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Chapter

Symplectic Geometry and Its
Applications on Time Series
Analysis
Min Lei

Abstract

This chapter serves to introduce the symplectic geometry theory in time series
analysis and its applications in various fields. The basic concepts and basic elements
of mathematics relevant to the symplectic geometry are introduced in the second
section. It includes the symplectic space, symplectic transformation, Hamiltonian
matrix, symplectic principal component analysis (SPCA), symplectic geometry
spectrum analysis (SGSA), symplectic geometry mode decomposition (SGMD),
and symplectic entropy (SymEn), etc. In addition, it also briefly reviews the appli-
cations of symplectic geometry on time series analysis, such as the embedding
dimension estimation, nonlinear testing, noise reduction, as well as fault diagnosis.
Readers who are familiar with the mathematical preliminaries may omit the
second section, i.e. the theory part, and go directly to the third section, i.e. the
application part.

Keywords: symplectic geometry, symplectic principal component analysis (SPCA),
symplectic geometry spectrum analysis (SGSA), symplectic geometry mode
decomposition (SGMD), symplectic entropy (SymEn), chaotic time series,
embedding dimension, feature extraction

1. Introduction

From the viewpoint of mathematical systems, the time series observed in phys-
ics are usually regarded as coming from the Lagrangian systems, also called the
conventional systems. The systems can be analyzed by the conventional Euclidean
geometry [1]. However, the systems in practice are usually nonlinear and complex.
Thus, a lot of interesting time series in nature are complex due to nonlinear phe-
nomena derived from nonlinear dynamical systems [2]. The nonlinear dynamical
systems have been described by Hamiltonian systems and dealt with by using
symplectic geometry [3]. Symplectic geometry is an even dimensional geometry
living on even dimensional spaces. Different from the conventional Euclidean
geometry that measures 1-dimensional lengths and angles, the symplectic geometry
studies the metric properties (such as area) and can preserve the system structure in
the phase space [4]. Apart from applications on the classical dynamical systems to
solve the equation problems, symplectic geometry has been also used on the studies
of nonlinear time series [5–8].
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According to Takens’ embedding theorem, a time series can be reconstructed
into an attractor in phase space [9]. The reconstructed attractor is a geometrical
object that can reflect the underlying dynamical system. In order to better under-
stand the nature of the underlying system, the attractor and its properties are
characterized in the phase space by various mathematical methods, such as dimen-
sion, fractal geometry, Lyapunov exponent, entropy and symplectic geometry [1, 5,
10, 11]. For dimension, fractal geometry, Lyapunov exponent, entropy, there are a
more extensive discussion with mathematical details in some research literatures
[12–15]. Here, we only introduce how to apply symplectic geometry theory to
extract the information from the reconstructed attractor and its application on
physics, engineering and biomedical engineering.

2. Mathematical fundamental

2.1 Reconstruction of the system dynamics in phase space from a time series

The reconstruction from a time series of observation is the first and most crucial
step in nonlinear time series analysis. It is also the basis of applications of symplectic
geometry on time series analysis. Takens’ embedding theorem allows us to recon-
struct an equivalent attractor of the underlying dynamical system by embedding
one time series. The theorem proves that the reconstructed attractor has the same
dynamical characteristics as the attractor of the original system if the embedding
dimension m is sufficiently large. Let a time series of observation x1, x2, …, xn. n is
the number of samples. The reconstructed attractor can be given in N-dimensional
space RN by the time-delay embedding [5]:

X ¼ X1, X2,⋯, Xmð Þ

¼

x1 x2 ⋯ xm

x2 x3 ⋯ xmþ1

⋮ ⋮ ⋱ ⋮

xN xNþ1 ⋯ xn

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

, (1)

where the number of dots in the attractor is m = n-N + 1, the embedding
dimension is N. X is also called as the trajectory matrix of the original system in
phase space. The corresponding program is given by matlab software as follows:

————————————————————————————————

function matrixSignal = signalMatrix(x, N)
% ————Construct data matrix————

%
% Synopsis:
% matrixSignal = signalMatrix(x, N)
%
% Description:
% It constructs a data matrix from a time series as a column vector, i.e., a
% reconstruction attractor.
%
% Input:
% x a time series with the length n.
% N [1x1] Output dimension; N > 1 (default N = dim);

2
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%
% Ouputs:
% matrixSignal [N x M] a data matrix (M = n-N + 1).
%
if nargin <2, N = 2; end
n = length(x);
M = n-N + 1;

matrixSignal = zeros(N,M);
for i = 1:N
matrixSignal(i,:) = x(i:M + i-1);
end
—————————————————————————————————

2.2 Hamilton matrix from the reconstructed attractor

In the symplectic spaces, Hamiltonian system is the analysis fundamental for the
real physical processes [4, 5]. A real system should be first described by a suitable
Hamiltonian system, i.e. an even dimensional matrix. For a time series, its
Hamiltonian matrix H can be defined by using its reconstructed attractor X.

Definition 2.1 Let X be a d-dimensional matrix in a real number field Rd.

The matrix Xcan be given by removing the mean values of the columns of the X.
We define the covariance matrix A of the matrix X:

A ¼ X �XT
: (2)

Here, A is a d � d real number matrix.
Definition 2.2 For a d � d matrix A, the Hamiltonian matrix H can be defined:

H ¼
A 0

0 �AT

� �

: (3)

Here, H is a 2d � 2d matrix.

2.3 Mathematical preliminaries in symplectic geometry

Symplectic geometry focuses on the study of area measure in symplectic space
R2n. Its basic concepts and basic properties are related but different from those of a
Euclidean geometry (see Table 1).

In Euclidean space, the inner product is denoted as the measure of the length. The
unit matrix is I, i.e. the main diagonal elements are 1, and the other elements are 0.
Corresponding to the unit matrix I in Euclidean space, the unit matrix in symplectic
space is defined as the unit symplectic matrix J, an even dimensional matrix:

J ¼ J2n ¼
0 þIn

�In 0

� �

, (4)

The properties of the matrix J have:

Jj j ¼ 1, (5)

J2 ¼ �I, (6)

JT ¼ J�1 ¼ �J, (7)
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JJ�1 ¼ J�1J ¼ I: (8)

Definition 2.3 For any two n-dimensional vectors x2n � 1 and y2n � 1, the normal
symplectic inner product is defined by using the inner product of Euclidean space:

x, y
� �

¼ x, J2ny
� 	

¼
Xn

i¼1

xiynþi � xnþiyi
� 	

¼ xTJ2ny: (9)

The normal symplectic inner product is also denoted briefly as the symplectic
inner product in a real vector space R2n. When n = 1, there is:

J2 ¼
0 1

�1 0

� �

, (10)

Geometry

space

Symplectic space Euclidean space

Space

dimension

2n-dimension n-dimension

Unit matrix unit symplect matrix:

J2n ¼
0 þIn

�In 0

� �

.

unit matrix:

In ¼
1 0 ⋯ 0

0 1 ⋱ ⋮

⋮ ⋱ ⋱ 0

0 ⋯ 0 1

0

B
B
@

1

C
C
A

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

.

Determinant

of unit matrix

|J2n| = 1 |In| = 1

Product

calculation

symplectic inner product <x, y>

x, y
� �

¼ x, J2ny
� 	

¼ xTJ2ny
.

Inner product (x, y)

x, y
� 	

¼ x, Iny
� 	

¼ xTIny

¼ xTy

.

Calculation

measure

area length

Orthogonality x, y
� �

¼ xTJ2ny ¼ 0. x, y
� 	

¼ xTIny

¼ xTy

¼ 0

.

Space basis Adjoint symplectic orthonormal basis Q = {x1,
x2, …, xm, y1, y2, …, ym}, m ≤ n; when

determinant |Q| = 1, the basis Q is normal.

Orthogonal basis W = {x1, x2, …,

xm}, m ≤ n; when |W| = 1, the basis

W is normal.

Orthogonal

matrix

Symplectic matrix S

STJS ¼ J.

Orthogonal matrix W

WTIW ¼ WTW ¼ I.

Analysis

matrix

Hamiltonian matrix H

HT = JHJ.

Symmetry matrix A

AT = A = IAI.

Matrix

transformation

Hamiltonian transformation

x,Hy
� �

¼ y,Hx
� �

.

Symmetry transformation

x,Ay
� 	

¼ y,Ax
� 	

.

Eigenvalues of

the matrix

The eigenvalues of H are �μ. The eigenvalues μ of A are real.

Eigenvectors

of the matrix

The eigenvectors of H are symplectic

orthogonal.

The eigenvectors of A are

orthogonal.

Table 1.
The comparison between symplectic geometry and Euclidean geometry.
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x, y
� �

¼ x, J2y
� 	

¼ xTJ2y ¼
x1 y1
x2 y2

�
�
�
�

�
�
�
� ¼ x1y2 � x2y1: (11)

The symplectic inner product is a bilinear antisymmetric nonsingular cross
product. In symplectic space, the length of any vectors is equal to 0. But there exists
the concept of symplectic orthogonal cross-course.

Definition 2.4 Let x and y be a 2n-dimensional real vector. If their symplectic
inner product is equal to zero, i.e.:

x, y
� �

¼ xTJy ¼ 0, (12)

then x and y are symplectic orthogonal. Otherwise, they are called as symplectic
adjoint.

Definition 2.5 If a vector set {x1, x2, …, xm, y1, y2, …, ym} in the real symplectic
space R2n (m ≤ n)is an adjoint symplectic orthonormal vector set, then the vectors
xi and yi (i = 1, …,m, xi∈ R2n, yi∈ R2n) satisfy

xi, y j

D E

¼ xT
i J2ny j ¼

aii 6¼ 0, i ¼ j

0, i 6¼ j

�

, (13)

xi,  x j

� �
¼ 0, (14)

yi,  y j

D E

¼ 0, (15)

where i, j = 1, 2, …,m. It is called as an adjoint symplectic orthonormal basis in the
2n-dimensional symplectic space. If aii = 1, the vector set {x1, x2, …, xm, y1, y2, …, ym}
is a normal adjoint symplectic orthonormal vector set (a normal adjoint symplectic
orthonormal basis in the space R2n).

The orthogonal of the Euclidean space is different from the symplectic
orthogonal. If vectors x and y in the space Rn are orthonormal, then they satisfy:

x,  y
� 	

¼ xTy ¼ 0, (16)

where x 6¼ y.
If a vector set {x1, x2, …, xm}∈R

n is an orthonormal vector set, then any two
vectors in the set satisfy:

xi,  x j

� 	
¼ 0, (17)

where i, j = 1, 2, …, m, i 6¼ j. Eq. (17) is similar to Eqs. (14) and (15). In the
n-dimensional Euclidean space, the set {xi} is denoted as an orthonormal basis.
If ||xi || = 1, the orthonormal basis is a normal orthonormal basis.

Theorem 2.1 Let {αi} be a normal adjoint symplectic orthonormal basis in a
2n-dimensional symplectic space Φ. Let the coordinates of any vectors β and γ in Φ

be {x1, x2, … xn, xn + 1, …, x2n}
T and {y1, y2, … yn, yn + 1, …, y2n}

T, respectively.
Referring to the basis {αi}, the coordinates can be described as:

xi ¼ β, αnþih i, xnþi ¼ � β, αih i, yi ¼ γ, αnþih i, ynþi ¼ � γ, αih i, (18)

where i = 1, 2, …, n. Then the symplectic inner product of β and γ is as follows:

β, γh i ¼
Xn

i¼1

xiynþi � xnþiyi
� 	

¼ xTJ2ny: (19)
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Thus, the symplectic inner product operation is transformed to the matrix oper-
ation of ordinary vectors or matrices by applying a normal adjoint symplectic
orthonormal basis.

Definition 2.6 Let S is a 2n � 2n matrix, if S satisfies:

JSJ�1 ¼ S�T, or STJS ¼ J, (20)

then S is a symplectic matrix and the determinant |S| = 1 or � 1. Meanwhile, the
inverse matrix and the transpose matrix of a symplectic matrix are a symplectic
matrix, respectively. The symplectic matrix S is similar to an orthogonal matrix W
in Euclidean space, like Eq. (20):

WTIW ¼ WTW ¼ I: (21)

Theorem 2.2 The product of sympletcic matrixes is also a symplectic matrix.
Proof:
Let Si (i = 1, 2, …, n) be a symplectic matrix. The product matrix M:

M ¼
Yn

i¼1

Si: (22)

According to the above definition of symplectic matrix, there are:

JSiJ
�1 ¼ S�T

i , i ¼ 1, 2,⋯, n (23)

J�1J ¼ I, (24)

JMJ�1 ¼ J
Yn

i¼1

Si

 !

J�1

¼ J S1S2⋯Snð ÞJ�1

¼ JS1J
�1JS2J

�1J⋯J�1JSnJ
�1

¼ JS1J
�1

� 	
JS2J

�1
� 	

J⋯J�1
� 	

JSnJ
�1

� 	

¼ S�T
1 S�T

2 ⋯S�T
n

¼ S1S2⋯Snð Þ�T

¼ M�T

, (25)

Thus, the product of symplectic matrixes is also a symplectic matrix.
Definition 2.7 If a 2n � 2n matrix H is a Hamiltonian matrix, then the matrix H

satisfies the following properties:

JHJ�1 ¼ �HT, JHJ ¼ HT, or JHð ÞT ¼ JH, (26)

x,Hy
� �

¼ y,Hx
� �

, (27)

where x and y are 2n-dimensional vectors. In other words, if an even-
dimensional matrix H satisfies these properties above, the matrix H is a Hamilto-
nian matrix. In Euclidean space, a symmetric matrix A is similar to a Hamilitonian
matrix H, like Eqs. (26) and (27):

IAI ¼ A ¼ AT, (28)
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x,Ay
� 	

¼ y,Ax
� 	

: (29)

Theorem 2.3 Let a matrix A be a n � n real number matrix, if it can be built into
a 2n � 2n matrix H in symplectic space in the following pattern:

A 0

0 �AT

� �

: (30)

Then the matrix H is a Hamilton matrix.
Proof:

Let H ¼
A 0

0 �AT

� �

, then

JHJ�1 ¼ J
A 0

0 �AT

 !

J�1

¼
0 In

�In 0

 !
A 0

0 �AT

 !
0 In

�In 0

 !�1

¼
�AT 0

0 A

0

@

1

A

¼ �
A 0

0 �AT

 !T

¼ �HT

, (31)

where J is the 2n � 2n unit symplectic matrix. In terms of Definition 2.7, the
matrix H is a 2n � 2n Hamiltonian matrix.

Theorem 2.4 Let a 2n � 2n matrix H be a Hamiltonian matrix. Then its proper-
ties keep unchanged at symplectic similar transform. That is, a Hamiltonian matrix
H through a series of symplectic similar transforms is still a Hamiltonian matrix.

Proof:
According to Definition 2.6, let the matrix S be a symplectic transform matrix.

Then, the inverse matrix S�1 is also a symplectic matrix. For a Hamiltonian matrix
H, let SHS�1 be the matrix M under the symplectic similar transformation of the
matrices S and S�1. Thus,

J Mð ÞJ�1 ¼ J SHS�1
� 	

J�1

¼ JSJ�1
� 	

JHJ�1
� 	

JS�1J�1
� 	

¼ S�T �HT
� 	

ST

¼ � SHS�1
� 	T

¼ �MT

: (32)

Therefore, M is also a Hamiltonian matrix. Moreover, the matrix M is similar to
the matrix H. Therefore, the Hamiltonian matrix H can keep unchanged at
symplectic similar transform in symplectic space.
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The eigenvalues of a Hamiltonian matrix have the specific characteristics of the
Hamiltonian matrix. However, the eigenvalues may be complex or repeated eigen-
values. In order to obtain the real eigenvalues of a Hamiltonian matrix H,
symplectic QR decomposition method is applied to deal with the Hamiltonian H:

1.Let a 2n � 2n matrix H be (AT G; F –A), then

N ¼ H2

¼
AT G

F �A

 !2
, (33)

2.Build a 2n � 2n symplectic matrix Q and satisfy:

Q TNQ ¼
B R

0 BT

� �

, (34)

B ¼

b11 b12 ⋯ ⋯ b1n

b21 b22 ⋯ ⋯ b2n

0 b32 ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋮

0 ⋯ 0 bnn�1 bnn

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

: (35)

Here B is an upper Hessenberg matrix. Besides, the matrix Q can be a 2n � 2n
Householder matrix.

3.Use the symplectic QR decomposition method to obtain eigenvalues:

μ Bð Þ ¼ μ1, μ2, ⋯, μnf g: (36)

4.The eigenvalues of the Hamiltonian matrix H with multiplicity n are λi ¼ ffiffiffiffi
μi

p
,

i = 1, 2, …, n; λnþi ¼ �λiis also an eigenvalue with multiplicity n.

In symplectic space, the symplectic QR decomposition method allows the pri-
mary 2n-dimensional space transform into n dimensional space to resolve the
eigenvalues of the Hamiltonian H, where the matrix Q is a symplectic unitary
matrix. Thus, the consuming time of the calculation is only one fourth the number
of floating-point operations. In general, one makes use of a Householder matrix
instead of the matrix Q.

Theorem 2.5 If a 2n � 2nmatrix Q is a Householder matrix, then the matrix Q is
a symplectic unitary matrix.

Proof:
Let a Householder matrix Q

Q ¼ Q k,ωð Þ ¼
P 0

0 P

� �

, (37)

P ¼ In �
2ωω ∗

ω ∗ω
, (38)

ω ¼ 0,⋯, 0,ωk,⋯,ωnð ÞT 6¼ 0, (39)

where, ‘*’ means the conjugate transposition. Then, there is
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P ∗ ¼ P, (40)

P ∗P ¼ P2

¼ In �
2ωω ∗

ω ∗ω

� �

In �
2ωω ∗

ω ∗ω

� �

¼ In

, (41)

Q ∗ JQ ¼
P 0

0 P

 ! ∗ 0 In

�In 0

 !
P 0

0 P

 !

¼
0 P ∗P

�P ∗P 0

 !

¼
0 In

�In 0

 !

¼ J

, (42)

Q ∗Q ¼
P 0

0 P

 ! ∗ P 0

0 P

 !

¼
P ∗P 0

0 P ∗P

 !

¼
In 0

0 In

 !

¼ I2n

, (43)

Therefore, the Householder matrix Q is a symplectic unitary matrix.

2.4 Mathematical fundamental on applications

2.4.1 Symplectic geometry spectrums of the reconstructed attractor from a time series

In symplectic space, the reconstructed attractor can keep its properties unchanged
[5, 6]. Its symplectic geometry spectrums can be given by the symplectic geometry
theory above. On the basis of Section 2.1 and 2.2, one can build a Hamiltonian matrix
M from a time series of the observation. Due to the structure characteristics of the
matrixM, its eigenvalues can be calculated by the 2n-dimensional symplectic space
reducing into n-dimensional space. In terms of Theorem 1.5, a 2n � 2n symplectic
Householder matrix Q can be constructed. The matrix P in the matrix Q can be
calculated by the matrix A in the matrixM. The specific steps are as follows:

1.Let A be

ð44Þ
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If the vector α 1ð Þ
21 6¼ 0, set S(1) be the first column vector of A:

S 1ð Þ ¼

a
1ð Þ
11

a
1ð Þ
21

⋮

a
1ð Þ
n1

0

B
B
B
B
@

1

C
C
C
C
A

¼

a11

a21

⋮

an1

0

B
B
B
@

1

C
C
C
A
, (45)

then, there is:

α 1ð Þ ¼ S 1ð Þ�
�

�
�
2
, (46)

ρ 1ð Þ ¼ S 1ð Þ � α 1ð ÞE 1ð Þ�
�

�
�
2
, (47)

ω 1ð Þ ¼ S 1ð Þ � α 1ð ÞE 1ð Þ

ρ 1ð Þ , (48)

where E(1) = (1, 0, …, 0)T is a n � 1 unit column vector.
Then, the elementary reflective matrix P(1) can be calculated:

P 1ð Þ ¼ I� 2ω 1ð Þ ω 1ð Þ
� �T

: (49)

So, there is

A 2ð Þ ¼ P 1ð ÞA

¼

σ1 a
2ð Þ
12 ⋯ a

2ð Þ
1n

0 a
2ð Þ
22 ⋯ a

2ð Þ
2n

⋮ ⋮ ⋱ ⋮

0 a
2ð Þ
n2 ⋯ a

2ð Þ
nn

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

: (50)

Continue to deal with A(2) by repeating the above steps, let S(2) be

S 2ð Þ ¼

0

a
2ð Þ
22

⋮

a
2ð Þ
n2

0

B
B
B
@

1

C
C
C
A
: (51)

Then,

α 2ð Þ ¼ S 2ð Þ�
�

�
�
2
, (52)

ρ 2ð Þ ¼ S 2ð Þ � α 2ð ÞE 2ð Þ�
�

�
�
2
, (53)

ω 2ð Þ ¼ S 2ð Þ � α 2ð ÞE 2ð Þ

ρ 2ð Þ , (54)

where E(2) = (0, 1, 0, …, 0)T is a n � 1 unit column vector.
Then, the elementary reflective matrix P(2) can be calculated:
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P 2ð Þ ¼ I� 2ω 2ð Þ ω 2ð Þ
� �T

: (55)

Thus, we can get A(3) with all zeros elements except the first and second non-
zero elements:

A 3ð Þ ¼ P 2ð ÞA 2ð Þ

¼

σ1 a
3ð Þ
12 a

3ð Þ
13 ⋯

0 σ2 a
3ð Þ
23 ⋯

0 0 a
3ð Þ
33 ⋮

⋮

0

⋮

0

⋮

a
3ð Þ
n3

⋱

⋯

a
3ð Þ
1n

a
3ð Þ
2n

⋮

⋮

a
3ð Þ
nn

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

: (56)

Repeat the same steps until A(n) becomes an upper triangle matrix, one can
construct a Householder matrix P as follows:

P ¼ P nð ÞP n�1ð Þ
⋯P 1ð Þ: (57)

Thus, a symplectic Householder matrix Q can be built to make the Hamiltonian
matrix M transform as an upper Hessenberg matrix, namely:

QMQ T ¼
P 0

0 P

 !
A 0

0 �AT

 !
P 0

0 P

 !T

¼
PAPT 0

0 �PATPT

 !

¼
B 0

0 �BT

 !

: (58)

μ Að Þ ¼ μ Bð Þ, (59)

where μ means the eigenvalue. The matlab program is as follow:
—————————————————————————————————

function [P, R] = householder (A)
% ————Solve Householder Transform Matrix————

%
% Synopsis:
% [P, R] = householder (A)
%
% Description:
% It solves a Householder matrix from a data matrix, i.e., a
% reconstruction attractor.
%
% Input:
% A [mRow x mCol] a data matrix.
%
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% Ouputs:
% P [mRow x mRow] a Householder matrix
% R [mRow x mCol] an upper triangle matrix

[mRow, mCol] = size(A);
if mRow>mCol

A = A’;
[mRow, mCol] = size(A);

end
I_matrix = eye(mRow);
m = min([mRow, mCol]);
p = I_matrix;
for i = 1:m.

S = A(:,i);
if i > 1.
S(1:i-1) = 0;
end
alpha = sqrt(S’*S);

delta1 = S-alpha*I_matrix(:,i);
delta = sqrt(delta1'*delta1);
if delta==0
delta = eps;
end
omega = delta1/delta;

p = I_matrix-2*omega*omega';
A = p*A;
P = p*P;

end
R = A;
return
—————————————————————————————————

For the attractor matrix X of a time series, its symplectic geometry spectrums
SGS are calculated by the eigenvalues of the A in descending order, that is:

SGSi ¼ log
σi

tr σið Þ

� �

, (60)

σ ¼ μ2 Xð Þ ¼ μ Að Þ, σ1 ¼ μ2max, ⋯, σn ¼ μ2min, (61)

where i = 1, …, n. n is the dimension of the attractor X.

2.4.2 Embedding dimension estimate of the reconstructed attractor from a time series

To estimate the embedding dimension is usually the first step of nonlinear
analysis [5]. For a time series, it is important to resolve a suitable embedding
dimension of the observed system. Due to the measure-preserving charactistic of
symplectic geometry, symplectic geometry spectrums can be used to estimate the
embedding dimension of the system from a time series. With the increase of the
dimension n in Eq. (61), the change of the symplectic geometry spectrums SGS in
Eq. (60) tends to be flat at i = d (i∈(1,n))and enters the noise floor area,
SGS1 > SGS2 > … > SGSd> > SGSd + 1 ≥ … ≥ SGSn,. That is, the eigenvalues exist
σ1 > σ2 > … > σd> > σd + 1 ≥ … ≥ σn, then d is defined as the embedding dimension of
the time series for the reconstruction system.

12
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2.4.3 Symplectic entropy (SymEn) of a time series

Symplectic entropy(SymEn) is a kind of entropy measure for a dynamic system
in symplectic space [16]. Based on the symplectic geometry spectrums, the SymEn
measures the energy distribution in symplectic space of a dynamic system from a
time series. The distribution of the energy of the system is described by the eigen-
values σ in the relevant symplectic orthonormal bases of the symplectic space. In
each base direction, the probability of the energy distribution can be given as
follows:

pi ¼
σi
Pn

i¼1
σi

, (62)

where i denotes the ith base direction in the symplectic space,
Pn

i¼1pi ¼ 1,
0≤ pi ≤ 1.

Then,

SymEn ¼ �
Xn

i¼1

pi log pi
� 	

: (63)

The matlab program is as follows:

————————————————————————————————

function SymEn = SymplecticEntropy(A)

[Q, R] = householder(A);
delta = diag(R);
sum_delta = sum(delta);

p = delta./sum_delta;
SymEn = �sum(p.*log(p));
Return
—————————————————————————————————

The SymEn value represents the uncertainty of the entropy about the underlying
probability distribution of a dynamic system in symplectic space, called Symplectic
Entropy.

2.4.4 Symplectic principal component analysis (SPCA) of a time series

Symplectic principal component analysis (SPCA) is a kind of principal compo-
nent analysis (PCA) to map the dynamic system from a time series into the
symplectic space [17]. Due to the preserving-measure nature of symplectic geome-
try, symplectic principal components elucidate the dominant features of a time
series for an underlying system. The principal components corresponding to larger
eigenvalues capture the key relationship between the variables in symplectic space.
The components corresponding to smaller eigenvalues are regarded to relate pri-
marily to the less important components or noise in the time series. The analysis of
eigenvalues are also called as the symplectic geometry spectrums analysis (SGSA)
[6, 18, 19]. The corresponding components are also regarded as symplectic geome-
try mode decomposition (SGMD) [7, 8, 20, 21]. According to the symplectic geom-
etry spectrums above, if the number of the chosen symplectic principal components
is k, the corresponding principal eigenvector matrix p can be constructed by using
the first k eigenvectors of the matrix P in the matrix Q. The corresponding principal
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eigenvalues are the first k eigenvalues in the symplectic geometry spectrum. If k = n,

p = P. Otherwise, p ⊂ P. Then the reestimated attractor matrix X̂ ¼ p pTX
� 	

, where
pTX is defined the transformation coefficient matrix S. If pi is the ith eigenvector in
P corresponding to the ith eigenvalue σi in the symplectic geometry spectrum, Si
will be the ith principal component coefficients, or called the projection of the pith
direction in the symplectic space:

Si ¼ pT
i X ¼ XTpi: (64)

The corresponding pith principal component matrix X̂i is given as follows:

X̂i ¼ piSi: (65)

Then, the reestimated attractor matrix is equal to the sum of X̂i, i = 1,…, n.

X̂ ¼
Xn

i¼1

X̂i: (66)

The reestimated time series xr is equal to the sum of each principal component,
i.e. the sum of projections in different directions. If i = 1, the reestimated time series
is a reduced noise data based on the first principal component.

3. Applications

Symplectic geometry theory has been applied to deal with a time series in fields
of physics, engineering, biomedical engineering [6–8, 11, 16–24], since Lei et al.
(2002) first proposed a symplectic geometry method to estimate the appropriate
embedding dimension from a time series [5]. Here, we will introduce four research
cases in terms of the above theorem and properties of symplectic geometry for the
time series analysis.

Case 1: Embedding dimension estimation for Lorenz chaotic time series [5].
Lorenz chaotic system was accidentally discovered by Edward Norton Lorenz

[25], an American meteorologist, in 1963 when he was studying weather forecast,
and was known as the first chaotic attractor. Since then, people began to study
chaos, a random-like phenomenon. Lorenz chaotic time series x comes from Lorenz
chaotic system, which is a three-dimensional dynamical system as follows [5]:

_x ¼ σ y� xð Þ
_y ¼ γx� y� xz

_z ¼ �bzþ xy ,

(67)

where σ = 10, b = 8/3, γ = 28. The state variable x is chosen as the analyzed data.
The sampling interval is 0.005. The length n is 1000 points.

The attractor reconstructed from Lorenz chaotic time series x can reflect the
Lorenz system. Here, the dimension of the reconstructed attractor is estimated by
the above symplectic geometry method. Let the embedding dimension d be 3: 5: 23,
where i = 1: d. The matlab program is as follows:

—————————————————————————————————

% Compute a Lorenz chaotic time series
% Example:
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% state = [5 5 5];
% Ts = 0.005;
% N = 10000;
% y = calculate_lorenz(state, Ts, N);
% x = y(:,1);

function y = calculate_lorenz(state, Ts, N).

if nargin <1
state = [5 5 5];
Ts = 0.005;

N = 10000;
end
if nargin == 1
Ts = 0.005;

N = 10000;
end
if nargin == 2

N = 10000;
end
% set time span with specific times for the solution
T = 0:Ts:N*Ts;
% set a scalar relative error tolerance 'RelTol' (1e-3 by default).
% and a vector of absolute error tolerances 'AbsTol' (all components 1e-6% by

default).
options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-5]);
% solve Lorenz chaotic system
[t,y] = ode45('lorenzeq1',T,state,options);
return
function ydot = lorenzeq(t,y)
% Lorenz equation
b = 8/3;
r = 28;
delta = 10;
A = [�delta delta 0;r � 1 -y(1);y(2) 0 -b];
ydot = A*y;
return
——————————————————————————————————

% Calculate the embedding dimension.
state = [5 5 5];
Ts = 0.005;
N = 10000;
y = calculate_lorenz(state, Ts, N);
x = y(:,1);
figure.
for N = 3:5:23

X = signalMatrix(x,N);
A = X*X’;
[Q, R] = householder(A);

delta = diag(R);
sum_delta = sum(delta);

d = log10(delta./sum_delta);
n = length(d);

plot(1:n, d, 'b*-')
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hold on
end
ylabel('log10(\delta_{\iti}/tr(\delta_{\iti}))')
xlabel('{\itd} = 3:5:23')
axis([0 25–15 0])
—————————————————————————————————

Figure 1a shows the symplectic geometry spectrums SGS of x without noise
according to the above equations based on symplectic geometry theory. We can see
that the symplectic geometry spectrums turn abruptly into a flat area from i = 6, i.e.
σ1 > σ2 >… > σ5> > σ5 + 1 ≥… ≥ σd. So, the embedding dimension of the time series x
can be estimated at 6. But from the Figure 1b, we can see that it is difficult for the
SVD method to determinate the embedding dimension from the time series x. The
results indicate that the symplectic geometry method could better determinate the
embedding dimension from a time series due to its preserving-measure properties.

Case 2: Embedding dimension estimation for the surface EMG signal [5].
In the practical engineering research, a lot of time series data due to their

complexity are considered to be nonlinear, such as the surface EMG signal in
biomedical engineering. As a kind of non-invasive measure for the contracting
skeletal muscles, the surface EMG signal reflects some information about the mus-
cle, limb movements and loading of the bones and joints. It has been widely applied
to assess biomechanical and motor control deficits and other functional disorders, as
well as to diagnose neuromuscular problems. However, due to noise interference,
the study of surface EMG signal is still a great challenge in biomedical engineering.
Many researches indicate that the surface EMG signal is complex and nonlinear.
The embedding dimension estimation of the surface EMG signal is usually critical to
analyze its nonlinear features. As an example, we use the above symplectic geome-
try method to estimate the embedding dimension of the surface EMG signal during
forearm supination. The length of the surface EMG signal is 1000 points. The data
sampling frequency is 1 kHz. Figure 2a shows the raw surface EMG signal.
Figure 2b gives the symplectic geometry spectrums SGS of the data in Figure 2a.
From Figure 2b, the symplectic geometry spectrums SGS change slowly at d = 6 and
turn into noise floor with the increase of the index i. Then, the embedding dimen-
sion can be estimated at 6 for the surface EMG signal during forearm supination.

Case 3: SymEn analysis of vibration signals on rolling bearings [11].
In the rotating machinery systems, it is extremely important for rolling bearings

to detect faults from vibration signals. The Case Western Reserve University
(CWRU) Bearing Data Center provides a website database for the vibration signals

Figure 1.
The embedding dimension estimation of Lorenz chaos series with no noise based on: (a) the symplectic geometry
method; (b) the SVD method.
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of bearings (http://csegroups.case.edu/bearingdatacenter /pages/welcome-case-
western-reserve-university-bearing-data-center-website). From the website, the
acceleration vibration data sets for 6205-2RS JEM of SKF deep-groove ball bearings
are obtained to detect their fault categories. The corresponding sampling frequency
is 12 kHz, the shaft speed 1730 r/min. The analyzed data sets include No.100 for
normal condition(NC), No.212 for inner race fault (IRF), No.225 for rolling element
fault (REF), and No.261 for outer race fault (ORF) at 12 o’clock position. The data of
each set consist of the vibration signals at the housing of the drive end (DE) bearing
and that of the fan end (FE) bearing, which the faults are at the drive end. The
corresponding fault depth and diameter are 0.21 inches and 0.53 mm, respectively.

Symplectic geometry preserves the nature of a dynamic system under
symplectic similar transformations. As an entropy measure in symplectic geometry,
the SymEn value of a time series measures the lack of information in a dynamic
system to reflect its properties. For the complexity of a rolling bearing, the SymEn
estimate is applied to test its nonlinear characteristics from the vibration signals.
Figure 2 shows the SymEn values of the vibration signals at the drive end and
their surrogate data sets based on the null hypothesis of a Gaussian linear
stochastic process. Here, the length of each data is 6000 points. The embedding
dimension d = 7.

Meanwhile, the 39 sets of surrogate data are generated by the iterated amplitude
adjusted Fourier transform (IAAFT) algorithm in the 95% confidence level [26].
From Figure 3, we can see that there are the significant differences between these
SymEn values of the vibration signals of a rolling bearing and their surrogate data
sets. The results indicate that the vibration data could contain nonlinear character-
istics. The original vibration signals are not from a Gaussian linear stochastic pro-
cess in the 95% confidence level but from a nonlinear dynamical system. It
conforms that the rolling bearing system is a complex nonlinear dynamical system.

Due to the complexity of rolling bearings, it is often thought that the high
dimensional features can better identify the faults of rolling bearings [27–29].
However, the SymEn method can availably extract the low-dimensional features to
identify the faults of rolling bearings from vibration signals quite precisely.
Figure 4 shows the four working states of rolling bearings, i.e., NC, ORF, REF,
and IRF, based on 2-dimensional features. The abscissa is the SymEn estimates of
vibration signals at the drive end. The ordinate is those estimates of vibration
signals at the fan end. We can see that the four states are obviously different.

Figure 2.
The embedding dimension analysis of the surface EMG signal based on the symplectic geometry spectrums:
(a) Typical surface EMG signal during forearm supination; (b) The symplectic geometry spectrums of
the surface EMG data in (a), where abscissa is the analysis dimension d = 3, 8, 13, 18, 23, ordinate is
SGSi = log σi=tr σið Þð Þ, where the index i = 1: d.
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There are 100% accuracies by RBF classifier for the four states of the rolling
bearings. Figure 5 plots the histogram of error values between output classes and
target classes for the SymEn estimates as features of vibration signals.

Case 4: Noise reduction analysis of vibration signals based on SPCA [17, 30].
In the practical engineering measurement, the vibration data of rolling bearings

have often become contaminated with noise. The noise reduction is also beneficial
to analyze the measured data. The SPCA method preserves the intrinsic nonlinear
nature of the raw data. The symplectic principal components can better retrieve

Figure 3.
The nonlinear analysis of vibration signals based on the SymEn method: (a) for the normal condition (NC);
(b) for the outer race fault (ORF); (c) for the rolling element fault (REF); (d) for the inner race fault (IRF).
The abscissa is the SymEn values of vibration signals and their surrogate data.

Figure 4.
The states analysis of rolling for bearings with the SymEn estimates.
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dominant patterns from the noisy data. For the vibration signals of rolling bearings,
the first symplectic principal component is used two times continuously to reduce
the noise in the data.

The specific analysis procedures are as follows:

1.Build a Hamiltonian matrix from the measured data in terms of Eq. (1),
Definition 2.1, 2.2 and Theorem 2.3;

2.Use the Eq. (44)–(59) to compute a symplectic Householder transform matrix
Q for the symplectic QR decomposition in the SPCA method;

3.Construct the first symplectic principal component eigenvector matrix p1;

4.Calculate the first symplectic principal component coefficients S1, i.e.:

S1 ¼ pT
1X ¼ XTp1;

5.Get the first denoised data x1 from the reestimated matrix in the following:

X̂1 ¼ p1S1;

6.Let the first denoised data x1 into the first step, and repeat the above steps,
then obtain the second denoised data x3.

Figure 6 shows the effect of denoising for the vibration signals of rolling ele-
ment fault (REF), No.225 data in the CWRU database [11]. For the rolling element
fault at the drive end, the fault state can be seen clearly by the second reducing
noise (see Figure 6a). For the vibration signals at the fan end without faults, the
periodical characteristics in the normal state can be shown after the two reducing
noise (see Figure 6b).

Moreover, the noise reduction method based on the symplectic geometry has
been used to denoise several time series data of Lorenz chaotic system, duffing
chaotic system, Chua’s chaotic system with noise, as well as the sunspot number
[30]. The details can be found in literatures [17, 30].

Besides, the symplectic geometry method also further integrate other
approaches to better investigate the fault extraction and identification for rotating
systems, such as symplectic geometry mode decomposition [19] with power

Figure 5.
The analysis of error values identification accuracies of four states.
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spectral entropy [7] as well as Lagrange multiplier [20], symplectic transformation
based variational Bayesian learning [21].

4. Conclusions and future research

This chapter introduces the symplectic geometry theory in the research field of
the time series analysis in view of the complexity of a time series. Corresponding to
Euclidean geometry, the basic concepts and basic elements of mathematics of the
symplectic geometry are given, such as the symplectic space, symplectic transfor-
mation, Hamiltonian matrix, symplectic entropy (SymEn), symplectic principal

Figure 6.
The two times denoising analysis for the vibration signals of rolling element fault (REF) in No.225 data
from the CWRU database. (a) The abscissa is the number of data points; (b) the ordinate is the amplitude
(v) of the data.
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component analysis (SPCA), and so on. Based on the symplectic geometry theory,
the symplectic geometry spectrum analysis (SGSA), the symplectic entropy
(SymEn) method and the symplectic geometry mode decomposition (SGMD)
method are demonstrated to investigate the principal characteristics of a time series
in the symplectic space. Meanwhile, the corresponding matlab programs are given.
At last, in order to facilitate readers to learn, use and develop the symplectic
geometry method, some applications of symplectic geometry on time series analysis
are presented, such as the embedding dimension estimation, nonlinear testing, fault
diagnosis, as well as noise reduction.

The embedding dimension estimation is often the first step in nonlinear time
series analysis. Case 1 and 2 show the embedding dimension estimation of Lorenz
chaotic time series and the surface EMG signal based on symplectic geometry
spectrum. Moreover, the symplectic entropy method is applied to detect the
nonlinearity of vibration signals on rolling bearings and identify the faults of vibra-
tion signals on rolling bearings (see Case 3). Considering the noise pollution in the
practical engineering measurement, to dispose of the noise problem is very neces-
sary for the measured time series analysis. Case 4 uses the SPCA method based on
symplectic geometry to investigate the denoise of the vibration signals for rolling
element fault (REF) from the CWRU database.

Symplectic geometry provides a new research idea for data analysis in practice.
Although the symplectic geometry theory has been developed and applied on the
nonlinear time series analysis, the related research based on symplectic geometry
still needs to be further developed. Many future challenges in the research of
symplectic geometry theory and various applications on a number of diverse
aspects need to be developed furtherly. This chapter is only to provide a snapshot of
some current trends and future challenges in the research of symplectic geometry
theory on the time series analysis.
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