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Chapter

Micro Nano Manufacturing 
Methods for Chemical, Gas and 
Bio Sensors, Water Purification 
and Energy Technologies
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Abstract

This chapter reports on the various methods of fabricating and manufacturing 
micro and nano sensor, membrane and energy devices. Firstly, the characteristic 
often sought after by scientists and engineers for effective and efficient perfor-
mance of these technologies were thoroughly discussed in details together with the 
characterization techniques for evaluating them. Several state-of-the-art fabricat-
ing techniques for sensor devices, water and medical based-membranes, solar cells 
and batteries were also discussed.

Keywords: micro-nano device, fabrication, sensors, manufacturing, membrane, 
battery, solar cell

1. Introduction

1.1 Nanoscience and nanotechnology

Nanoscience can be described as the study of the phenomena and manipulation 
of materials at atomic, molecular and macromolecular scales, where properties differ 
specifically from those at a larger scale (macro scale). The macroscopic objects we 
see around us in our day-to-day activities are the products made from bulk materials. 
These objects possess physical properties that are in some way different from nano 
and the intermediate scale called micron-sized material (such as grains of sand or 
dust produced during volcano eruption). However, bulk and nanomaterial may share 
the same constituent but the dimension or length scale usually distinguishes between 
the two groups [1, 2]. Nanometer scale is conventionally defined as 1 to 100 nm which 
simply means one billionth of a metre (10−9 m). The lowest limit of nanometer size 
range is normally set to 1 nm which is very close to the length of a single atom since 
the atomic radius is just by a little femtometre less than 1 nm. However, nanoscience is 
not just the science of small-scale material but also the science in which materials with 
small dimension (in other words shape) show new physical phenomena. For instance, 
the principles of classical physics such as energy, force, momentum, space, time, 
and so on, that govern the behavior of macroscopic and microscopic systems (bulk 
material) are no longer applicable to nanoscale materials [3–4]. This Nanoscience 
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is not new per se, it is a name that was given to a number of fields of research that 
share common principles, and hence it is referred to as an interdisciplinary  science. 
Nanotechnology integrates a wide range of sciences which includes; Physics, 
Chemistry, Biology, Microbiology, Engineering, Surface Science, and Biotechnology, 
and apply them to practical devices [5]. There are two major approaches normally 
employ in fabrication techniques namely; top-down approach (Larger to smaller: 
a materials perspective) and bottom-up approach (Simple to complex: a molecular 
perspective). Top-down approach involves creating Nano-scale materials by physi-
cally or chemically breaking down larger materials. These include statistical mechani-
cal effects, as well as quantum mechanical effects. Solid-state techniques can also be 
used to create devices known as nanoelectromechanical systems or NEMS, which are 
related to micromechanical systems or MEMS [6] while bottom-up approach simply 
involves simple to complex: i.e. a molecular perspective technique. These techniques 
are used today to manufacture a wide variety of useful chemicals such as pharma-
ceuticals or commercial polymers. Molecular nanotechnology, sometimes called 
molecular manufacturing, describes engineered nanosystems (nanoscale machines) 
operating on the molecular scale. Molecular nanotechnology is especially associated 
with the molecular assembler, a machine that can produce a desired structure or 
device atom-by-atom using the principles of mechanosynthesis [7].

2.  Significance of micro and nano fabrication in novel devices and 
technologies

Micro and nano fabrication is an essential process in the manufacturing of novel 
devices and technologies. Many sciences, technology and engineering oriented 
products are developed using the concept of micro and nano fabrication. From radio 
transistors, integrated circuits, personal computers, to micromechanical systems 
(MEMS), transducers, sensors, batteries and super capacitors, solar cells, water 
treatment membranes and filters and other novel devices, micro and nano tech-
niques have played significant and important role in realizing reliable technology. 
However, huge credit relating to the success of these technologies must be ascribed 
to the materials development and analyses techniques such as the analytical, macro-
scopic, microscopy and spectroscopy ones.

For instance, before one can realize product of gas sensor, chemical sensor and 
biosensor device, especially in the case of metal oxide semiconductors, carbon 
materials and polymers, critical studies and analyses of the materials properties is 
required to qualify the performance of the sensing element. The first set of inves-
tigation which must be performed on the materials intended to build these devices 
are crystal structure and microstructures, morphological and surface roughness 
studies, defects studies, thermal stability and adsorption property [8–10]. Hence, 
the material must be thoroughly characterized with X-ray diffraction (XRD) and 
high-resolution transmission electron microscopy (HR-TEM) methods to study its 
crystal structure. X-ray diffraction spectroscopy which is commonly used technique 
for characterization of crystalline materials provides information about elemental 
analyses such as structures, phases and preferred crystal orientations. Physical mea-
surements like average particle size of material, homogeneous and inhomogeneous 
strain and crystal defect could also be estimated from the data collected using XRD 
technique [8–11]. The HRTEM approach has been severally employed in sensors 
material research to unveil material’s crystallographic structures at an atomic scale 
[8–9]. The scanning electron microscope (SEM), scanning tunneling microscope 
(STM) and atomic force microscope (AFM) are important for all surface structure 
studies such as morphology, particles distribution, nanoscale topography and 
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surface roughness [9–13]. These are also essential properties needed to be analyzed 
for chemical, gas and bio sensors devices fabrication. Other properties necessary 
to be investigated for these types of application include quantitative analysis of the 
material’s elemental composition and chemical state. This study is often achieved 
using X-ray photoelectron spectroscopy (XPS) [9–11]. The adsorption ability 
and properties of the sensors materials are usually evaluated using the popular 
Brunauer–Emmett–Teller (BET) technique which relies on the physical adsorption 
(physisorption) of gas molecules on the surface of solid-state materials. With this 
technique, information about the specific surface area, microporous, nanoporous 
and mesoporous of a sensor’s material can be acquired [9, 14–16].

In the same way, materials for fabricating water and medical membranes and 
energy devices such as solar cell, lithium and sodium ion batteries also required crit-
ical studies with the above materials characterization techniques before the manu-
facturing process could be initialized. The properties which Materials Scientist and 
Engineers are usually sough for when building in solar cell architecture are crystal 
and microstructures of all the semiconductors and polymers involved. These tech-
niques are necessary to unveiled the effect of the grain’s boundaries on the charge 
transfer of the cell, especially when device is of a p-n junction or multi-junction 
type [17]. This often help materials engineers in proper understanding of interfacial 
properties of the cell [18]. Studies of morphology, surface roughness and topology 
is also of a great importance when evaluating the solar cell materials for prototyping 
and manufacturing. This is needed to ensure a homogeneous film surface in a bid to 
enhance the transport of the charges for an improve energy conversion efficiency 
(ECE) [19]. Thermal stability studies with Thermogravimetric analysis (TGA) are 
another important method adopted by materials scientist to study the degradation 
of solar cell device [8, 20]. Lithium and sodium ion batteries are not an exception 
when it comes to their materials development and analyses. TGA techniques are 
often used to study the thermal stability, XRD and HRTEM for crystal, micro 
structures, particles size analysis and how monodisperse the particle are before 
fabricating the device. The SEM, STM and AFM techniques are being employed for 
particles morphology, surface roughness and topography [21].

XPS is another important technique for qualifying materials for lithium and 
sodium ion battery application. XPS is suitable to give important information about 
the interaction of membrane-based materials with electrolyte materials and further 
assist to develop a definite insight of interfacial structure and as well performance 
of the battery. From one of the previous published studies XPS was employed and 
useful information of the membrane interaction with vanadium electrolytes was 
revealed which led to understanding of interfacial structure and battery perfor-
mance [22]. Nanosized fibers have great advantages owing to their high specific sur-
face area to volume ratio, electrospun nanofibers have find their useful applications 
in the field of clean energy (solar cells, fuel cells and batteries), electronics, health 
(biomedical scaffolds, artificial organs), and environment (filter membranes) [23].

3.  Advance manufacturing methods for chemical, gas and bio sensor 
applications

Prototyping and manufacturing sensor devices (Gas, Chemical or Bio sensor) 
required that the sensors materials be deposited or coated on an electrode for easy 
contact and connection to the device electronic circuitry or source measuring unit 
of the gas sensing and test station. Interdigitated electrode (IDE) type have been 
widely used for sensors laboratory research, prototyping and manufacturing of sen-
sors and related products. This is a cost-effective method which often made from an 
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aluminum oxide (Al2O3) substrate whose front-side surface is coated with platinum 
(Pt) metal in comb-like structures for sensors electrical signal measurement and the 
rear-side coated with nickel (Ni) metal as Microheater [9, 24]. Figure 1 showed a 
schematic layout of KSGA565 KENOSTATIC gas detection station where μ-nano IDE 
was used as the sensor’s electrode. The layout consists of an enclosed chamber called 
sensing chamber containing IDE with deposited sensor material. The front-side of 
the IDE is connected to the Keithley pico-meter source meter and the rear-side to the 
power supply.

During fabrication, sensor materials are usually deposited onto the IDE using 
micro-nano deposition technologies such as chemical vapor deposition (CVD), 
pulse laser deposition (PLD), physical vapor deposition (PVD) and magnetron 
sputtering technique [25–27]. These technologies are physical methods which have 
been reported to offer thin and homogenous film surface with excellent gas, chemi-
cal and bio molecule sensing properties. These technologies have also been used 
severally to deposit non-IDE pattern like glass, silicon wafer etc. for sensors and 
related device fabrication [28].

The printed patterned substrate and Lab-on-a-chips are another micro-nano 
contacting and printing technology commonly used when manufacturing Gas, 
Chemical or Bio sensor devices. These techniques are expensive and regarded as 
state of the art method which required specialized equipment like photolithog-
raphy (PL), plasma enhanced chemical vapor deposition (PECVD) and electron 
beam lithography (EBL). The methods offer patterned deposition of nanostruc-
tures such as nanowires, nano-rods, nano-tubes etc., high precision contacting, 
highly aligned printing and deposition onto flexible substrates as advantages over 
others [25–30].

Figure 1. 
Schematic diagram of KSGA565 KENOSISTEC gas sensing station illustrating how the μ-nano IDE sensor 
can be tested. The electronic circuit displays of the gas sensor’s element showed RL, which is the load resistor 
connected in series with the sensor’s element (RL = (V-VS)/I). V, is the voltage on the RL, VS = VC – IRL, 
represent the sensor’s signal voltage. VC is a constant voltage applied on the RL and sensor’s element and finally, 
RS is the sensor’s resistance (RS = VS/I). Adapted from Ref. [24].
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A typical process involving the fabrication of TiO2 nanowires-based gas sensor 
is shown in Figure 2. The materials used for the fabrication are; p-type silicon wafer 
(Figure 2(a) and interdigitated Cr/Au electrodes which was initially fabricated 
using PL process on an oxidized Si substrate (Figure 2(b) [30]. The Cr and Au thin 
films were also blank deposited on the rear-side of the silicon wafer in an interdigi-
tated fashion to make heating element (Microheater) (Figure 2(c)). Thereafter, 
EBL approach was used to pattern the chip surface and to produce photoresist on 
the film before depositing the p-type TiO2 on the top of the chip with aid of sput-
ter machine. The photoresist was later lift-off to form the TiO2 nanowire array as 
shown in Figure 2(d). Figure 2(e) showed the dimensions of each section of the 
device and Figure 2(f ) the optical image of the entire device.

4.  Advance manufacturing methods for water purification, lithium ion 
batteries and medical applications

Electrospinning is one of the techniques suitable for the fabrication of materials 
through innovative technology. Membrane-based technologies through electros-
pinning have been employing for the fabrication of both nano- and micro-based 
materials which finds useful applications in various fields such as in the water 
purification, lithium ion batteries, medical applications etc.

Figure 2. 
Fabrication process of electron beam patterned TiO2 based gas sensor; (a) oxidation process of Si wafer,  
(b) Cr/Au contact fabrication, (c) microheater fabrication, (d) photoresist deposition, lift-off and TiO2 
nanowire arry deposition, (e) showed the dimensions of each section of the device and (f) the optical image of 
the entire device. Adapted from Ref. [30].
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4.1 Applications of electrospun fibers in water purification

Electrospinning is a fabrication technique that involves application of a high electric 
field to generate nanofibers from a charged polymer solution or melt. it is a useful 
method for the fabrication of complex structures consisting on continuous fibers. 
The morphology of electrospun fibers can be controlled by adjusting experimental 
parameters, such as precursor solution concentration, type of spinneret, voltage and 
the spinneret-collector distance. Using this technique affords us numerous benefits 
such non-complicated and inexpensive equipment, easy to modify, ability to carefully 
monitor the morphology of materials, and as well almost all polymers with even high 
molecular are applicable in the synthesis [23]. The chemical properties of electrospun 
fibers are mainly influenced by two factors: hydrophilicity and chemical composi-
tion of the fibers. The characterization of the mechanical features is critical for the 
electrospun nanofibers. It can be stated that the electrospun nanofiber membranes are 
appropriate for the pressure driven membrane procedures where the target product 
is mainly the permeate phase, for example, water/wastewater treatments [31]. Water 
purification is mostly defined by filtration through size exclusion or adsorption. 
The water purification process is classified according to the average pore size of the 
materials and applications include microfiltration (MF) (0.1-10 μm), ultrafiltration 
(UF) (0.001–0.1 μm), nanofiltration (NF) (0.001–0.01 μm), reverse osmosis (RO) 
(0.0001–0.001 μm), and forward osmosis (FO) (0.0001–0.001 μm) [32]. In a study 
conducted by Mahadevappa Y et.al, where electrospinning was used to fabricate 
nanofibrous membranes for MF applications using polyvinyl alcohol. Owing to its 
cost-effectiveness, stability (thermally and chemically) and non-degradability, poly 
(vinyl alcohol) was selected as a precursor in the fabrication process [33]. However, the 
poly (vinyl alcohol) nanofiber membranes, produced from electrospinning process, 
must be treated with cross-linking agents for preparing a 3-D waterproof system before 
being utilized as water filters [31]. Liu’s team has introduced a nanofiber MF membrane 
that required doping with copper oxide (CuO) nanosheets (Figure 3). The fabricated 
membrane has a separation efficiency of >99.89% for polystyrene (PS) microspheres 
with a diameter > 300 nm in water [34]. The introduction of such functional materials 
can not only achieve the corresponding modification purpose, but also enhance static 
electricity to improve the strength of individual nanofibers. Stable high porosity, good 
interconnectivity, and ultra-thin membrane thickness are key major factors responsible 
for its strong permeate flux and excellent bacteria rejection efficiency [35].

Figure 3. 
Morphology of PVDF/CuO nanosheet nanofiber MF membrane. Adapted from Ref. [34].
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4.2 Applications of electrospun fibers in lithium ion batteries

Electrospun carbon nanofibers exhibit favorable properties, such as nanometer-
sized diameters, high specific surface areas, and web morphologies, making them 
highly suitable for an anode material. Electrospinning has been identified as the 
most promising route for designing novel anode materials and structures, owing 
to its simple process setup. The electrospinning technique is suitable for the imple-
mentation of existing anode material research based on the process being able to 
mass-produce anodes [36]. In a study conducted by Peng et al. and co-workers, the 
porous carbon nanofibers were synthesized using a PAN/polymethyl methacrylate 
(PMMA) precursor solution with the aid of electrospinning technique. PMMA is 
immiscible with PAN, during the course of preparation macro phase separation 
was observed and was then thermally treated at high reaction temperature-800°C 
which caused elimination of PMMA while creating pores on the surface of the fiber. 
In order to investigate the fiber morphology and the electrochemical performance 
of carbon nanofibers, the author varied the concentration effect of PMMA in the 
precursor solution. The variation of PMMA showed that its addition significantly 
improves the surface area and pore volume of the prepared fibers.

The morphologies of the electrospun fibers after carbonization are shown in 
Figure 4. In Figure 4(a), the carbon nanofibers prepared using neat PAN exhibited 
long and bead-free morphology. By contrast, the PAN/PMMA-derived carbon nanofi-
bers were uneven and interconnected, particularly for 5:5 PAN/PMMA-derived carbon 
nanofibers (Figure 4(c, e)). The interconnected structure was attributed to the pres-
ence of PMMA. PMMA is a thermally liable polymer, which melts during pyrolysis. 
Figure 4 also provides the inner structure of the nanofibers. As observed in  
Figure 4(b), neat PAN-derived carbon nanofibers were internally nonporous. The 
introduction of PMMA in precursor solution facilitated the development of pores and 
channels inside the carbon nanofibers (Figure 4(d, f)). The availability of the fiber 
morphology consequently resulted to highly efficient discharge capacity compared to 
counterpart neat PAN-prepared carbon nanofibers. Therefore, the 5:5 PAN/PMMA-
derived carbon nanofibers exhibited a discharge capacity of 446 mAh/g at a current 
density of 150 mA/g. They exhibited a discharge capacity of 354 mAh/g after 100 cycles 
at a current density of 200 mA/g equivalent to 67% retention, demonstrating the favor-
able cycle stability. The significance of their study was based on the manipulation of 
morphology of electrospun carbon nanofibers for the use as anode materials for lithium 
ion batteries application to secure good performance. Therefore, it can be said that the 
superior electrochemical performance of the PAN/PMMA-derived carbon nanofibers 
was mainly attributed to the prevalent mesopore volume and the high-specific surface 
area which earned them desired contact between the fibers and electrolyte and conse-
quently improved the diffusion of electrolyte ions into the material [37].

4.3 Electrospun fibers in biomedical applications

Electrospun nanofibers are materials of multi-applications, hence have been 
widely studied in the field of biomedical and tissue engineering owing to their 
good characteristic properties and suitability to be incorporated into various 
morphologies to stir the desired influence in them, such as nonwoven form, aligned 
nanofibers, core–shell structure, and hybrid nanocomposites. The interesting 
characteristic properties of electrospun nanofibers- loose structure, high porosity, 
and superb flexibility possess perfect features to mimic the extracellular matrix 
(ECM) for cells to grow and, therefore, they have been employed in tissue engineer-
ing applications [38]. In a study, a composite nanofiber scaffold made of poly (vinyl 
alcohol)–poly (vinyl acetate) (PVA–PVAc) was manufactured and subsequently 
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loaded with simvastatin superficial layer to obtain an efficient osteogenesis pro-
cess by the continuous release of the drug [39]. The use of PVA was attributed to 
its environmentally benign, elasticity, flexibility, proper mechanical properties, 
nontoxicity, swelling ability, and biodegradability. PVA is not stable in aqueous 
state, this instability however creates limitation in its use in drug delivery processes. 
In order to overcome instability issue, PVA was then crosslinked with biocompatible 
and biodegradable PVAc that possess hydrolysable groups. Afterward a simvastatin 
drug was loaded into the blended solution of PVA–PVAc in order to promote the 
efficiency of bone regeneration. The obtained results revealed good bioactivity, 
inducing the precipitation of bone-like apatite minerals on its surface and suc-
cessfully simulating physiological conditions for cell growth [39]. Electrospun 
nanofibrous dressings have high surface-to-volume ratio, allow gas permeation, 
help to regulate wound moisture, enhance tissue regeneration, improve removal of 
exudates, and have high porosity, which qualifies them to be used in wound heal-
ing treatment. Previous studies have shown low inflammatory reaction and fast 
re-epithelization with the use of nanofiber-based wound dressing [38].

Bredigite polymer electrospun nanofibers have been widely investigated to 
access their suitability in wound-dressing processes. It has been reported as a 

Figure 4. 
SEM micrographs of electrospun fibers carbonized at 800°C. a and b PAN/PMMA = 10:0; c and d  
PAN/PMMA = 7:3; and e and f PAN/PMMA = 5:5. Adapted from Ref. [37].
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scaffold however, results showed that while the bioactivity of the composite nanofi-
bers was improved, and the low dispersibility and high agglomeration of nanopar-
ticles decrease the efficiency of prepared electrospun nanofibers [40]. In another 
attempt, bredigite (BR) nanoparticles were modified by an organosilane coupling 
agent in order to increase its dispersibility [40]. The SEM results reveal that the 
modified BR nanoparticles are widely dispersed in the body of the nanofibers 
without any agglomeration (Figure 5). Moreover, the mechanical and biodegrada-
tion rate of the scaffolds dramatically improved after BR modification.

5. Advance manufacturing methods for energy applications

The fabrication of energy device material such as thin film photoelectrode for 
splitting water into H2 and O2 during photoelectrochemical process and the devel-
opment of photovoltaic cells, for solar energy conversion is tasking and difficult, 
requiring a special operational technique. For efficient solar energy capturing and 
conversion in photovoltaic cells, effective separation electrons and holes in photo-
electrode required [41, 42]. This depend on the deposited semiconducting material 
ultrathin layer, evenly coated and tightly connected to conductive layer. Atomic 
layer deposition (ALD) as a vapor phase technique is capable of producing thin 
films of different materials. ALD is applicable in the fabrication of uniform and 
ratio structures with thickness control to Angstrom level, and tuneable film compo-
sition [43]. Due to all this advantages, ALD has emerged as a powerful tool for many 

Figure 5. 
Schematic illustration and SEM images of PHBV nanofibers containing 15% of (a) bredigite (BR) and  
(b) T-BR nanoparticles. Adapted from [40].
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energy research material fabrications. ALD method has been a useful tool for the 
deposition of ultrathin-layered semiconductors on conductive substrate.

ALD process generally consists of sequential alternating pulses of gaseous chemi-
cal precursors that react with the substrate, these individual gas-surface reactions 
called ‘half-reactions’ and appropriately make up only part of the materials synthesis. 
During each half-reaction, the precursor is pulsed into a compartment under vacuum 
(< 1 Torr) over a selected extent of time to allow the precursor to fully react with 
the substrate surface through a self-limiting process that leaves no more than one 
monolayer at the surface [44, 45]. Then, the chamber is purged with an inert carrier 
gas (typically N2 or Ar) to remove any unreacted precursor or reaction by-products. 

Figure 6. 
Atomic layer deposition (ALD) reactor. Adapted from Ref. [43].

Figure 7. 
Schematic illustration of ALD process schematic of ALD process. (a) Substrate surface has natural 
functionalization or is treated to functionalize the surface. (b) Precursor a is pulsed and reacts with surface. 
(c) Excess precursor and reaction by-products are purged with inert carrier gas. (d) Precursor B is pulsed and 
reacts with surface. (e) Excess precursor and reaction by-products are purged with inert carrier gas. (f) Steps 
2–5 are repeated until the desired material thickness is achieved. Adapted from Ref. [45].
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This is then followed by the counter-reactant precursor pulse and purge, creating up 
to one layer of the desired material. This process is then cycled until the appropriate 
film thickness is achieved (Figures 6 and 7).

6. Conclusion

The interdigitated electrode is reported as cost effective method for prototyping 
gas, chemical and bio sensor and the method is widely used for laboratory research 
purpose. State of the art techniques such high tech semiconductor deposition 
instruments, photolithography and electron beam lithography are used for com-
mercial sensors built with printed electronics and Lab-on-a chip. Electrospinning 
method is highly important in the fabrication of micro and nano porous fibers for 
the manufacturing of membranes and battery devices. This method has also been 
identified for designing anode materials suitable for lithium ion battery fabrication. 
Atomic layer deposition is useful for producing ultrathin layer-layered semiconduc-
tors with inherent properties necessary for efficient energy capturing. This deposi-
tion technique is very useful in the manufacturing of photovoltaic cells and related 
devices for effective separation electrons and holes in photo-electrode.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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