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Chapter

The Periodic Restricted EXPAR(1)
Model
Mouna Merzougui

Abstract

In this chapter, we discuss the nonlinear periodic restricted EXPAR(1) model.
The parameters are estimated by the quasi maximum likelihood (QML) method and
we give their asymptotic properties which lead to the construction of confidence
intervals of the parameters. Then we consider the problem of testing the nullity of
coefficients by using the standard Likelihood Ratio (LR) test, simulation studies are
given to assess the performance of this QML and LR test.

Keywords: nonlinear time series, periodic restricted exponential autoregressive
model, quasi maximum likelihood estimation, confidence interval, LR test

1. Introduction

Since the 1920s, linear models with Gaussian noise have occupied a prominent
place, they have played an important role in the specification, prevision and general
analysis of time series and many specific problems were solved by them. Neverthe-
less, many physical and natural processes exhibit nonlinear characteristics that are
not taken into account with linear representation and are better explicated and
fitted by nonlinear models. For example, ecological and environmental fields pre-
sent phenomena close to the theory of nonlinear oscillations, such as limit cycle
behavior remarked in the famous lynx or sunspot series, leading to the consider-
ation of more complex models from the 1980s onwards. A first nonlinear model
possible is the Volterra series which plays the same role as the Wold representation,
for linear series. The interest of this representation is rather theoretical than practi-
cal, for this reason, specific parametric nonlinear models were presented as the
ARCH and Bilinear models suitable for financial and economic data, threshold
AutoRegressif TARð Þ and exponential AR EXPARð Þ models suitable for ecological
and meteorological data. These nonlinear models have been applied with great
success in many important real-life problems. Basics of nonlinear time series analy-
sis can be found in [1–3] and references therein.

Amplitude dependent frequency, jump phenomena and limit cycle behavior are
familiar features of nonlinear vibration theory and to reproduce them [4, 5] intro-
duced the exponential autoregressive EXPARð Þ models. The start was by taking an
autoregressive ARð Þ model Y t, say, and then make the coefficients dependent in an

exponential way of Y2
t�1.

Several papers treated the probabilistic and statistic aspects of EXPAR models.
A direct method of estimation is proposed by [5], it consists to fix the nonlinear
coefficient in the exponential term at one of a grid of values and then estimate the
other parameters by linear least squares and use the AIC criterion to select the final
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parameters, necessary and sufficient conditions of stationarity and geometric ergo-
dicity for the EXPAR 1ð Þ model are given by [6], the problem of estimation of
nonlinear time series in a general framework by conditional least squares CLS and
maximum likelihood ML methods is treated by [7] with application in EXPAR
models, a forecasting method is proposed by [8], the LAN property was shown in
[9] and asymptotically efficient estimates was constructed there for the restricted
EXPAR 1ð Þ, a genetic algorithm for estimation is used in [10], Bayesian analysis of
these models is introduced in [11], a parametric and nonparamtric test for the
detection of exponential component in AR 1ð Þ is constructed by [12], sup-tests are
constructed by [13] with the trilogy Likelihood Ratio (LR), Wald and Lagrange
Multiplier (LM) for linearity in a general nonlinear AR 1ð Þ model with EXPAR 1ð Þ as
special cases, the extended Kalman filter EKFð Þ is used in [14]. Given that nonlinear
estimation is time consuming [15] proposed to estimate heuristically the nonlinear
parameter from the data and this is a very interesting remark because when the
nonlinear parameter is known we get the Restricted EXPARmodel. The applications
of the EXPAR model are multiple: ecology, hydrology, speech signal, macroeco-
nomic and others see, for example, [16–21].

On the other hand, fitted seasonal time series exhibiting nonlinear behavior such
cited before and having a periodic autocovariance structure by SARIMAmodels will
be inadequate. These models are linear and the seasonally adjusted data may still
show seasonal variations because the structure of the correlations depends on the
season. The solution is the use of a periodic version of EXPARmodels. The notion of
periodicity, introduced by [22], was used to fit hydrological and financial series and
allowed the emergence of new classes of time series models such as Periodic
GARCH, Periodic Bilinear, MPAR model. Motivated by all this, we introduced
recently the Periodic restricted EXPAR 1ð Þ model see [23], which consists of having
different restricted EXPAR 1ð Þ for each cycle and we established a most stringent
test of periodicity since a periodic model is more complicated than a nonperiodic
one and its consideration must be justified. We studied the problem of estimation
by the least squares (LS) method in [24] and the test of Student was used for testing
the nullity of the coefficients in the application. Traditionally, the step of estimation
must be followed by tests of nullity of coefficients and the major tests used are
Wald, LR and LM tests. We used a Wald test for testing the nullity of one coeffi-
cient and consequently testing linearity in [25].

In this chapter, we will present the quasi maximum likelihood (QML) estimation
of the parameters, which are the LS estimators in [24] under the assumption that
the density is Gaussian, these estimators are asymptotically normal under quite
general conditions. This will play a role in the construction of the confidence
interval for the parameters and then we treat the problem of testing the nullity of
parameters which lead us to a linearity test using the standard and well known LR
test. This test is based on the comparison between the maximum of the constrained
and unconstrained quasi log likelihood, see for example [26] or [27], the null
hypothesis is accepted, if the difference is small enough or equivalently H0 ought to
be rejected for large values of the difference. The problem is standard because the
periodic model is restricted, i.e. the nonlinear parameter is known and for the other
parameters 0 is an interior point of the parameter space, then the LR statistic
asymptotically follows the χ2 distribution under H0 just like the Wald test, but we
chose the former because it does not require estimation of the information matrix. It
is known that the two tests are asymptotically equivalent and may be identical see
[26] for more details.

The chapter is organized as follows. In Section 2, we introduce the Restricted
PEXPAR model and we present the asymptotic normality of the QML estimators
and we construct confidence intervals of the parameters. Section 3 provides the LR
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test for nullity of one coefficient and a test for linearity, a small simulation shows
the efficiency of these tests.

2. The Periodic Restricted EXPAR 1ð Þ model and QML estimation

2.1 Restricted PEXPAR 1ð Þ model

Let Y tf gt≥ 1 be a seasonal stochastic process with period S S≥ 2ð Þ.
Definition 1
The process Y tf gt≥ 1 is a Periodic Restricted EXPonential AutoRegressive model

(restricted PEXPAR 1ð Þ) of order 1 if it is a solution of the nonlinear difference
equation given by

Y t ¼ φt,1 þ φt,2 exp �γY2
t�1

� �� �

Y t�1 þ εt, t∈, (1)

where εtf gt≥ 1 is iid 0, σ2t
� �

, φt,1 and φt,2 are the autoregressive parameters and
γ >0 is the known nonlinear parameter. A heuristic determination of γ from data is

γ̂ ¼ � log ε

max
1≤ t≤ n

Y2
t

, (2)

where ε is a small number and n is the number of observations. (cf. [15]).
The autoregressive parameters and the innovation variance are periodic of

period S, that is,

φtþkS,1 ¼ φt,1,φtþkS,2 ¼ φt,2 and σ2tþkS ¼ σ2t , ∀k, t∈: (3)

To point out the periodicity, let t ¼ iþ Sτ, i ¼ 1, … , S and τ∈, then Eq. (1)
becomes

Y iþSτ ¼ φi,1 þ φi,2 exp �γY2
iþSτ�1

� �� �

Y iþSτ�1 þ εiþSτ, i ¼ 1, … , S, τ∈ (4)

In Eq. (4), Y iþSτ is the value of Y t during the i-th season of the cycle τ and φi,1,
φi,2 are the model parameters at the season i: It is clear that the parameters depend

on Y iþSτ�1 in the sense that for large Y iþSτ�1j j we have φi,1þ φi,2 exp �γY2
iþSτ�1

� �

�
φi,1 while for small Y iþSτ�1j j: φi,1þ φi,2 exp �γY2

iþSτ�1

� �

� φi,1þ φi,2 of course the

change is done smoothly between these regimes. In application, the restricted
PEXPAR 1ð Þ model is fitted to seasonal time series displaying nonlinearity features
like amplitude dependent frequency.

These forms of models are new in the literature of the time series it is interesting
to make several simulations to see their characteristics. An important fact is their
property of non normality as is shown by histogram in Figure 1 and confirmed by the
test of ShapiroWilk where the p� value ¼ 0:008226 is less than 0:05. The realization
of the process (A) is given in Figure 1 from it and from the correlogram we can see
that the process is stationary in each season due to the fast decay to 0 as h increases.
Another interesting fact, that these types of models can exhibit, is the limit cycle
behavior which is a well known feature in nonlinear vibrations and is one of possible
mode of oscillations. Such phenomena is shown in Figure 2 from model (B).

Model ðAÞ :
Y1þ2τ ¼ �0:3þ 2 exp �Y2

2τ

� �� �

Y2τ þ ε1þ2τ

Y2þ2τ ¼ �0:8þ exp �Y2
1þ2τ

� �� �

Y1þ2τ þ ε2þ2τ

(

: (5)
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Model ðBÞ :
Y1þ2τ ¼ 0:2� 1:5 exp �Y2

2τ

� �� �

Y2τ þ ε1þ2τ

Y2þ2τ ¼ 0:8þ 0:3 exp �Y2
1þ2τ

� �� �

Y1þ2τ þ ε2þ2τ

(

: (6)

2.2 QML Estimation

Let φ ¼ φ0
1
, … ,φ0

S

� �0
∈

2S the parameter vector where φ
i
¼ φi,1,φi,2

� �0
, i ¼

1, … , S: We want to estimate the true parameter φ
0
from observations Y1, … ,Yn

where n ¼ mS which means that we have m full period of data: The problem is
resolved by the QML method and under the conditions:

A1: The Periodical restricted exponential autoregressive parameters φ satisfy the

stationary periodically condition of (1). A sufficient condition is given by φi,1

�

�

�

�

< 1,φi,2 ∈, i ¼ 1, … , S.

A2: The periodically ergodic process Y t; t∈f g is such thatE Y4
t

� �

<∞, for any t∈.
Periodic stationarity has not been treated for this model so stationarity is

required for each season hence A1. We can replace the assumption A2 by E ε4t
� �

<∞,

Figure 1.
Realization of (A) with corresponding histogram and correlogram.

Figure 2.
Limit cycle from PEXPAR2 1ð Þ model.
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for any t∈, since E ε4t
� �

<∞) E Y4
t

� �

<∞: Under this condition significant

outliers are improbable and the existence of the information matrix is guaranteed.
Given initial value Y0, the conditional log likelihood of the observations

evaluated at φ depends on f . The QML estimator is obtained by replacing f by the

N 0, σ2t
� �

:

Ln φ,Y1, … ,Yn

� �

¼�mS

2
log 2πð Þ �m

2

X

S

i¼1

log σ2i
� �

�
X

S

i¼1

X

m�1

τ¼0

Y iþSτ � φi,1 þ φi,2 exp �γY2
iþSτ�1

� �� �

Y iþSτ�1

� �

2σ2i

2

,

(7)

(assuming) σi 6¼ 0:
Let φ̂ the QML estimator, one can see that maximizing Ln is equivalent to

minimization of the quantity:

Qn φ

� �

¼ 1

n

X

n

t¼1

Y t � φt,1 þ φt,2 exp �γY2
t�1

� �� �

Y t�1

� �2
: (8)

The initial value is unknown but its choice is not important for the asymptotic
behavior of theQML estimator soweputY0 ¼ 0,whichdefines the operational criterion

~Qn φ

� �

¼ 1

S

X

S

i¼1

~Q i,m φ
i

� �

(9)

and

~Q i,m φ
i

� �

¼ 1

m

X

m�1

τ¼0

Y iþSτ � φi,1 þ φi,2 exp �γY2
iþSτ�1

� �� �

Y iþSτ�1

� �2
: (10)

The first order condition of the QML minimization problem is a system of 2S
linear equations with 2S unknowns. The solution is

φ̂i,1

φ̂i,2

" #

¼

X

m�1

τ¼0

Y2
Sτþi�1

X

m�1

τ¼0

Y2
Sτþi�1 exp �γY2

Sτþi�1

� �

X

m�1

τ¼0

Y2
Sτþi�1 exp �γY2

Sτþi�1

� �

X

m�1

τ¼0

Y2
Sτþi�1 exp �2γY2

Sτþi�1

� �

2

6

6

6

6

6

4

3

7

7

7

7

7

5

�1

�

P

m�1

τ¼0
YSτþi�1YSτþi

P

m�1

τ¼0
YSτþi�1YSτþi exp �γY2

Sτþi�1

� �

2

6

6

6

4

3

7

7

7

5

σ̂2i ¼
1

m

X

m�1

τ¼0

YSτþi � φ̂i,1 þ φ̂i,2 exp �γY2
Sτþi�1

� �� �

YSτþi�1

� �2
:

(11)

We remark that the QML estimator is the LS estimator and we can proof the
next theorem in the same way.

Theorem
The QML estimator is strongly consistent and we have for i ¼ 1, … , S

5

The Periodic Restricted EXPAR(1) Model
DOI: http://dx.doi.org/10.5772/intechopen.94078



ffiffiffiffi

m
p φ̂i,1 � φi,1

φ̂i,2 � φi,2

� 	

!
m!∞
L

N 02, σ
2
i

E Y2
i�1

� �

E X2
i�1 exp �γY2

i�1

� �� �

E Y2
i�1 exp �γY2

i�1

� �� �

E Y2
i�1 exp �2γY2

i�1

� �� �

 !�1
0

@

1

A:

(12)

Furthermore, φ̂
i,m

and φ̂
j,m

are asymptotically independant, i 6¼ j, i, j ¼ 1, … , S.

Proof
The proof is very standard in the literature of time series. The consistency is based

on an ergodicity argument and for the normality a central limit version for martingale
differences is used. The detail is similar to the LSE (see [24]) hence it is omitted. The
independence of the εiþSτ implies that all the terms for i 6¼ j are zero, this implies that
ffiffiffiffi

m
p

φ̂
i,m

� φ
i

� �

and
ffiffiffiffi

m
p

φ̂
j,m

� φ
j

� �

, i 6¼ j, are asymptotically uncorrelated.

The QML estimators (Eq. (4)) yields a point estimator, a confidence interval (CI)
gives a region where the parameters fall in with a given probability (usually 95% or
90%). Based on the asymptotic normality of the QML estimators, with asymptotic
probability 1� α, φi,j is in the interval

φ̂i,j �Φ1�α=2
σ̂
ffiffiffiffi

m
p

i

ffiffiffiffiffiffiffiffiffiffi

Γið Þjj
q


 �

, j ¼ 1, 2, i ¼ 1, … , S, (13)

where

Γi ¼
E Y2

i�1

� �

E Y2
i�1 exp �γY2

i�1

� �� �

E Y2
i�1 exp �γY2

i�1

� �� �

E Y2
i�1 exp �2γY2

i�1

� �� �

 !�1

, (14)

and Φ1�α=2 is the 1� α=2 quantile of the standard normal distribution. That is,

the CI contains the true parameters in 100 1� αð Þ% of all repeated samples.
To examine the performance of the QML estimators, we construct CI of the

parameters from the simulation of restricted PEXPAR2 1ð Þ model with parameters:

φ
1
¼ �0:8, 1:2ð Þ0 and φ

2
¼ 0:4,�0:9ð Þ0 with sizes n ¼ 200, 500 and 1000 and for

the significance levels: α ¼ 10% and 5% and 1000 replications: From the Tables 1–3
we deduce that the parameters are well estimated and when n increases the length
of CI decreases showing that the estimates are consistent. Obviously, a higher
confidence level produces wider CI.

n ¼ 200 CI φ1,1

� �

CI φ1,2

� �

CI φ2,1

� �

CI φ2,2

� �

α ¼ 10% �0:8206,�0:7796½ � 1:1136, 1:2576½ � 0:3801, 0:4119½ � �0:9559,�0:8156½ �

α ¼ 5% �0:8126,�0:7661½ � 1:0893, 1:2618½ � 0:3808, 0:4194½ � �0:9967,�0:8260½ �

Table 1.
CI of parameters for n = 200.

n ¼ 500 CI φ1,1

� �

CI φ1,2

� �

CI φ2,1

� �

CI φ2,2

� �

α ¼ 10% �0:8038,�0:7879½ � 1:1551, 1:2113½ � 0:3874, 0:4001½ � �0:9015,�0:8470½ �

α ¼ 5% �0:8097,�0:7912½ � 1:1783, 1:2453½ � 0:3873, 0:4020½ � �0:9104,�0:8448½ �

Table 2.
CI of parameters for n = 500.
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3. Likelihood Ratio tests

3.1 Test for the Nullity of One Coefficient

The asymptotic normality of the QML in Eq. (12) can be exploited to perform
tests on the parameters. This problem is very standard, especially when 0 is an
interior point of the parameter space and can be done with the trilogy: Wald, LR
and LM tests. We treated the former in [25] and in this chapter, we will use the LR
test which is based upon the difference between the maximum of the likelihood
under the null and under the alternative hypotheses and has the advantage of not
estimating information matrix. In this section, we are interested in testing assump-
tions of the form

H0 : φi,2 ¼ 0 or H0 : φi,1 ¼ 0
� �

vs H1 : φi,2 6¼ 0 or H1 : φi,1 6¼ 0
� �

, (15)

for some given i:Under H1, we have the QML estimator φ̂
i
given by Eq. (11) and

mean square error ~Q i,m φ̂
i

� �

given by Eq. (10) and ~φ
i
¼

~φi,1

0


 �

, is the QML

estimator given under H0 where

~φi,1 ¼
Pm�1

τ¼0 YSτþi�1YSτþi
Pm�1

τ¼0 Y
2
Sτþi�1

(16)

and the corresponding mean square error under the null

~Q i,m ~φ
i

� �

¼ 1

m

X

m�1

τ¼0

Y iþSτ � ~φi,1Y iþSτ�1

� �2
: (17)

The usual LR statistic is

λi,m ¼
L ~φ

i
, ~σ2i

� �

L φ̂
i
, σ̂2i

� � ¼
~Q i,m φ̂

i

� �

~Q i,m ~φ
i

� �

0

@

1

A

m
2

(18)

then the test rejects H0 at the asymptotic level α when

LRi,m ¼ �2 log λi,m

¼ m log
~Q i,m ~φ

i

� �

~Q i,m φ̂
i

� � > χ21 1� αð Þ,
(19)

where χ21 1� αð Þ is the 1� αð Þ�quantile of the χ2 distribution with 1 degree of
freedom.

n ¼ 1000 CI φ1,1

� �

CI φ1,2

� �

CI φ2,1

� �

CI φ2,2

� �

α ¼ 10% �0:8027,�0:7952½ � 1:1909, 1:2191½ � 0:3978, 0:4040½ � �0:9072,�0:8793½ �

α ¼ 5% �0:8030,�0:7938½ � 1:1797, 1:2139½ � 0:3958, 0:4034½ � �0:9119,�0:8791½ �

Table 3.
CI of parameters for n = 1000.
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In the same manner we can test the nullity of φi,1 by taken ~φ
i
¼

0

~φi,2


 �

and

~Q i,m ~φ
i

� �

¼ 1

m

X

m�1

τ¼0

Y iþSτ � ~φi,2 exp �γY2
iþSτ�1

� �

Y iþSτ�1

� �2
: (20)

Example 1
In the simulation we focused on testing the nullity of φi,2 only. We simulated

1000 independent samples of length n ¼ 200 and 500 of 3 models.

Model I: Periodic autoregressive (PAR2 1ð ÞÞ with the parameters φ ¼ �0:7, 0:4ð Þ0.
Model II: Restricted PEXPAR2 1ð Þ with the parameters φ ¼ �0:7, 0, 0:4,�2ð Þ0

and γ ¼ 1

Model III: Restricted PEXPAR2 1ð Þ with the parameters φ ¼ �0:7, 1:5, 0:4,�2ð Þ0
and γ ¼ 1.

The model I is chosen to calculate the level, the model III is chosen to calculate
the power, the choice of model II is to show that the test is efficient since in the first
cycle we have an AR 1ð Þ and in the second cycle a restricted EXPAR 1ð Þ. On each
realisation we fitted a restricted PEXPAR2 1ð Þmodel by QML and carried out tests of
H0 : φi,2 ¼ 0 against H1 : φi,2 6¼ 0: The rejection frequencies at significance level 5%
and 10% are reported in Tables 4 and 5. Figure 3 shows the asymptotic distribution
of LRi,m under the null hypothesis. From the tables we see that the levels of the LR
test are pretty well controlled since for n ¼ 500, we note a relative rejection
frequency of 5:5% for φ1,2 and 5:1% for φ2,2, which are not meaningfully different
from the nominal 5%, the same remark is made for α ¼ 10% where the relative
rejection frequency is of 9:5% and 10:3%. From model III, the rejection frequencies
which represent the empirical power increase with the length n indicating the good
performance and the consistency of the test. To illustrate that the asymptotic
distribution of LRi,m under the null hypothesis is the standard χ21 we have the

Model α φ1,2 φ2,2

I 5%

10%

0:052

0:105

0:066

0:103

II 5%

10%

0:054

0:117

0:998

1

III 5%

10%

0:967

1

0:930

0:997

Table 4.
The rejection frequency computed on 1000 replications of simulations of length n ¼ 200.

Model α φ1,2 φ2,2

I 5%

10%

0:055

0:095

0:051

0:103

II 5%

10%

0:053

0:098

1

1

III 5%

10%

0:991

1

1

1

Table 5.
The rejection frequency computed on 1000 replications of simulations of length n ¼ 500.
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histograms in Figure 3 where we see that the distribution of LRi,m has the well
known shape of χ21.

3.2 Test for linearity in Restricted PEXPAR(1) model

The most important case to test is when φi,2 ¼ 0, ∀i, which correspond to the
linear periodic autoregressive model PARS 1ð Þð Þ of period S. The null hypothesis is then

H0 : φi,2 ¼ 0,∀i vs H1 : ∃i=φi,2 6¼ 0: (21)

H1 correspond to the restricted PEXPARS 1ð Þ model, that is, the linear PARS 1ð Þ
model is nested within the nonlinear restricted model and it can be obtained by
limiting the parameters φi,2 to be zero ∀i, hence we have a problem of testing the
linearity hypothesis.

The standard LR test statistic is

λm ¼
X

S

i¼1

~Q i,m φ̂
i

� �

~Q i,m ~φ
i

� �

0

@

1

A

m
2

: (22)

The test rejects H0 at the asymptotic level α when

LRm ¼ �2 log λm

¼ m
X

S

i¼1

log
~Q i,m ~φ

i

� �

~Q i,m φ̂
i

� � > χ2S 1� αð Þ,
(23)

where χ2S 1� αð Þ is the 1� αð Þ�quantile of the χ2 distribution with S degrees of
freedom which is simply the number of supplementary parameters in H1.

Figure 3.
Asymptotic distribution of LR.
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Example 2
Table 6 shows the rejection frequency computed on 10000 replications of

simulations of length n ¼ 200 and 500 from the 2 models.

Model I: PAR4 1ð Þ with the parameters φ ¼ �0:8, 0:5, 0:9,�0:4ð Þ0.
Model II: Restricted PEXPAR4 1ð Þ with φ ¼ �0:8, 2, 0:5,�1:5, 0:9, 1:1,�0:4, 0:6ð Þ0

and γ ¼ 1:, Figure 4 shows the asymptotic distribution of LRm under the null
hypothesis. The results show that the empirical levels are acceptable, for n ¼ 500,
we have a relative rejection frequency of 5:81% (resp. 10:75%) which is very close to
5% (resp. 10%), the empirical power increases with the size n which means that the
test is consistent. The rejection region is LRm > χ24 1� αð Þ

� 


, where χ24 1� αð Þ is the
1� αð Þ� quantile of the χ2 distribution with 4 degrees of freedom. From Figure 4,
we see that the asymptotic distribution of LRm (in full line) is close to the χ24 (in
dashed lines), this confirm the above theoretical result.

4. Conclusion

The periodic restricted EXPAR model is added to the family of nonlinear and
periodic models. Interest is focused on estimation and testing problems. The

Model α LR test n ¼ 200ð Þ LR test n ¼ 500ð Þ

I 5%

10%

0:0615

0:1225

0:0581

0:1075

II 5%

10%

0:9999

0:9999

1

1

Table 6.
The rejection frequency computed on 10000 replications.

Figure 4.
Asymptotic distribution of LRm.
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periodic stationarity allows to calculate the QML estimators and derived tests of
coefficients, cycle by cycle, and therefore use standard techniques. From this point
of view, we can extend several results concerning the classical EXPAR to the
periodic case.
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