measures to deal with sub-normal numbers and overflow, the quantum
state for NM ¼ 3 and NE ¼ 3 is defined in a 2� NM � 1þNEð Þ þ 2�NM þ 1 ¼ 17-
qubit register

∣ieb2∣ieb1∣ieb0∣imb1∣imb0∣a0∣imp5∣… ∣imp0∣ier2∣ier1∣ier0∣imr1∣imr0i (8)

For NM ¼ 4 and NE ¼ 4, the required number of qubits increases to 2�
NM � 1þNEð Þ þ 2�NM þ 1 ¼ 23. The quantum circuit performing the squaring
operation for NM ¼ 3 and NE ¼ 3 is detailed here as example (in realistic applica-
tions NM > 3 will typically be needed). Figure 2 shows the quantum circuit used in
the first step of computing the square of a quantum floating point with NM ¼ 3 and
NE ¼ 3. This step involves computing the square of the mantissa, with this result
temporarily stored in ∣imp5∣… ∣imp0i. In this circuit, QFT6 prepares this temporary
register for the three subsequent product steps denoted by P1, P2 and P3, involving
doubly-controlled phase operations. Specifically, three-qubit gates are used apply-
ing a phase rotation conditional on state of ∣a0i and either ∣imb1i or ∣imb0i. The Pi

steps are controlled-summation operations in the shift-and-add approach to com-
puting the products, i.e. the circuits in Pi are derived from quantum adders

Figure 2.
Quantum circuit used to compute square of mantissa (for NM ¼ 3 and NE ¼ 3).
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controlled by an additional qubit. Once the controlled phase changes in the circuits
P1, P2 and P3 have been applied, inverse QFT6 on ∣imp5∣… ∣imp0i creates the
desired output state. In case the square of the mantissa ≥ 2, i.e. ∣imp5 ¼ 1i, the
result exponent needs to be incremented by 1. This is achieved by apply a
controlled-NOT to ∣ier0i (which was initialized at ∣0i) with ∣imp5i as control. In the
next step, result mantissa qubits ∣imr1∣imr0i are set using temporary results in
∣imp5∣… ∣imp0i, where the required gate operations are conditional on the state
of ∣imp5i. Then the steps shown in Figure 2 are ‘uncomputed’ so that the sub-
register ∣imp5∣… ∣imp0i is set to ∣0i again. The next step is illustrated in Figure 3,
where the output exponent is obtained. This step involves the initialization of
the temporary register imp3∣… ∣imp0 with 2� Eb (i.e. twice the input exponent).
Then, the bias of 011ð Þ2 ¼ 3 is removed (denoted by �011). This bias removal uses
two’s complement to create a modified modulo-5 adder that removes a value
011ð Þ2 ¼ 3 from ∣imp4∣… ∣imp0i. Then, the result exponent sub-register
∣ier2∣ier1∣ier0i is prepared for the subsequent modulo-3 addition (denoted by
MADD3) by applying QFT3. Next, the modulo-3 adder is used to add the qubits
∣imp2∣imp1∣imp0i into ∣ier2∣ier1∣ier0i. By applying the inverse QFT3 on
∣ier2∣ier1∣ier0i the required state is obtained. The remaining steps shown in the
quantum circuit in Figure 3 are used to ‘uncompute’ and clean-up the temporary
register, e.g. using inverse QFT3 and a modified modulo-5 adder to re-apply the bias
011ð Þ2 ¼ 3. The circuits described so far do not take into account the special situa-
tion arising from creating sub-normal numbers as output as well as cases with
‘overflow’ results. This is discussed next.

Figure 3.
Quantum circuit used to obtain exponent for squaring operation (NM ¼ 3 and NE ¼ 3).
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Figure 4.
Quantum circuits used in obtaining output mantissa for squaring operation, including sub-normal numbers
and underflow/overflow protection (NM ¼ 3 and NE ¼ 3).

Figure 5.
Quantum circuit used to obtain exponent for squaring operation, including sub-normal numbers and under/
overflow protection (NM ¼ 3 and NE ¼ 3).
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For certain normalized input numbers the squaring operation leads to outputs
truncated to 0 or to the non-zero sub-normal numbers discussed in Section 5.3. The
quantum circuits discussed so far need to be modified in a number of ways to deal
with this possible sub-normal output. Figure 4 illustrates the required changes for
NM ¼ 3 and NE ¼ 3. Two additional qubits are needed. Qubit ∣isubi ¼ ∣0i is used as
indication that result is a sub-normal number. Qubit ∣icuti ¼ ∣0i is similarly used to
define cases with output truncated to 0. Both qubits are initialized to ∣1i. Then,
before the mantissa multiplication step takes place, a first modification is intro-
duced, shown on the left-hand side of Figure 4. For NE ¼ 3, only inputs with
exponent ∣000i will need truncating to 0, as shown in the first 4-qubit controlled-
NOT gate flipping ∣icuti to ∣0i. For NE ¼ 3, inputs with exponent ∣001i are
guaranteed to lead to sub-normal output (or 0), and for these cases ∣isubi is set to
∣0i, using the second 4-qubit controlled-NOT gate with ∣isubi as target. The
mantissa-multiplication step shown in Figure 2 remains unchanged (i.e. qubits
∣isubi and ∣icuti are not used). The next required modification relates to the ‘copy-
ing’ of the result of the mantissa multiplication to output register ∣imr1∣imr0i and
the application of increments to the output exponent. The additional logic needed is

Figure 6.
Quantum circuit used to set output mantissa for squaring operation, including sub-normal numbers and
underflow/overflow protection (NM ¼ 4 and NE ¼ 3).
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shown on the right-hand side of Figure 3. First, for ∣imp5i ¼ ∣1i, setting ∣ier0i ¼ ∣1i
becomes conditional of both ∣isubi ¼ ∣1i and ∣icuti ¼ ∣1i. The next two 4-qubit gates
are used to guarantee that correct output with exponent ∣111i is created for inputs
with exponents ∣101i and ∣110i. The remaining gate operations perform the ‘copy-
ing’ of the mantissa squared into ∣imr1∣imr0i taking into account the possible sub-
normal output (cases with ∣isubi ¼ ∣0i). The steps for ∣isubi ¼ ∣1i are the same as in
the corresponding circuit for squaring without the sub-normal number modifica-
tions. A further set of circuit modifications to deal with sub-normal numbers is
required in the quantum circuit used to obtain the output exponent. Figure 5 shows
the additional operations required relative to the original quantum circuit shown in
Figure 3. Three additional CNOT operations are introduced just before performing
the QFT3. For ∣isubi ¼ ∣0i and ∣icuti ¼ ∣0i the initialization of ∣imp1∣imp0i is
modified so that the subsequent steps will produce the correct result for the expo-
nent. The three CNOT operations also appear in the ‘uncompute’ stage at the right-
hand side of the circuit. Further changes comprise two 4-qubit controlled-NOT
operations on ∣ier2i and ∣ier1i required to create ∣111i exponents for inputs with
exponent ∣110i.

For a fixed value of NE it is important to note that the additional complexity
introduced by increasing NM is limited. In fact, the quantum circuit shown on the
left-hand side of Figure 4 does not depend on NM. Similarly, the quantum circuits
used to obtain the result exponent are independent of NM. The circuit shown on the
right-hand side of Figure 4, representing the definition of ∣imr1∣imr0i for cases
with normalized or sub-normal output requires modification. Figure 6 shows how
∣imr2∣imr1∣imr0i are set for NM ¼ 4 using a set of gate operations that has grown

Figure 7.
Quantum circuit used in multiplying the mantissa of two input numbers (NM ¼ 3 and NE ¼ 3).
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linearly with NM. The circuit shown accounts for sub-normal numbers and includes
underflow/overflow protection.

7. Quantum circuits for multiplication of floating-point numbers

In the interest of brevity, only the main features of the quantum circuits used for
multiplication of two quantum floating-point numbers are summarized here.
Figure 7 illustrates the quantum circuit used to compute the product of the man-
tissas of two inputs. Compared to the circuit shown in Figure 2 the main difference
is that ancilla qubit ∣a0i is now set using the mantissa of a second input. A further
difference relative to the squaring operation occurs in the circuit used to obtain the
result exponent. Here, instead of setting 2� the exponent using a bit shift, the sum
of the two input exponents needs to be computed employing a quantum full adder.

8. Results of simulation and verification of quantum circuits

The proposed quantum circuits for squaring and multiplying floating-point
numbers as part of the computational-basis representation, were systematically
verified by gate-level simulation of the circuits for a wide range of cases with and
without sub-normal numbers as well as cases with overflow results. The C++ quan-
tum computer simulator detailed in previous work [4] was used for this purpose. To
illustrate the process, the quantum algorithm used to square numbers with NM ¼ 3
and NE ¼ 3 is considered, with the following 19-qubit register (algorithm demon-
strated accounts for sub-normal numbers as well as underflow/overflow protection,
see Eq. (8) for reference):

∣ieb2∣ieb1∣ieb0∣imb1∣imb0∣a0∣imp5∣… ∣imp0∣ier2∣ier1∣ier0∣imr1∣imr0∣icut∣isubi (9)

where ∣ieb2∣ieb1∣ieb0i and ∣imb1∣imb0i define the exponent and the fractional
part of the mantissa of the input, respectively. Qubits ∣icuti and ∣isubi are initialized
as ∣1i, while all other qubits are initialized as ∣0i. The quantum state in the simula-
tion is then initialized with a single non-zero (unit) amplitude, with the index in the
quantum state vector defined by the binary representation of input exponent and
fractional part of mantissa. With the rounding mode fixed at rounding down to
nearest, the intended output can be easily computed before the quantum circuit is
simulated. In effect, this defines the index of the single non-zero (unit) amplitude
of the output quantum state that should be returned in case the circuit is correct.
Upon finalizing the quantum computer simulation the actual quantum state vector
obtained is compared against the previously-computed required output. For this
verification to be meaningful, the following range of possible inputs and outputs

Input Initial state Output state

7=2 (i) ψ init 1001100000000000011ð Þ2
� �

¼ 1 ψ out 1001100000001101011ð Þ2
� �

¼ 1

7=16 (ii) ψ init 0011100000000000011ð Þ2
� �

¼ 1 ψ out 0011100000000001110ð Þ2
� �

¼ 1

3=16 (iii) ψ init 0001100000000000011ð Þ2
� �

¼ 1 ψout 0001100000000000001ð Þ2
� �

¼ 1

6 (iv) ψ init 1011000000000000011ð Þ2
� �

¼ 1 ψ out 1011000000001110011ð Þ2
� �

¼ 1

Table 3.
Results from quantum circuit simulation for representative range of inputs (squaring NM ¼ 3, NE ¼ 3).
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were considered: (i) input and output are both normalized numbers, (ii) input is
normalized number and output is a sub-normal number, (iii) input is a
sub-normal number and result truncated to 0, (iv) input is a normalized number,
with output overflow. For NM ¼ 3 and NE ¼ 3, Table 3 summarizes the input
and output states for examples of each of the 4 categories considered. For inital
and output the single non-zero amplitudes are shown. Since the simulator employed
here stores the full 2nq state vector for nq qubits, only circuits with ≤ 28 qubits
were considered as a result of limited computational resources and the large number
of cases considered (> 100). For the squaring operation, NM ∈ 3, 6½ � and NE ∈ 3, 4½ �
were considered, while for multiplication the range of NM needed to be reduced,
i.e. NM ∈ 3, 4½ �.

NM NE L2 uð Þ L
∞

uð Þ L2 pð Þ L
∞

pð Þ

Rounding down - using sub-normal numbers

3 3 26:805 0:124741 13:2908 0:0623342

4 3 7:69964 0:0624983 3:79396 0:0310842

5 3 1:93069 0:0312483 0:883095 0:0154592

6 3 0:477862 0:0156233 0:233542 0:00780768

7 3 0:110358 0:00781078 0:0611784 0:00390143

8 3 0:0247615 0:00390453 0:0135501 0:00194831

4 4 6:36002 0:0624983 1:57508 0:0310387

5 4 1:62679 0:0312483 0:387261 0:0154137

6 4 0:409663 0:0156233 0:10847 0:00762945

7 4 0:0958982 0:00781078 0:0296086 0:0037232

8 4 0:0209894 0:00390453 0:00647854 0:00192175

Rounding down - without sub-normal numbers

3 3 86:8625 0:248583 111:896 0:249507

4 3 70:4413 0:248583 108:352 0:249507

5 3 65:8235 0:248583 107:359 0:249507

6 3 64:6349 0:248583 107:135 0:249507

7 3 64:3262 0:248583 107:069 0:249507

8 3 64:2529 0:248583 107:050 0:249507

4 4 6:3881 0:0624983 1:6114 0:0310387

5 4 1:65503 0:0312483 0:42405 0:0154137

6 4 0:437976 0:0156233 0:14534 0:0151248

7 4 0:124223 0:0147218 0:0665074 0:0151248

8 4 0:0493163 0:0147218 0:0433827 0:0151248

Table 4.
Approximation errors in Taylor-green vortex flow field due to reduced-precision floating-point representation.
L
∞
and L2 norms of errors relative to IEEE double-precision representation for velocity (u) and pressure (p) for

different NM and NE. 100� 100 uniform mesh.
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9. Complexity analysis

Before analyzing the quantum circuits introduced here in terms of complexity,
first the choice of NM and NE for representing realistic flow fields is considered.

9.1 Representing Taylor-green vortex flow

In a two-dimensional flow field, the non-linear terms appearing in the Navier–
Stokes equations, shown in Eq. (4), involve the square of the velocity components
in x� and �y directions, i.e. u2 and v2, as well as, the product uv. Here, the example
flow field defined by the two-dimensional Taylor-Green vortex is considered,

where velocity and pressure are defined in a square domain 0, 2π½ �2 with periodic
boundary conditions as,

u ¼ cos xð Þ sin yð Þ ; v ¼ � sin xð Þ cos yð Þ ; p ¼ �
1

4
cos 2xð Þ þ cos 2yð Þ½ � (10)

Considering a 100� 100 uniform mesh, the effect of representing the flow
field variables with a reduced-precision floating-point format is analyzed first.

NM NE L2 u2
� �

L
∞

u2
� �

L2 juvjð Þ L∞ juvjð Þ

Rounding down - using sub-normal numbers

4 4 0:801596 0:0351562 0:161925 0:0146484

5 4 0:3848 0:0244141 0:0520772 0:00732422

6 4 0:101035 0:013916 0:018016 0:00378418

7 4 0:0382158 0:00738525 0:0053449 0:00186157

8 4 0:0108621 0:00379944 0:00123537 0:000919342

Rounding down - without sub-normal numbers

4 4 0:87222 0:0351562 0:30511 0:0147705

5 4 0:461689 0:0244141 0:213756 0:0153809

6 4 0:18035 0:0151405 0:188371 0:0154495

7 4 0:119222 0:0151405 0:179671 0:0154495

8 4 0:0927176 0:0152609 0:177551 0:015553

Table 5.
Approximation errors of velocity products in Taylor-green vortex flow field due to reduced-precision floating-
point representation. L

∞
and L2 norms of errors relative to IEEE double-precision representation for velocity

(u2) and pressure (uv) for different NM and NE. 100� 100 uniform mesh.

CPHASE C2
PHASE θmin

3� 3 9 27 2π=26

4� 4 14 66 2π=28

5� 5 20 130 2π=210

Table 6.
Number of controlled-phase gates (CPHASE) and doubly-controlled-phase (C2PHASE) for phase-addition
operator in quantum-multiplier. Also, smallest rotation angle is shown.
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Table 4 summarizes the results, highlighting the importance of including sub-
normal numbers in the floating-point representation. Since a sign bit is not used
here, the absolute values of u, v, p were actually used. Flow variables defined in
Eq. (10) are in the range �1, 1½ �, so that by increasing NE from 3 to 4, far fewer sub-
normal numbers are used to represent the flow field. As a result, removing the sub-
normal number capability (as shown in bottom half of table), results in smaller
errors for NE ¼ 4. For realistic applications of the proposed quantum floating point
format, the relatively small overhead incurred by introducing sub-normal numbers
in the quantum circuits clearly suggests that sub-normal numbers should be
included.

For NE ¼ 4, the representation of u2 and ∣uv∣ is considered. Specifically, the error
shown is that introduced by the multiplication: the difference between the ‘exact’
product of the reduced-precision representation of ∣u∣ and ∣v∣ and the corresponding
reduced precision representation of the products is shown in Table 5. The results
highlight that although sub-normal numbers played a relatively smaller role in
representing velocity components, in the computation of the nonlinear terms, the
inclusion of sub-normal numbers is more important for the minimization of
approximation errors.

9.2 Mantissa multiplication step

QFT and inverse QFT are used involving 2NM qubits, so that the complexity in

terms of two-qubit (controlled-phase) gates scales as N2
M, where the well-known

complexity of the standard QFT implementation is used. The complexity of the
phase-addition steps involved in the multiplication are detailed in Table 6. For the

two-qubit gates the number can be seen to scale as N2
M, while the number of

three-qubit gates shows a N3
M scaling.

9.3 Computation of exponent

QFT and inverse QFT are used involving NE, NE þ 1 and NE þ 2 qubits,
representing a smaller complexity than the QFT used in mantissa multiplications.
The main contributions to complexity of exponent computation stems from the
modulo and full-adders involving a number of qubits scaling linearly with NE. The
polynomial complexity in terms of qubits for the adders implemented here is shown
in Table 7.

9.4 Discussion

The quantum circuits presented here for squaring two floating-point numbers
in the format proposed show that by accounting for sub-normal numbers and

CPHASE θmin CPHASE θmin

MADD3 6 2π=23 FADD3 9 2π=24

MADD4 10 2π=24 FADD4 14 2π=25

MADD5 15 2π=25 FADD5 20 2π=26

MADD6 21 2π=26

Table 7.
Number of controlled-phase gates (CPHASE) in phase-addition step for modulo adder (MADD) and full
adder (FADD). Also, smallest rotation angle is shown.
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under/overflow an additional number of multi-qubit controlled-NOT gates is
needed. However, for the examples analyzed a polynomial dependence on NM and
NE was observed. This means that in terms of quantum-algorithm complexity this
implementation has the desired efficiency. The relatively small complexity as com-
pared to circuits used for mantissa multiplication highlights that for most applica-
tions it is desirable to include the capability of using sub-normal numbers and
provide under/overflow protection in the quantum circuits. The analysis in this
section also shows that for a realistic application, a well-considered scaling of the
governing equations to O 1ð Þ variables is even more important here than in classical
implementations using IEEE single- or double-precision arithmetic. Using the lim-
ited number of qubits available on current and near-term quantum computers
(< 100), the proposed approach to introducing non-linearity is a good candidate in
cases where NM and NE can be chosen significantly smaller than in equivalent
classical floating-point representations.

10. Conclusions

The challenges associated with representing non-linear differential equations in
terms of quantum circuits were discussed in this chapter. In this work, a new
approach for representing product-terms in nonlinear equations suitable for near-
term (e.g. NISQ generation) quantum computers was proposed. A key aspect
discussed is the (temporary) representation of the variables in the computational
basis. Furthermore, the use of a suitably-chosen floating-point format was detailed.
The importance of including sub-normal numbers, such as defined in the IEEE 758
standard for floating-point arithmetic on classical computers, was demonstrated.
Based on the current findings, a number of suggestions for further work can be put
forward. The presented circuits performed arithmetic for a single set of input data,
i.e. equivalent to data for a single point in a computational domain. Extending the
approach to a multi-dimensional computational mesh is a first step to consider. A
complexity analysis will be needed to assess the potential speed-up relative to
classical discretization approaches for the considered equations. A further step
involves investigating how the proposed approach can be made part of a larger
quantum algorithm, where a mix of amplitude-based encoding and computational-
basis encoding occurs. A key aspect is therefore the development of efficient quan-
tum circuits to perform the required conversions between the two different
encoding approaches. Finally, further work is needed to establish how the approach
presented here can be used in a wider range of quantum computing applications.
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