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Chapter

Valorization Technologies of 
Marine By-Products
Amar Kaanane and Hind Mkadem

Abstract

Generally, in different countries, strategies to improve food security have 
focused on increasing food production, which contributes to climate pollution 
and increases stress on scarce natural resources such as water and land. Due to the 
increase of world population (estimated to be 9 milliards in 2050), to the limited 
biological resources and to the increase of environmental pollution, there is a need 
in innovation in food industry. This can be done by improving food quality through 
new technologies for valorization of food and food by-products. According to Food 
and Agriculture Organization (FAO), one third of world food production is lost or 
wasted along the food supply chain. In the sector of fisheries and aquaculture, 35% 
of the world’s harvest is lost or wasted each year. Thus, the valorization of marine 
by-products should be an obligation to assure the world food security and to satisfy 
the growing demand for fishery products. The objectives of this study are: First to 
review the sources of by-products and their characteristics and second to describe 
and evaluate the different technologies that are or can be used to valorize marine 
by-products in production of marine oils and concentrated fatty acids.

Keywords: by-products, valorization, technologies, fish, marine oil, n-3 fatty acids

1. Introduction

According to the FAO, world fishery production has reached around 179 million 
tons in 2018, of which 156.4 million tons were intended for direct human consump-
tion. This is equivalent to an annual supply estimated at 20.5 kg per inhabitant. 
While world capture fisheries production stagnates at around 96.4 million tons, 
aquaculture is experiencing continuous growth in the supply of fish for human 
consumption, contributing with 46% of the total supply [1].

Unfortunately, despite the expanding demand for fishery and aquaculture prod-
ucts and their importance to the food security of many populations, a large part of 
the catch is wasted [2–4]. From the catch to the finished product, unused second-
ary products are generated. Today, some of these by-products are used but a great 
amount is wasted [5]. In 2016, Jackson & Newton estimated that 11.7 million tons 
of by-products produced in processing plants around the world are not collected for 
the production of marine ingredients [6].

In the past, marine by-products were often discarded as waste, used directly as 
feed for aquaculture, livestock, pets or used in silage and fertilizers [2, 7]. However, 
in past two decades, other uses of marine by-products have appeared based on 
their important characteristics and their contents of high value molecules. In some 
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cases, compounds from by-products are identified higher in value than the start-
ing material [8, 9]. Furthermore, with improved processing technologies, marine 
by-products can be now used differently and more efficiently.

Several reviews have been previously published discussing the possibilities of 
using marine by-products to produce high added value compounds [8, 10–15]. 
Different methods have allowed to produce useful molecules like proteins, gelatin, 
collagen, enzymes [7, 16, 17], biodiesel and biogas [18–24], natural pigments [25], 
minerals [26, 27], hydroxyapatite [28], chitin and chitosan [29, 30], creatine and 
taurine [31, 32].

The possible valorizations of marine by-products can be divided into three main 
categories: production of marine proteins (fishmeal, silage and hydrolysates), oils 
rich in polyunsaturated fatty acids (PUFAs) and preparation of high value com-
pounds such as vitamins, enzymes, minerals, taurine and creatine, hydroxyapatite, 
biodiesel and biogas for human and animal nutrition, industrial or pharmaceutical 
uses. In this review, we mainly present the sources of marine by-products, their 
characteristics, and the possible technologies that can be used to produce marine 
oils and concentrated n-3 fatty acids.

2. Marine by-products and their characteristics

There is no one definition of marine by-products. In the past, marine by-
products have been often considered as fish offal or waste [5, 7]. Actually, the term 
by-products designates all unused parts that can be recovered during production 
operations. They designate viscera, heads, trimmings, bones, cartilage, tails, 
skin, scales, blood, shells, carcasses, or damaged fish. Depending on the fishing 
period, reproductive elements such as eggs, milt or soft roe may be among these 
by-products [33].

In some works, the definition of by-products was reserved for feed. In others, 
the terms fish waste [34–37], waste streams [38], and rest raw material [5] have 
been used. In all cases, the biomass of by-products can be used to generate an added 
value unlike waste which has to be composted, burned or destroyed [5].

Generally, by-products can result from all aquatic food processing industries on-
shore or even during transformation on board. Marine by-products often constitute 
more than 50% of the body weight of processed fish [2, 4, 7, 39, 40]. However, this 
amount can reach up to 70% of the catch depending on catching species and area, 
postharvest conditions and industrial preparation processes [2, 7, 8, 11, 34, 41–44]. 
Processing operations like filleting, salting and smoking generate the most important 
amounts of by-products (50–75% of processed fish) [10], followed by the fish can-
ning industry (30–65% of processed fish) and finally, the processing of crustaceans 
and mollusks [45]. It’s estimated that the quantities of fish by-products generated by 
the processing industries will continue to increase due to the increasing demand for 
fishery products as source of valuable nutrients and a balanced diet for health [11, 45].

Knowledge of the properties of by-products allows their valorization into highly 
valuable products that could be higher in value than the fish fillets [8]. Analysis of 
the composition of by-products has revealed their richness in potentially valuable 
molecules such as proteins, essential fatty acids, oil, vitamins, minerals but also in 
bioactive compounds [4, 5, 34, 38, 46–48].

The by-products protein fraction is easily digestible and rich in essential amino 
acids. It can be used for production of peptides and amino acids, hydrolysates, gela-
tin and collagen, thermostable protein dispersions and protamine. While marine 
oils contain n-3 fatty acids [36, 37, 49–51], phospholipids, squalene, fat-soluble 
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vitamins, and cholesterols. Additionally, other valuable components can be 
extracted from marine by-products including nucleic acids, calcium, phosphorous, 
and hydroxyapatite [14, 28, 35] and other bioactive compounds such as astaxanthin 
[8], chitin and chitosan [25, 30], creatine and taurine [10, 15].

There are significant compositional differences between parts composing by-
products [38]. In cases where the separation between the different parts of marine 
by-products is possible, the valorization will be optimal. For example, prioritizing 
the extraction of protein derivatives from the skin of the fish or oil from viscera 
and/or heads. Fatty fish by-products present an important raw material for the fish 
oil extraction industries especially during the high fat season. Aidos and co-authors 
studied the possibility of oil extraction and quality of oil from salted by-products 
of the maatjes herring (heads, frames, skin, viscera, etc.) by demonstrating that 
salt does not prevent the production of an oil of good quality [47]. A recent study 
showed that sardine cooking condensate and cooked by-products have a high 
potential for the recovery of oil with yields that can reach 32.9% during the fatty 
season [52].

The greatest valorization of these by-products depends on their handling 
according to the hygiene rules applied for food production [33]. Special care must 
be taken to maintain the temperature low during storage and transport to avoid 
alteration and to preserve their nutritional qualities as marine by-products are 
highly sensitive to degradation (oxidation, microbial spoilage and enzymatic 
reactions) [53].

3. Main valorization technologies of marine by-products

3.1 Production of marine oils

Marine oils are rich in PUFAs, especially, eicosapentaenoic acid (EPA, 20: 5 n-3) 
and docosahexaenoic acid (DHA, 22: 6 n-3) [52, 54–59]. These n-3 fatty acids have 
valuable benefits and medicinal properties. Numerous articles have described the 
benefits of n-3 fatty acids in regard to blood pressure, prevention and treatment of 
coronary artery disease [60, 61], atherosclerosis and thrombosis [62–64], hyper-
triglycemia [64, 65], schizophrenia and memory [66], stress and depression [67] 
and foetal development [57, 68–71]. However, the most widely discussed benefits 
relate to cardiovascular health [61, 65, 72–79] and the prevention and treatment of 
inflammatory diseases [57, 80–82].

These fatty acids are of marine origin, found mainly in fatty fish and seafood. 
They are obtained by consumption of algae, fungi and phytoplankton [83]. 
However, certain human groups, such as premature babies and ill people, are 
unable to synthesize them. Even in people not belonging to these groups, the 
amount of EPA and DHA synthesized by the body may not be enough because the 
biosynthesis of these two acids becomes slow with age as well as with bad habits 
such as smoking, alcohol intake and poor fitness habits [11, 84]. In this case, a diet 
based on marine lipids (fish and its derivatives) provides the needed intake of EPA 
and DHA [85, 86].

Marine oils are mainly composed of mixtures of fatty acids esterified with 
glycerol in triacylglycerides [11]. They are the main natural source of n-3 PUFAs 
particularly, EPA and DHA [37, 50, 51]. Table 1 summarizes some variation inter-
vals of EPA and DHA in certain oils extracted from fatty marine by-products. The 
variation depends on type of by-products used, the species, the catching season and 
the processing technology used for extraction and purification.
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Species By-products EPA DHA Process Ref

Sardinella maderensis Liver
skin

4.7
20.5

4.8
4.2

Solvent extraction [87]

Sardinella aurita Liver
skin

1.8
10.4

1.4
2.5

Cephalopholis taeniops Liver
skin

1.6
3.1

1.1
6.9

Cod (Gadus morhua) Liver
Viscera

Trimming

8.6–11.4
10.6–12.6
14.2–16.5

11.8–16.2
20.0–25.6
30.4–33.8

Solvent extraction
[88]

[89]

Saithe (Pollachius virens) Liver
Viscera

Trimming

10.3–11.5
7.3–13.6
10.5–17.1

15.5–15.9
9.5–23.2
11.3–35.5

Haddock (Melanogrammus aeglefinus) Liver
Viscera

Trimming

13.1–14.8
11.7–12.0
14.6–16.6

15.2
23.2–23.7
33.3–35.7

Tusk (Brosme brosme) Liver
Viscera

Trimming

5.0
7.0
6.8

14.2
25.5
34.8

Sardina pilchardus cooked by-products 20.5–25.0 4.6–10.2 Batch hydraulic pressing [52]

Tuna (Thunnus obesus) Skins
Scales
Bones

4.2
4.8
5.1

23.6
23.5
21.6

CO2 supercritical extraction [90]

Skins
Scales
Bones

3.6
4.5
4.7

21.8
21.5
20.0

Hexane Soxhlet extraction

Sardina pilchardus Heads, gut content, fins 14.20 18.59 Wet reduction method [91]

Skipjack tuna Precooked heads 0.1 25.5 Wet reduction method [92]

Non precooked heads 0.1 18.8
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Species By-products EPA DHA Process Ref

Hake, Offcuts — — CO2 supercritical extraction/Cold 
extraction/ Wet reduction/enzymatic 

extraction

[50]

Orange roughy, Offcuts

Salmon Offcuts

Jumbo squid Livers

Sardinella lemuru Head
Intestine

liver

1.84
1.73
2.76

15.95
11.87
12.97

Solvent extraction [37]

Sardina pilchardus Heads 9.3 10.3 Enzymatic hydrolysis [93]

Salmon Frames without heads 9.3 11.3 Enzymatic hydrolysis [94]

Black scabbardfish (Aphanopus carbo) Heads, viscera, frames, skin, 
trimmings

2.7 6.2 Enzymatic hydrolysis [95]

Sardine (Sardina pilchardus) Heads, viscera, frames, 
trimmings)

— — Enzymatic hydrolysis [96]

Salmon Belly part 3.17 3.85 Pressing [97]

Belly part 4.45 3.62 CO2 supercritical extraction

Trimmed muscle 3.53 3.46

Frame bone 4.27 3.60

Skin 3.87 3.26

Belly part 3.12 3.23 n-
Hexane extraction

Trimmed muscle 3.22 3.98

Frame bone 3.85 4.32

Skin 2.79 3.09

Indian mackerel (Rastrelliger kanagurta) Skin 11.91–12.31 13.15–14.47 CO2 supercritical extraction [98]

12.22 13.86 Soxhlet extraction
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Species By-products EPA DHA Process Ref

Salmon head, skin, viscera, backbone, 
frames, cuts off

2.46 2.97 Cold pressing [99]

Salmon (Salmo salar) Heads 7.7 11.9 Enzymatic hydrolysis [100]

8.4 12.1 Solvent extraction

Rainbow trout (Oncorhynchus mykiss) Roe 11.3 19.0 Enzymatic hydrolysis [101]

11.5 24.0 Solvent extraction [88]

Rainbow Trout (Oncorhynchus mykiss) Bones with leftover fish meat, 
skin, scales, fins

6.49–6.89 14.76–5.72 Isoelectric solubilization/precipitation [102]

Nile perch (Lates niloticus) Viscera 3.0 9.0 Enzymatic hydrolysis [103]

Nile perch (Lates niloticus) Heads 3.4 7.7 Enzymatic hydrolysis [104]

Salmon (Salmo salar) Heads 6.1 8.4

Sardine Heads 10.95 13.01 CO2 supercritical extraction [105]

Table 1. 
EPA and DHA content (% of total fatty acid) in oil produced from marine by-products by different methods of extraction and purification.
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Marine oils are produced from whole fish mainly small pelagic species, but also 
from by-products generated by the transformation industry. In 2018, it was estimated 
that between 25 and 35% of the total volume of fishmeal and fish oil produced came 
from by-products [2]. In production of marine oils, different techniques can be 
employed such as wet reduction process [52, 91, 92], solvent extraction [37, 87, 89, 106], 
supercritical fluid extraction [50, 90, 97, 98, 107, 108], urea complexation [108], cold 
pressing [99] and enzymatic treatment [9, 93–96, 101, 104, 109–112].

3.1.1 Wet reduction process

The traditional process for the production of marine oils is coupled with the 
production process of fishmeal. It is based on a heat treatment of the raw mate-
rial which allows breaking the cell membrane to liberate the oil, pressing and 
separation [15, 106]. The principle of this process is based on the separation of the 
lipid phase from various fish compounds. The oil is separated by a decanter that 
separates insoluble compounds from the liquid phase, and a separator, separating 
oil and water. Another possibility is to use a tricanter, which separates solid, water 
phase and oil in one operation [8]. This process is mainly used in the treatment of 
fatty species containing high levels of fats such as anchovies, menhaden, sardines, 
Atlantic herring or their by-products [13].

On an industrial scale, the wet extraction technique is the most used method 
to obtain the oil and a substrate rich in proteins [106]. This process consists of 3 
main stages:

Cooking, where the biomass is heated in a continuous screw cooker. Oil and 
water are separated from the solid protein. In order to recover an oil of high quality, 
the temperature and pressure must be adapted to the type and size of used biomass. 
Cooking can be done by direct injection of steam or by indirect steam heating in 
order to denature cell proteins and facilitate oil extraction [113, 114].

Pressing, a screw press squeezes the oil and water from the cooked biomass to 
separate the liquid phase containing the oil and the solid material. Press juice con-
tains a considerable amount of suspended solids in the form of coagulated proteins, 
scales, edge fragments which have escaped the pressing. These particles are added to 
the fishmeal while the liquid phase undergoes centrifugation [115].

Centrifugation, which is now preferable compared to decantation, separates the 
oil from the aqueous phase. Draining and press water can be treated with live steam, 
allowing better separation of the oily phase on a horizontal centrifugal decanter 
[116]. In this step, water can be added also to wash the oil from any remaining impu-
rities. At the end of this operation, the oil and stick water are obtained. The stickwa-
ter is evaporated to a concentrate before to add it to the pressing cake [36, 47, 117].

Quality and stability of the oil produced depend on process conditions. On one 
hand, the quality of oil depends on temperature, pumping speed and centrifuga-
tion. The marine oil is more stable if high pumping speed is used [118]. On the 
other hand, Chantachum and co-authors studied the influence of precooking on the 
separation and quality of tuna heads oil [92]. The results obtained have showed that 
cooking at 85°C for 30 min, followed by pressing at 140 tons/m2 using a hydraulic 
press allows better release of the oily fractions which would be slowed down when 
cooked at a higher temperature due to the coagulation of proteins. The process 
conditions applied normally depend also on the type and quality of raw material 
used [117]. Comparison of quality of herring oils produced from three different 
types of by-products: heads, mixed by-products (heads, frames, skin, viscera, etc.), 
and headless byproducts showed that heads by-products and its oil presented the 
highest oxidation levels and the lowest R-tocopherol content. Heads contained the 
lowest PUFAs level and the highest amount of saturated fatty acids (SFAs) [55].
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Oil recovery yield varies during the year depending on fat content of by-prod-
ucts. Extraction of oil from cooked by-products of Sardina pilchardus (skin, meat, 
bones and cooking condensate), using wet hydraulic pressing at 85°C for 30 min 
and centrifugation, gave an important oil yield varying between 6.0% and 32.9% 
depending on the fishing period [52]. Another study reported that the percentage of 
oil extracted from cooked by-products of Sardinella gibbosa was 8.96% [119].

Wet reduction process is more suitable to extract oil from fatty fish producing 
oil with improved quality and high level of n-3 PUFAs [50]. However, the main 
disadvantage of this technique is the use of high temperature during cooking that 
degrades oxidative quality of the oil and causes a loss of EPA and DHA contents due 
to hydrolysis and oxidation reactions [12, 111, 120].

In addition to the conventional extraction process called also wet reduction or 
hydraulic pressing, the extraction of marine oils could be obtained with several 
methods, such as enzymatic hydrolysis, physical fractionation, low-temperature 
solvent fractionation, supercritical fluid extraction and pH adjustement method to 
the isoelectric point (Table 1).

3.1.2 Enzymatic hydrolysis

The principle of enzymatic hydrolysis is based on the action of specific 
proteases at low temperature on protein tissue without use of solvents and high 
temperature [13, 50]. Firstly, the by-products are hydrolyzed by the use of com-
mercial proteolytic enzymes and endogenous enzymes. These enzymes destroy 
the structure of cells walls. They broke down protein molecules to small peptides 
and amino acids which allows releasing the oil contained. After inactivation of the 
enzymes, the oil, hydrolysate and the insoluble residue are separated. The released 
oil can be centrifuged as previously described in the conventional process. For 
example, Batista and co-authors extracted oil from black scabbardfish (Aphanopus 
carbo) by-products using enzymatic hydrolysis with 1% Protamex [95]. The 
percentage of free oil released from the by-products has reached 36% of the total 
amount.

The enzymatic extraction is influenced by several operating factors, namely: 
nature of enzymes, temperature, pH, concentration of enzymes during hydrolysis, 
method and quality of grinding, and water content of the raw material [93, 110, 
111, 120]. Optimal conditions of hydrolysis of sardine heads by Protamex were 
studied (temperature, hydrolysis time and enzyme-substrate ratio) [93]. Results 
have showed that optimum conditions were found to be similar to recover lipids and 
phospholipids (29 min, 31°C with 2.6 g.kg-1 enzyme). The same study has showed 
that hydrolysis could increase the extraction of lipids and phospholipids by 27% 
and 50%, respectively compared to classical extraction.

Šližyte and co-authors studied the enzymatic hydrolysis of mixtures of cod 
(Gadus morhua) by-products using Flavoenzyme and Neutrase [110]. The results 
demonstrated that the most important factor influencing the extraction yield is the 
added water regardless the type of enzyme. On the other hand, using an enzymatic 
process based on a proteolytic extraction of oil from crude tuna heads followed by 
a urea complexation (−5°C, 20 h) has allowed to obtain a mixture of DHA and EPA 
with a purity of 85.02% and a liquid recovery yield of 25.10% [121].

The enzymatic hydrolysis of salmon frames with Protamex, was able to separate 
the salmon frames into an aqueous fraction rich in soluble nitrogen (fish protein 
hydrolysate), an insoluble nitrogen fraction, an emulsion fraction, salmon oil and a 
bone fraction rich in protein and minerals. This process allows to separate oil from 
protein fraction that can be valorized to recover peptides, essential amino acids or 
other molecules [94].
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Batista and co-authors studied the use of 0.5% of three commercial enzymes 
(Alcalase, Neutrase, and Protamex TM) and a water/fish ratio of 1:1 for production 
of protein hydrolysates and oil from raw and cooked sardine by-products from the 
canning industry [96]. Results have showed that the highest nitrogen solubilization 
and degree of hydrolysis were obtained with Alcalase and Protamex. The raw by-
products were more easily hydrolyzed by these enzymes than the cooked sardine. 
The highest percentage of oil released was obtained from raw sardine, and Alcalase 
and Protamex were the most efficient. In another study, enzymatic extraction of oil 
from ground salmon heads at 55°C using different commercial enzymes (Alcalase, 
Neutrase, and Flavourzyme) showed that the highest oil recovery (17.4%) was 
obtained after 2 h by using Alcalase [111]. Same results were obtained later by other 
researchers [100, 101].

The enzymatic process can be chosen to extract the oil for many reasons. First, 
it is conducted under mild conditions protecting PUFAs from oxidation. Second, 
this technique does not use chemical solvents in addition to short time of hydrolysis 
[120, 122]. However, this process focuses more on the yield and production of 
protein hydrolysates than on the production of high quality oil. This disadvantage is 
due to the presence of lipase in the by-products which still active during the hydro-
lysis therefore it affects the oil quality [96]. Furthermore, this effect is more impor-
tant if the hydrolysis is done in the presence of oxygen which increases significantly 
the free fatty acids in the oil, compared with the conventional method [8]. The main 
product from this process is the protein hydrolysates that are produced with higher 
yields compared with the traditional process [8].

3.1.3 Supercritical carbon dioxide

Extraction with supercritical carbon dioxide (SC-CO2) is a promising technique, 
as CO2 is nontoxic gas, nonflammable and clean solvent [123]. This technique can be 
carried out under mild operating conditions in an oxygen-free environment and at 
a moderate temperature, preventing degradation of PUFAs [12, 50, 90, 97, 98, 105]. 
CO2 used is a green solvent. At or above critical temperature and pressure (31.1°C, 
7.39 MPa), CO2 is in a liquid state while at ambient temperature and pressure, CO2 
becomes a gas and evaporates [120].

This technique allows the extraction of lipids of low polarity, avoids the 
extraction of impurities and reduces the heavy metal content [12, 50, 90]. Rubio-
Rodriguez and co-authors proposed to couple this technique with extraction-
fractionation process to remove free fatty acids and improve fish oil quality, 
alternatively to physical and chemical refining [50]. Same authors compared differ-
ent oil extraction methods from fish by-products, cold extraction or centrifuging, 
wet reduction, enzymatic extraction and supercritical fluid extraction. This study 
has showed that SC-CO2 is an interesting method, operating conditions are suitable 
to prevent lipid oxidation and to reduce the amount of certain pollutants such as 
some arsenic products [50].

Another research has also compared 3 different oil extraction methods (super-
critical carbon dioxide, n-hexane and traditional pressing) from Atlantic salmon 
by-products (belly part, trimmed muscle, frame bone and skin). The maximum oil 
yield was obtained by n-hexane extraction (total oil), followed by supercritical CO2 
extraction (highly selective technique extracting non-polar compounds) and the 
traditional pressing that has showed the lowest yield. Likewise, differences were 
noted in the oil quality parameters between the 3 studied techniques, the longer 
oxidative stability was obtained in the oil extracted by supercritical fluid CO2 [97].

This technique was also compared to soxhlet extraction using hexane to pro-
duce oil from skins, bones and scales of bigeye tuna (Thunnus obesus). This study 
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has confirmed improved quality parameters of oil obtained by supercritical CO2 
technique extraction (low heavy metal content in the oil) [90].

Using the ground skin of Indian mackerel (Rastrelliger kanagurta), various 
techniques of supercritical CO2 were studied by varying pressure (20-35 MPa) and 
temperature (45–75°C). This study has showed that oil yield increased with pressure 
and temperature and the highest yields were 24.7, 53.2, 52.8, and 52.3/100 g sample 
(dry basis) for the continuous, cosolvent, soaking, and pressure swing techniques, 
respectively, at 35 MPa and 75°C [98].

Supercritical fluid technology coupled with membrane, enzymatic or adsorption 
process have been shown to produce high-quality oil with best reduction of levels of 
contaminants compared to traditional refining of oils [124, 125].

Faced with all these advantages, the main drawback of this method is the high 
cost of the application on an industrial scale [12, 50, 124]. In this contest, the effect 
of supercritical CO2 techniques on CO2 consumption was studied. The results have 
showed that the total amount of CO2 consumption decreases significantly with 
temperature and increases with pressure in all extraction modes using supercritical 
CO2 method. A higher amount of CO2 was needed for the continuous technique, 
compared to the techniques of cosolvent, soaking and pressure swing regardless of 
levels of pressure and temperature. Consequently, the best extraction technique of 
the oil with least amount of CO2 consumption was achieved with pressure swing 
mode at 35 MPa and 75 C [98].

3.1.4 Solvent extraction

Solvent extraction methods are numerous. They have been studied by several 
researchers applied on marine by-products [37, 87, 89, 106]. Unfortunately, these 
techniques have many disadvantages. Large amount of hazardous solvent and 
important energy are required. Besides, marine oils are oxidized exhibiting a strong 
red-brown or brown color when extraction of oil is done at high temperature and 
longtime [90]. Generally, extraction by solvent is only carried out on a laboratory 
scale for analytical purposes [124]. Among the widely used techniques, Bligh and 
Dyer method is the most recommended for the total extraction of lipids from 
biological tissues [126]. Most of the published data on lipid content are related to 
this method [105, 127–129]. The effectiveness of the Bligh and Dyer method was 
evaluated compared to Soxhlet method. The results have showed that the Bligh and 
Dyer extraction method is more effective in extracting polar and non-polar lipids 
from fish compared to the Soxhlet technique [130].

3.1.5 Cold pressing extraction

Other innovative processes are coming to the market such as cold pressing 
extraction, a patented process originating from the olive oil production industry 
[13]. This technique allows protection of PUFAs content, producing high quality 
marine oil from different types of by-products [50, 99]. This process is well known 
to produce a lower-yield, but higher quality of oil [131].

Due to its high degree in PUFAs, marine oils are very sensitive to oxidation. The 
degree of oxidation increases in the presence of air (oxygen), light and heat during 
extraction and storage [8, 47]. This phenomenon mainly reduces the shelf life of 
marine oils [53]. All techniques using high-temperature or toxic solvents can induce 
degradation and loss of nutritional qualities of marine oil.

For this, looking for gentle extraction of marine lipids or using non-heat pro-
cesses might generate more stable lipid fractions [8]. It is also necessary to protect 
the oil by stopping or slowing down the oxidation process during the production 
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and during storage. Adding antioxidants to the oil is one of the most used methods 
[132]. Using a modified atmosphere packaging [133], or encapsulation, which keeps 
marine oil away from oxygen and light [133, 134] can be also used. In addition to 
protecting the oil, the use of microencapsulation technology provides consumers 
with supplements n-3 fatty acids ready to consume.

3.2 Production of n-3 fatty acids concentrates

Another valorization of marine oils (produced from whole fish or from fish 
by-products) is their use in production of concentrated n-3 fatty acids in the form 
of free fatty acids, methyl and ethyl esters or acylglycerols [135]. Several processes 
can be used, the most important are urea complexation [108, 121, 136], molecular 
distillation [137], supercritical fluid extraction [98, 108], winterization [138, 139], 
fractionation by chromatography [120] and by enzymatic processes [111, 112, 140]. 
These techniques have been reviewed by many authors [13, 124, 135] and recently 
by [12]. The main challenge in the choice of concentration technique at industrial 
level is to reach higher yield and purity at lower cost [13, 124, 138]. Table 2 outlines 
some methods to produce n-3 fatty acids concentrates with levels achieved of 
enrichment in EPA and DHA.

Concentration by winterization allows elimination of SFAs present in the oil, 
which crystallize at low temperatures [139]. Winterization is primarily designed for 
oils with a high content of SFAs. It allows elimination of stearic phase, by cooling 
the oil to 0–4°C. The degree of concentration of PUFAs by this process is evalu-
ated as low as these interesting fatty acids could be lost in the stearic fraction [13]. 
However, this method produces n-3 PUFAs concentrate in natural form [138].

An alternative solvent winterization and enzymatic interesterification was stud-
ied to concentrate n-3 fatty acids in cod liver oil [138]. The optimization parameters 
considered were separation method, solvent, oil concentration, time and tempera-
ture of winterization. Likewise, enzymes used were examined for interesterification 
efficiency under different system air condition, time and temperature. Authors pro-
posed the optimal conditions of the technique via winterization (0.1 g/mL oil/ace-
tone, 24 h, −80°C, precooled Büchner filtration) and interesterification (Lipozyme 
TL IM, N2 flow, 2.5 h, 40°C) improving n-3 fatty acid content to 43.20 mol%.

In another study, winterization was carried out on a bleached oil by a progressive 
cooling (30–5°C) in three phases. The effect of solvent type, solvent proportion, and 
agitation in the second cooling stage was studied. The results have demonstrated 
that using hexane has improved content of PUFA of 64.3% with 13% as a decrease 
percentage in level of SFAs compared to the fatty profile of bleached oil [139].

In addition to what is explained previously for CO2 supercritical fluid extraction, 
this technique could be used to concentrate fatty acids. It’s based on the use of CO2 
which, in the supercritical state, behaves like an extraction fluid and entrains fatty 
acids. In several passages, their concentrations therefore increase [13]. This method 
can achieve high concentration levels of n-3 PUFAs.

Supercritical carbon dioxide was used for simultaneous extraction and fraction-
ation of fish oil from Tuna by-products [143]. The obtained oil was divided into six 
fractions based on molecular weight and the chain length of triglycerides in terms 
of fatty acid constituents. The results showed that the three first separated fractions 
were rich in SFAs followed by monounsaturated fatty acids (MUFAs), then PUFAs. 
While the three last fractions contained high levels of MUFAs and PUFAs.

Melgosa and co-authors studied the use of supercritical CO2 as solvent in the 
lipase-catalyzed ethanolysis of fish oil. The effect of initial substrate ethanol/oil 
molar ratio (2–38), pressure (7.5–30 MPa), and temperature (323.15–353.15 K) on 
equilibrium conversion, reaction rate and oxidative status of the products were 
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Species Type of oil EPA DHA Process Ref

Tuna (Thunnus albacares) Tuna oil EPA + DHA (85.02%)
recovery 25.10%

Concentration by urea complexation [121]

Rainbow sardine (Dussumieria acuta) Oil from white muscle 15.39 17.45 Extraction [88] [108]

Concentrate oil — — CO2 Supercritical extraction

19.47 29.61 Urea complexation

17.74 25.51 Low-temperature crystallization with ethanol

Pacific sardines (Sardinops sagax) Crude oil from Skin-on fillets) 28.2 16.7 — [140]

Refined unhydrolyzed oil 26.86 13.62 Extraction and refining

Concentrate oil 33.74 29.94 Lipase-catalyzed hydrolysis

Atlantic salmon (Salmo salar) Crude Salmon by-products oil 3.71 9.02 — [112]

Salmon oil 40% hydrolysis 4.72 8.94 Lipolysis, filtration

Permeate 5.16 9.91

Esterified permeate 5.64 10.30 Enzymatic re-esterification

Salmon Oil from salmon heads 3.6 9.9 Enzymatic hydrolysis [111]

Permeate 5.6 11.6 Lipolysis

Permeate re-esterified 5.06 11.90 Re-esterification

Arctic cod Arctic cod liver oil 10.53 7.63 — [138]

Winterized oil 21.08 17.83 Alternate solvent winterization and enzymatic 
interesterification

Tuna (Thunnus thynnus) Tunafish oil 4.6 18.3 — [141]

Tunafish oil ethyl ester 5.3 23.7 Supercritical fluid chromatography

Menhaden Menhaden oil 13.5 12.6 — [136]

Menhaden oil after urea inclusion 29.4 41.8 Urea inclusion method

Sardine (Sardinops sagax caeruleus) Refined oil 14.51 12.55 — [142]

n-3 PUFAs concentrate 34.17 39.47 Chemical hydrolysis + urea complexation

n-3 PUFAs concentrate 46.26 40.32 Enzymatic hydrolysis + urea complexation

Table 2. 
Some methods of production of concentrated n-3 fatty acids in oil.
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tested. The results have revealed the importance role of employing CO2 in improv-
ing reaction kinetics by reduction of mass transfer limitations and prevention of n-3 
PUFAs oxidation due to displacement of oxygen [144].

The results of supercritical fluid extraction applied on Rainbow sardine oil have 
showed that the highest decrease in SFAs and MUFAs were obtained at 50–60°C 
and 350 bars [108]. This technique was evaluated selective even in the fractionation 
of fish oil with lower content of EPA (4.6%) and DHA (6.7%) under conditions of 
lower pressure (100 and 200 bar) [145]. In another study, conditions (pressure, 
temperature and supercritical CO2 flow rate) influencing concentration of fatty 
acids in fish oil by supercritical carbon dioxide were studied [146]. The results have 
demonstrated that fractionation by a supercritical fluid under optimal conditions: a 
pressure increase (at 5 kg/h flow rate) and flow rate increase (at 150 bar pressure), 
both determined a higher EPA + DHA concentration and decreased the EPA/DHA 
ratio. The same authors proposed to carry out a urea adduction during preparation 
to decrease the amount of SFAs in the starting oil before supercritical fractionation.

With regard to optimization conditions, numerous researches have worked on 
modeling, simulation, and optimization of the CO2 supercritical fractionation of 
EPA and DHA esters in fish oil [147, 148].

Optimal conditions of application by using adjuvant material and modifying CO2 
volumetric density and temperature were also investigated in other studies to get the 
highest fractionation yield of EPA and DHA [149]. Likewise, Antunes-Corrêa and 
co-authors and Davarnejad and co-authors studied the optimal operating conditions 
(pressure and temperature) to fractionate fish oil. In the first study [150], the best 
results based on oil solubility were obtained using 7.8 MPa and 301.15 K. While in 
the second research [151], the maximal solubility of the fish oil (0.921 g of oil/100 g 
of CO2) was obtained at optimum conditions of 40°C and 27.2 MPa. In both studies, 
EPA fractionation was recorded not possible and low, respectively.

The experience of CO2 supercritical fluid chromatography was transferred to be 
used in laboratory in a pilot plant to produce EPA enriched mixtures. Fractionation 
was done on a silica adsorption column using CO2 as supercritical solvent [152]. 
This allowed to achieve best purity of 93% in EPA ethyl ester fraction with a 24.6% 
yield. The study of the technical and economic feasibility to produce n-3 PUFAs 
ethyl ester concentrates from trans esterified fish oil using CO2 supercritical fluid 
extraction has revealed that process cost is around 550 U.S $/kg DHA and EPA ethyl 
ester concentrate [141].

Other investigations have studied the use of enzymatic hydrolysis in production 
of n-3 PUFAs concentrates. This technique involves the use of specific enzymes 
(lipases), able to catalyze reactions such hydrolysis, ethanolysis or transesterifica-
tion of triglycerides [124].

Concentration of Pacific sardines (Sardinops sagax) oil was carried out using 
lipase-catalyzed hydrolysis [140]. The results of this study have showed that 
hydrolysis with 250 U from Candida rugosa lipase has increased EPA concentration 
to a relatively constant level of 33.74% after 1.5 h. DHA levels were also significantly 
increased from 13.62% to 29.94% with 500 U after 9 h. This technique uses mild 
conditions (neutral pH and low temperatures), very important to preserve EPA and 
DHA from oxidation [140, 153].

Salmon oil produced from by-products of this species by controlled enzymatic 
procedure with Neutrase has followed a selective enzymatic hydrolysis under mild 
conditions, using Novozyme SP398 to enrich the n-3 PUFAs. The process used con-
sist of a lipolysis, filtration in flat membrane device and enzymatic re-esterification 
with glycerol and Immobilized 1,3-specific lipase IM60 (Lipozym IM). This method 
induced a significant increase in the amount of PUFAs from 39.20 mol% of total 
fatty acids in the crude oil to 43.29 mol% in the re-esterified permeate [112].
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The proteolytic extraction of oil from salmon heads using three different types 
of enzymes (Alcalase, Neutrase and flavourzyme) and the lipolysis of this oil to 
concentrate PUFAs were carried out. Lipolysis was done with Novozym SP398 to 
obtain a mixture of free fatty acids and glycerol (24 hours 45% hydrolysis). The 
mixture was then filtered. This process has allowed an increase of the PUFAs con-
tent from 41.6% in the crude oil to 46.5% in the permeate. Likewise, DHA and EPA 
percentages have increased from 9.9% to 11.6%, and from 3.6 to 5.6%, respectively 
[111]. The same authors used a re-esterification in the permeate with Lipozyme 
IM which permitted obtention of 5.06% and 11.90% in EPA and DHA contents, 
accordingly [111]. Moreover, other authors proposed combination of enzymatic 
or chemical hydrolysis with urea complexation to produce high concentrates of 
n-3 PUFAs. The enzymatic hydrolysis followed with urea complexation of refined 
sardine oil has increased the level of EPA and DHA from 14.51% to 46.26%, and 
from 12.55% to 40.32%, respectively [142].

Another technique, short path distillation was tested to purify Alaskan Walleye 
Pollock (Gadus chalcogrammus) and New Zealand Hoki (Macruronus novaeze-
landiae) liver oils [154]. Certainly, this process has reduced free fatty acids and lipid 
oxidation parameters, which is appreciated to produce purified oils. Consequently, 
the conduct of this operation at high temperatures may cause degradation of PUFAs 
or development of new undesirable compounds. The short path distillation was 
coupled to a previous enzymatic glycerolysis of sardine oil with glycerol [155]. This 
work showed that short path distillation is able to concentrate n-3 PUFAs in mono-
acylglycerols at suitable evaporator temperature (125°C) Same technique aided by a 
working fluid was evaluated efficient in removal of persistent organic pollutants in 
marine oils (PCDD/PCDF, dl-PCB and ndl-PCB) [156].

When comparing the effect of using urea complexation on the concentration 
yield compared with dry fractionation and low temperature solvent crystalliza-
tion, results revealed that n-3 fatty acids were enriched in liquid fractions of all 
methods except by dry fractionation. The highest enrichment was achieved with 
the urea complexation method (83.00%) [157]. In the same context of valorization 
of marine by-products, application of urea crystallization on tuna oil recovered 
from liquid waste by-product from a tuna canning process allowed an increase in 
the concentration of n-3 PUFAs [158]. In another study conducted on concentration 
of fatty acids in sardine oil, the highest PUFA concentrations in low-temperature 
crystallization with ethanol were attained at −5°C, with EPA and DHA purities 
equivalent to 17.74 and 25.51%, respectively [108].

These authors also compared three different concentration techniques, super-
critical fluid extraction (T = 40, 50, 60°C and 150, 250, 350 bar), Urea complex-
ation (T = 1, −5, −10°C) and low-temperature crystallization with ethanol solvent 
(T = 10, 0, −5°C). The optimal conditions for each technique were determined. 
Nevertheless, the highest reduction of SFA and MUFA, the best increase in PUFA 
and the highest n-3 yield (47.53%), were obtained at −10°C in urea complexation 
method [108].

There are still several techniques used for the concentration of n-3 PUFAs, 
among which there is the use of polymeric membrane separation [159]. Optimal 
conditions of this method were found to be at the temperature of 36.19°C, pressure 
of 4.82 bar and stirring rate of 43.01 rpm with a desirability value of 0.99. With 
these conditions, a concentration of n-3 PUFAs of 34.98% was achieved.

Synthesized poly-vinylidene fluoride (PVDF) asymmetric membranes are 
also tested in concentration of n-3 PUFAs [160]. Conditions of preparation of 
PVDF membranes influences significantly results. In this work, PVDF membrane 
prepared at a coagulation bath temperature of 0°C resulted in the best n-3 PUFAs 
enrichment (40.4%) at 5 bar and 30°C.
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4. Conclusion

Marine by-products (viscera, heads, trimmings, bones, cartilage, tails, skin, 
scales, blood, shells, carcasses, damaged fish, eggs, milt or soft roe), generated by 
marine transformation industries, constitute a good opportunity of valorization 
into highly valuable products. Their characterization determines the choice of the 
most suitable and efficient valorization method among all possibilities available, 
production of marine proteins (fishmeal, silage and hydrolysates), oils rich in 
polyunsaturated fatty acids (PUFAs) and preparation of high value compounds 
such as vitamins, enzymes, minerals, gelatin, collagen, chitin and chitosan, taurine 
and creatine, hydroxyapatite, natural pigments, biodiesel and biogas.

In this context, several studies have been carried out to explore possible tech-
nologies that can be used in the valorization of the marine by-products into marine 
oils and concentrated fatty acids. In addition to the conventional extraction process 
called also wet reduction process or hydraulic pressing, solvent extraction, super-
critical fluid extraction, urea complexation, cold pressing or enzymatic hydrolysis 
processes could be used to transform these by-products into marine oils highly rich 
in PUFAs very demanded by food, nutraceutical and pharmaceutical industries.

For more advanced enhancement, the concentration of fatty acids in marine 
oils is also widely practiced. Several techniques can be used such as winterization, 
urea complexation, short path distillation, supercritical fluid extraction, low 
temperature solvent crystallization, fractionation by chromatography or by enzy-
matic processes. Combined methods were also tested like solvent winterization and 
enzymatic interesterification, urea adduction before a supercritical fractionation. 
Many studies have focused on comparison between these techniques to provide 
differences, advantages, disadvantages, or even optimal conditions of operating.

The main challenge in the choice of extraction and concentration techniques at 
industrial level is to reach higher yield, purity, quality, stability at lower cost and 
low unwanted environmental effects.
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