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Chapter

Energy Minimization
Budhayash Gautam

Abstract

The energetic state of a protein is one of the most important representative 
parameters of its stability. The energy of a protein can be defined as a function 
of its atomic coordinates. This energy function consists of several components: 
1. Bond energy and angle energy, representative of the covalent bonds, bond 
angles. 2. Dihedral energy, due to the dihedral angles. 3. A van der Waals term 
(also called Leonard-Jones potential) to ensure that atoms do not have steric clashes. 
4. Electrostatic energy accounting for the Coulomb’s Law m protein structure, 
i.e. the long-range forces between charged and partially charged atoms. All these 
quantitative terms have been parameterized and are collectively referred to as the 
‘force-field’, for e.g. CHARMM, AMBER, AMBERJOPLS and GROMOS. The goal 
of energy Minimization is to find a set of coordinates representing the minimum 
energy conformation for the given structure. Various algorithms have been for-
mulated by varying the use of derivatives. Three common algorithms used for 
this optimization are steepest descent, conjugate gradient and Newton–Raphson. 
Although energy Minimization is a tool to achieve the nearest local minima, it is also 
an indispensable tool in correcting structural anomalies, viz. bad stereo-chemistry 
and short contacts. An efficient optimization protocol could be devised from these 
methods in conjunction with a larger space exploration algorithm, e.g. molecular 
dynamics.

Keywords: energy minimization, minimum energy conformation, force fields,  
global minimum energy, molecular dynamics simulations, molecular modeling

1. Introduction

Molecular modeling relies on the event of theoretical and computational 
methodologies, to model and study the behavior of molecules, from little chemical 
systems to big biological molecules and material assemblies. The applying fields 
of molecular modeling regard computational chemistry, drug design, computa-
tional biology and materials science. The fundamental computational technique 
to perform molecular modeling is simulation. Molecular simulation techniques 
need specific extra computational and code software system [1]. Most molecular 
modeling studies involve three stages. Within the initial stage a model is chosen to 
explain the intra- and inter-molecular interaction within the system. The two most 
typical models that are utilized in molecular modeling are quantum mechanics and 
molecular mechanics. These models enable the energy of any arrangement of the 
atoms and molecules within the system to be calculated and permit the modeler to 
work out how the energy of the system varies because the positions of the atoms 
and molecules change. The second stage of a molecular modeling study is that the 
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calculation itself, such as an energy Minimization, a molecular dynamics or Monte 
Carlo simulation, or a Conformations search. Finally, the calculation should be 
analyzed, not solely to calculate properties however additionally to see that it’s been 
performed properly [2].

In molecular modeling we tend to are particularly curious about minimum 
points on the energy surface. Minimum energy arrangements of the atoms cor-
respond to stable states of the system; any movement off from a minimum provides 
a configuration with a better energy. There is also a really sizable amount of minima 
on the energy surface. The minimum with the very lowest energy is known as the 
global energy minimum. To spot those geometries of the system that correspond to 
minimum points on the energy surface we tend to use a Minimization algorithm. 
The highest point on the pathway between two minima is of particular interest and 
is understood as the saddle point, with the arrangement of the atoms being the tran-
sition structure. Both minima and saddle points are stationary points on the energy 
surface, wherever the primary derivative of the energy function is zero with regard 
to all the coordinates [3].

A geographical analogy is useful thanks to illustrate several of the ideas as dur-
ing this analogy minimum points correspond to the lowest of valleys. A minimum 
is also represented as being in an exceedingly ‘long and slender valley’ or ‘a flat and 
featureless plain’. Saddle points correspond to mountain passes. Confer with consult 
with algorithms creating steps as ‘uphill’ and downhill’.

1.1 Energy minimization: a brief description about the problem

The Minimization problem can be formally stated as follows: given a function f 
which depends on one or more independent variables x1, x2,….., xi, find the values 
of those variables where f has a minimum value. At a minimum point the first 
derivative of the function with respect to each of variables is zero and the second 
derivative are all positive:

 / 0;if x∂ ∂ =  2 2
/ 0if x∂ ∂ >  (1)

With respect to present discussion, the most important functions are the 
quantum mechanics or molecular mechanics energy with the variables xi being 
the Cartesian or the internal co-ordinates of the atoms. It is a common practice to 
always perform Molecular mechanics Minimizations in Cartesian co-ordinates, in 
which the energy is a function of 3 N variables; on the other hand, for quantum 
mechanics internal co-ordinates are often used. The least value of any function can 
be identified using standard calculus methods for analytical functions. But, due 
to the complexities of pattern of energy change with change in the coordinates, it 
is almost impossible for any molecular system. Therefore, the energy minima are 
often identified with the help of numerical methods. These methods gradually 
make changes to the coordinates to generate configurations having lower and lower 
energies until the minimum is reached [2].

Minimization algorithms can be classified into two categories: one in which we 
use derivatives of the energy with respect to the coordinates and second in which 
we do not use any derivative. Derivatives are extremely important because they 
have details about the shape of the energy surface and due to this efficiency to locate 
the minimum energy is increases drastically. For any problem, before choosing 
best algorithm (or algorithms), several points should be considered for e.g. the best 
Minimization algorithm should use least memory to generate the answer as quickly 
as possible. For different problems of molecular modeling, different Minimization 
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method is used because we do not have any Minimization method developed which 
could be applied to all. Any method which is developed for efficient performance 
with quantum mechanics may or may not be compatible for molecular mechanics 
because quantum mechanics deals with models having very less atoms as compare 
to molecular mechanics. Another point is that procedures like inversion of matrix in 
some Minimization methods works fine for small systems but problem arises when 
number of atoms increases to thousands. To calculate the number of derivatives 
of different Conformations and their energies, different level of performance is 
required for quantum mechanics than molecular mechanics. Molecular mechanics 
requires an algorithm that is having more number of steps; quantum mechanics 
has the opposite scenario. Therefore we have various methods in various popular 
software packages [4].

As, most of the Minimization algorithms can only identify the minimum energy 
point which is closest to the starting point, thus it can be stated that they only move 
downwards or more appropriately downhill on the energy surface. Suppose, this 
schematic energy surface is shown in Figure 1, having three starting points A, B 
and C to obtained the minima. The locations at which any hypothetical ball stops 
rolling on energy surface under gravitational force will have corresponding energy 
minima. But more important thing is to identify global energy minimum which 
can only be generated by using different starting points, which will be minimized 
later. Using this criterion, some of the Minimization methods can move uphill to 
find out energy minimum than the closest one. But not a single algorithm till date is 
reported for efficiently identification of the global minimum energy from a random 
starting point. To identify the number of different minimum energy Conformations 
the shape of energy surface is very useful. For example, population or number of 
minimum in a deep and narrow valley will be very less than population at broad 
minimum because it is having higher energy as the vibrational energy is more 
widely spaced in the minimum and so less accessible. Therefore, the global energy 
minimum may not be the most highly populated minimum. Thus, there may be 
the case that the ‘functional’ structure (e.g. the biologically active conformation 
of a drug molecule) may not belong to the global minimum, or to the most highly 
populated conformation, or even to a minimum energy structure at all [3].

Every Minimization algorithm has a set of initial coordinates as input. These 
coordinates can be generated from different sources. These can be generated using 
traditional experimental method like X-ray crystallography or NMR. Alternatively, 
these can be generated by employing a theoretical method like conformational 
search procedure. But for practical efficiency, both types of methods can be used 
combinatorially. For example, the behavior of a protein in water can be studied 

Figure 1. 
A one-dimensional energy surface showing minimization methods movement downwards or downhill towards 
the closest energy minimum.
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using its x-ray generated structure. Then place this in a solvent completely. Monte 
Carlo or molecular dynamics simulation can generate the atomics or Cartesian 
coordinates of the solvent molecules.

1.2 Derivatives

For derivatives based Minimization methods, calculation of the derivatives of 
the energy is performed with respect to the different variables i.e. Cartesian or 
internal coordinates, as the case may be. These derivatives can be generated using 
either analytical or numerical procedures but derivatives obtained through analyti-
cal procedure are more preferred because these can be generated more readily and 
these are more exact. Although, if derivatives generated by only numerical proce-
dure is available then one should use a non-derivative Minimization procedure as it 
is more efficient [3].

Although, in some situations it is always preferable to use derivatives generated 
though numerical procedure. By following way these can be generated: suppose 
there is a small alteration (δxi) in one of the coordinates xi and the energy calcula-
tion is performed for this new alteration the by dividing the alteration in energy 
(δE) by the alteration in coordinate (δE / δxj), the derivative ∂E/∂xi is obtained. 
This rigorously yields the derivative at the mid-point between the two points xi and 
xi + δxi. A more correct value of the derivative at the point xi; could also be acquired 
(at the price of a further energy calculation) by assessing the energy at two points, 
xi + δxi and xi – δxi. The derivative is then obtained by dividing the variation with in 
the energies by 2δxi.

2. Non-derivative minimization methods

2.1 The simplex method

A geometrical figure having M + 1 interconnected vertices is called as simplex, 
where dimensionality of the energy function is M. Thus, a simplex with function of 
two variables will have a triangular shape. Further, for a function of three variables 
simplex will have tetrahedral shape. Therefore, for an energy function of 3 N 
Cartesian coordinates the simplex will have 3 N + 1 vertices; but simplex will have 
3 N – 5 vertices, if internal coordinates are used. The energy could be calculated 
for a specific set of coordinates correspond to each every vertex. For the function 
f(x,y) = x2 + 2y2 the simplex method would use a triangular simplex [5].

The simplex algorithm identifies an energy minimum by traveling around on the 
potential energy surface in a manner that is similar to the movement of an amoeba. 
There are three possible primary moves. The most common move is a reflection 
of the vertex having maximum value on the opposite sides of the simplex. The 
reflection is used as an effort to produce a new point having a lower value. If this is 
the lowest energy point than any other points in the simplex then next move may 
be applied which is a “reflection and expansion.” Reflection move will be failed to 
generate a better point, when a “floor of the valley” is reached. In this situation, 
simplex will make simple contraction all along the highest point dimension. If 
this fails to further decrease the energy then another kind of move is possible. In 
this move, contractions occur in all the directions towards the lowest point. The 
Figure 2 illustrates above discussed three moves.

The vertices of the initial simplex have to be first generated before applying the 
simplex algorithm. The first conformation of the method fit to just one of these 
vertices. Rest of the points can be generated using various methodologies, e.g. 
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simplest method is to increase a fix value to each coordinate successively. To calcu-
late the functional value of the applicable vertex, the energy of the whole system is 
measured for each new point.

When the starting configuration of the system is having high energy, it is best to 
use simplex method. The simplex method is more helpful in this because it seldom 
go wrong in the identification of a fitter answer. Nonetheless, it requires large 
computational time for the analysis of the high number of energy instances. For e.g. 
to create the starting simplex needs 3 N + 1 energy analysis. Due to this, the simplex 
method is frequently used along with other Minimization algorithms. In practice, 
starting configuration is fine tuned with few steps of the simplex method and then 
a more suitable and efficient method can be used for further calculations [6].

An important question is that what is the reason behind containing one extra 
vertex in the simplex than the degree of freedom? The answer to this is that of sim-
plex is having lesser vertices than M + 1 then the simplex algorithm cannot search 
the entire surface of the energy. For e.g. if the simplex having just two vertex (a 
simplex with only two vertices is simply a straight line) is being used to search the 
quadratic surface of the energy, the only available move in this scenario would be 

Figure 2. 
The three basic moves permitted to the simplex algorithm (reflection, and its close relation reflect-and-expand; 
contract in one dimension and contract around the lowest point).
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to find out other points that lie on this straight line. In this case, the energy surface 
which is away from the straight line would not be searched. Likewise, if we have 
function of three variable and simplex is just a triangle then only the area of search 
space that lies in the same plane as to the triangle will only be searched, whereas the 
energy minimum may not be present at this plane [7].

2.2 The sequential univariate search method

It is seldom appropriate to use the simplex method for the calculations involve in 
quantum mechanics because in that case very high number of energy assessments 
has to be done. In this case a much befitting non-derivative procedure like the 
sequential univariate search method is well-advised [8]. This procedure consistently 
repeats through the coordinates successively. For every coordinate, two new config-
urations are created by making changes in the present coordinates (i.e. xj + δxi, and 
xi + 2δxi). Then the energy calculation for these two configurations is performed. 
Three points related to the two twisted configurations and the original one are 
then fitted with a parabola. The identification of the minimum point in the current 
quadratic function is performed. Then in the next step, the coordinate is twisted to 
the point of the minimum. The procedure is illustrated in Figure 3.

The minimum is bound to reach when the changes in all the coordinates are 
adequately very small. Alternatively, a new iteration is performed. In comparison to 
the simplex method, the sequential univariate method normally needs less function 
assessment. But if two or more coordinates have a strong connection or bonding 
then the sequential univariate search method may converge slowly. It also converges 
slowly when the energy surface is similar to a long narrow valley.

3. Derivative minimization methods

Most of the favorite Minimization procedures utilize derivatives because the 
information which is helpful in minimization is furnished by derivatives. The direc-
tion of the first derivative of the energy (the gradient) points where the minimum 

Figure 3. 
The sequential univariate search procedure. From the starting point 1, two steps are created along one of the 
coordinates to give points 2 and 3. A parabola is fitted to these three points and the minimum located (point 4). 
The same steps is then repeated along the next coordinate (points 5, 6 and 7) (Figure adapted from Schlegel 
H B 1987. Optimization of equilibrium geometries and transition structures In Lawley K P (editor) ab initio 
methods in quantum chemistry - I New York, John Wiley, pp. 249–286).
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lies and the magnitude of the gradient tells about the steepness of the local slope. 
The energy of the system can be decreased by moving each atom with respect to the 
force acting on it. The force is equal to minus the gradient. Second derivatives point 
towards the curvature of the function. This information can be utilized to find out 
where the function will change its direction (i.e. pass through a minimum or any 
different non-moving point).

The energy functions which are often utilized in molecular modeling are 
seldom quadratic and thus the Taylor series expansion can only be a well-advised 
approximation. There are two crucial consequences of this. First is, for a pure 
quadratic function a given minimization procedure executes very well rather than 
for a molecular mechanics or quantum mechanics energy surface. For example, the 
Newton–Raphson algorithm can identify the minimum in a one step for a purely 
quadratic function. But, for a typical molecular modeling energy function, it needs 
to run several iterations. The second consequence is that, even though they may 
function very well close to a minimum, where the harmonic approximation is more 
logical, the harmonic approximation is very bad and far from minimum. Due to 
this some of the less robust methods will not be successful. Because of this reason 
Minimization protocol must be picked very carefully. A robust or may be inefficient 
method could be exploited earlier then a comparatively least robust but more 
efficient procedure.

On the basis of highest order derivatives used, the derivative methods can be 
classified. The first derivatives or the gradients based methods are called as first-
order methods. Methods in which both first and second order derivatives are used 
are known as second-order methods. Because the simplex method does not use any 
derivatives can thus be called as a zeroth-order method.

3.1 First-order minimization methods

The steepest descents and the conjugate gradient method are two such first order 
Minimization algorithms which are very often used in molecular modeling. In these 
methods coordinates of the atoms are altered step by step with respect to their 
movement towards the minimum point. For each iteration (k), the initial point 
is the molecular conformation generated from last step. It is represented by the 
multidimensional vector xk - 1. For the first iteration, the starting point is the initial 
configuration of the system provided by the user, the vector x1.

3.1.1 The steepest descents method

The steepest descents method moves in the direction parallel to the net force, 
which in our geographical analogy corresponds to walking straight downhill. For 
3 N Cartesian coordinates this direction is most conveniently represented by a 
3 N-dimensional unit vector, sk. Thus:

 /k k ks g g= −  (2)

Once the direction of movement is clearly characterized then it should be 
decided that how much distance to be covered along the gradient. Consider the 
two-dimensional energy surface of Figure 4. The gradient direction from the initial 
point is along the line shown. Suppose we have a cross-section through the surface 
along the line, the function will pass through a minimum and then increase, as 
shown in the figure [9]. We can identify the minimum point by performing a line 
search or we can take a step of arbitrary size along the direction of the force.
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3.1.2 Line search in one dimension

The goal of a line search is to find out the minimum along a specific direction 
(i.e. along a line through the multidimensional space) [10]. In the very first step of 
the line search is to bracket the minimum. This implies determining three points 
along the line in a way that the energy of the intermediate point is less than the 
energy of the two extrinsic points. If it is possible to identify these kinds of three 
points, then it should be make sure that two extrinsic points must have at least one 
minimum in between. Then to reduce the distance in between the three points, an 
iterative algorithm could be applied which in a step by step manner, limits the mini-
mum to a very smaller space. Theoretically, it looks easy but it may involve a large 
number of functional analysis. Thus it is computationally very expensive methods.

Alternatively, we can set a suitable quadratic function to the three points. Then 
apply differentiation to this suited function to modify an approximation to the 
minimum along the line which should be identified analytically. To get a better 
approximate, a new function can be set then, as shown in Figure 5. Higher-order 
polynomials may yield an improved fit to the bracketing points but when these 

Figure 5. 
A line search is used to locate the minimum in the function in the direction of the gradient.

Figure 4. 
Steepest descents method.
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are utilized with functions that altered aggressively in the bracketed region, these 
higher-order polynomials can yield wrong interpolations. The gradient at the 
minimum point obtained from the line search will be perpendicular to the previ-
ous direction. Thus, when the line search method is used to locate the minimum 
along the gradient then the next direction in the steepest descents algorithm will be 
orthogonal to the previous direction (i.e. gk. gk − 1 = 0) [11].

3.1.3 Arbitrary step approach

As, we know that the line search may be computationally very expensive, New 
coordinates can be identified by walking a step of arbitrary size along the gradient 
unit vector sk. The new set of coordinates after step k would then be given by the 
equation:

 xk + 1 = xk + λk sk (3)

where, λk is the step size. In most of the applications within molecular modeling, 
the steepest descents algorithm, the step size at the start has a predetermined default 
value. If energy decreases after the first iteration, then for second iteration the step 
size is increases by an increasing component. The process repeats till the point at which 
each iteration decreases the energy. When a step produces an addition in energy, it is 
assumed that the algorithm has leapt across the valley which comprise the minimum 
and up the slope on the opposite face. The step size is then reduced by a multiplicative 
factor (e.g. 0.5). Often, the size of the step is decided according to the nature of the 
energy surface. It would be more suitable to have bigger step size for a plane or flat sur-
face rather than a slender or narrow altered valley, where more smaller step are much 
appropriate. Computational time is less in the case of the arbitrary step method than 
much stringent line search method, because the arbitrary or random step approach 
needs higher number of steps to find out the minimum than line search method but 
arbitrary step method may frequently needs lesser functional analysis [12].

The largest inter-atomic forces indicate the direction of the gradient. Therefore, 
the steepest descent is more suitable for alleviating attributes of the highest-energy 
in the initial conformation. If the harmonic calculations corresponding to the 
energy is hypothesized badly and the initial point is distant from a minimum, even 
then the method performs strongly. But, in the case of downward movements in 
a long slender valley, the method uses short steps in high number and this causes 
trouble to the method. Although, it is not suitable manner to find out the minimum, 
the steepest descents process is bound to move in the right-angled direction at 
every point. The route constantly over compensates itself and vibrates. However, 
Subsequent steps reintroduce errors which were already rectified by prior steps [13].

3.1.4 Conjugate gradients minimization

The vibrating activity of the steepest descents procedure in slender depression 
is absent in the set of directions generated by the conjugate gradients methods. 
Rather, both the directions of consecutive steps and the gradients are orthogonal 
in the steepest descents method [14]. More specifically, in the conjugate gradients 
method, the gradients are orthogonal in nature at every point and the directions 
of consecutive steps are conjugate that is why it is more correctly known as the 
conjugate direction method. Because of the feature of a set of conjugate directions, 
for a quadratic function of M variables, in M steps the minimum can be identified. 
The conjugate gradients method moves in a direction vk from point xk where vk is 
computed from the gradient at the point and the previous direction vector vk – 1.
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Both the conjugate gradients method and the steepest descents method move in 
the direction of the gradient in the first step. The line search method should ideally 
be used to find out the one-dimensional minimum in all direction to assure that each 
gradient is orthogonal to all preceding gradients and that each direction is conjugate 
to all preceding directions. However, at this stage random step procedure is also 
achievable [15]. To identify the second point a line search should be applied along 
the line with gradient but it must pass through the point. Therefore, the conjugate 
gradient procedure identifies the perfect minimum of the function in just two moves.

3.2 Second order derivative methods

3.2.1 The Newton-Raphson method

Second-order methods utilize the information from both the first derivatives 
and the second derivatives to find out a minimum. First derivatives provide gradi-
ent information while second derivative furnish details about the curvature of the 
function. Having these properties, the Newton–Raphson method is the simplest 
second order method [16]. For a strictly quadratic function of the first derivative 
the second derivative will be same everywhere. If we talk about a multidimensional 
function the Hessian matrix of second derivatives essentially be inverted. Thus, 
for larger molecules it is more computationally expensive because there are a 
large number of atoms present and this necessitates bigger storage. The Newton- 
Raphson method is thus more appropriate to small molecules (usually less than 
100 atoms or so) [17].

As stated earlier, for a strictly quadratic function, the Newton–Raphson method 
requires just one step to locate the minimum from any point on the surface. 
Practically, the surface is exclusively quadratic to a first approximation and this 
necessitates a large number of steps to move. The Hessian matrix of second deriva-
tives should be calculated first and then inverted at each step. This must be ‘positive 
definite’ in a Newton–Raphson Minimization method. A positive definite matrix is 
one for which all the eigen-values are positive. When the Hessian matrix is not posi-
tive definite then the Newton–Raphson method moves to saddle points where the 
energy increases, rather than a narrow point where energy decreases. Additionally, 
the harmonic approximation is not suitable at positions which are very far from the 
minimum because this leads to instability of the Minimization. This can be solved 
by employing a more efficient and robust method (prior to the application of the 
Newton–Raphson method) to find out minimum or to reach close to minimum (in 
case of the positive definite Hessian matrix) [18].

3.2.2 Quasi-Newton method

Computation of the inverse Hessian matrix can be a possibly long procedure that 
represents an important disadvantage to the ‘pure’ second derivative methods such 
as Newton–Raphson. Furthermore, analytical second derivatives could not be gen-
erated preferably. Variable metric methods which are also an alternative name to the 
Quasi-Newton methods gradually develop the inverse Hessian matrix in consecutive 
iterations. That means, a sequence of matrices Hk is developed.

At each iteration k, the new positions xk + 1 are obtained from the current posi-
tions xk, the gradient gk and the current approximation to the inverse Hessian matrix 
Hk. For quadratic function it is same, but for ‘real’ job a line search may be desired. 
Hence, a line search is performed along the vector (xk + 1 — xk). It may not be 
essential to find out the minimum in the direction of the line search very accurately, 
at the cost of a few more steps of the quasi-Newton algorithm [19]. For quantum 
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mechanics calculations the additional energy evaluations required by the line search 
may prove more expensive than using the more approximate approach. An effective 
compromise is to fit a function to the energy and gradient at the current point xk and 
at the point xk + 1 and find out the minimum in the fitted function [20].

4. Which minimization method should 1 use?

The choice of Minimization algorithm is determined by a number of compo-
nents, including the storage and computational requirements, the relative speeds 
with which the various parts of the calculation can be performed, the availability 
of analytical derivatives and the robustness of the method. Thus, any method 
that requires the Hessian matrix to be stored (let alone its inverse calculated) may 
present memory problems when applied to systems containing thousands of atoms. 
Calculations on systems of this size are invariably performed using molecular 
mechanics, and so the steepest descents and the conjugate gradients methods are 
very popular here. For molecular mechanics calculations on small molecules, the 
Newton–Raphson method may be used, although this algorithm can have problems 
with structures that are far from a minimum. For this reason it is usual to perform 
a few steps of Minimization using a more robust method such as the simplex or 
steepest descents before applying the Newton–Raphson algorithm Analytical 
expressions for both first and second derivatives are available for most of the terms 
found in common force fields. The steepest descent method can actually be superior 
to conjugate gradients when the starting structure is some way from the minimum. 
However, conjugate gradients are much better once the initial strain has been 
removed. Quantum mechanical calculations are restricted to systems with relatively 
small numbers of atoms, and so storing the Hessian matrix is not a problem. As 
the energy calculation is often the most time-consuming part of the calculation, it 
is desirable that the Minimization method chosen takes as few steps as possible to 
reach the minimum. For many levels of quantum mechanics theory analytical first 
derivatives are available. However, analytical second derivatives are only available 
for a few levels of theory and can be expensive to compute. The quasi-Newton 
methods are thus particularly popular for quantum mechanical calculations.

When using internal coordinates in a quantum mechanical Minimization it 
can be important to use an appropriate Z-matrix as input. For many systems the 
Z-matrix can often be written in many different ways as there are many combina-
tions of internal coordinates. There should be no strong coupling between the 
coordinates. Dummy atoms can often help in the construction of an appropriate 
Z-matrix. A dummy atom is used solely to define the geometry and has no nuclear 
charge and no basis functions. Strong coupling between coordinates can give long 
‘valleys’ in the energy surface, which may also present problems. Care must be 
taken when defining the Z-matrix for cyclic systems in particular. The natural way 
to define a cyclic compound would be to number the atoms sequentially around 
the ring. However, this would then mean that the ring closure bond will be very 
strongly coupled to all of the other bonds, angles and torsion angles. Some quantum 
mechanics programs are able to convert the input coordinates (be they Cartesian 
or internal) into the most efficient set for Minimization so removing from the user 
the problems of trying to decide what is an appropriate set of internal coordinates. 
For energy Minimizations redundant internal coordinates have been shown to give 
significant improvements in efficiency compared with Cartesian coordinates or 
non-redundant internal coordinates, especially for flexible and polycyclic systems 
[21]. The redundant internal coordinates employed generally com- comprise the 
bond lengths, angles and torsion angles in the system. These methods obviously also 
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require the means to inter-convert between the internal coordinate representation 
and the Cartesian coordinates that are often used as input and desired as output. Of 
particular importance is the need to transform energy derivatives and the Hessian 
matrices (if appropriate) [22].

5. Differentiating between minima, maxima and saddle points

A configuration at which all the first derivatives are zero need not necessarily 
be a minimum point; this condition holds at both maxima and saddle points as 
well. From simple calculus we know that the second derivative of a function of one 
variable, f ’(x) is positive at a mini- minimum and negative at a maximum. It is 
necessary to calculate the eigenvalues of the Hessian matrix to distinguish between 
minima, maxima and saddle points. At a minimum point there will be six zero and 
3 N — 6 positive eigenvalues if 3 N Cartesian coordinates are used. The six zero 
eigenvalues correspond to the translational and rotational degrees of free- freedom 
of the molecule (thus these six zero eigenvalues are not obtained when internal 
coordinates are used). At a maximum point all eigenvalues are negative and at a 
saddle point one or more eigenvalues are negative.

6. What should be the convergence criteria?

In contrast to the simple analytical functions that we have used to illustrate 
the operation of the various Minimization methods, in ‘real’ molecular modeling 
applications it is rarely possible to identify the ‘exact’ location of minima and saddle 
points. We can only ever hope to find an approximation to the true minimum or 
saddle point. Unless instructed otherwise, most Minimization methods would keep 
going forever, moving ever closer to the minimum. It is therefore necessary to have 
some means to decide when the Minimization calculation is sufficiently close to 
the minimum and so can be terminated. Any calculation is of course limited by the 
precision with which numbers can be stored on the computer, but in most instances 
it is usual to stop well before this limit is reached. A simple strategy is to monitor 
the energy from one iteration to the next and to stop when the difference in energy 
between successive steps falls below a specified threshold. An alternative is to moni-
tor the change in coordinates and to stop when the difference between successive 
configurations is sufficiently small. A third method is to calculate the root-mean- 
square gradient. This is obtained by adding the squares of the gradients of the 
energy with respect to the coordinates, dividing by the number of coordinates and 
taking the square root. It is also useful to monitor the maximum value of the gradi-
ent to ensure that the Minimization has properly relaxed all the degrees of freedom 
and has not left a large amount of strain in one or two coordinates [23].

7. Applications of energy minimization

Energy Minimization is very widely used in molecular modeling and is an 
integral part of techniques such as conformational search procedures. Energy 
Minimization is also used to prepare a system for other types of calculation. For 
example, energy mini- Minimization may be used prior to a molecular dynamics or 
Monte Carlo simulation in order to relieve any unfavorable interactions in the initial 
configuration of the system [24]. This is especially recommended for simulations of 
complex systems such as macromolecules or large molecular assemblies.
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8. Conclusion

The energetic state of a protein is one of the most important representative 
parameter of its stability. The energy of a protein (E) can be defined as a  function 
of its atomic coordinates, thus providing a quantitative criterion for model selec-
tion and refinement. This energy function consists of several components e.g. 
(1) Bond energy and angle energy, representative of the covalent bonds, bond 
angles. (2) Dihedral energy, due to the dihedral angles. (3) A van der Waals term 
(also called Leonard-Jones potential) to ensure that atoms do not have steric clashes. 
(4) Electrostatic energy accounting for the Coulomb’s Law m protein structure, 
i.e. the long-range forces between charged and partially charged atoms. All these 
quantitative terms have been parameterized and are collectively referred to as the 
‘forcefield’. The goal of energy Minimization is to find a set of coordinates represent-
ing the minimum energy conformation for the given structure. Various algorithms 
have been formulated by varying the use of derivatives. The common algorithm used 
for this optimization is steepest descent, conjugate gradient and Newton–Raphson 
etc. These methods complement each other in search of the local minima. Therefore, 
a reasonable energy Minimization protocol involves few initial steps of steepest 
descent, followed by a larger number of conjugate gradient iterations. Although 
energy Minimization is a tool to achieve the nearest local minima, it is also an indis-
pensable tool in correcting structural anomalies, viz. bad stereo-chemistry and short 
contacts. An efficient optimization protocol could be devised from these methods in 
conjunction with a larger space exploration algorithm, e.g. molecular dynamics.

Acknowledgements

The authors are grateful to the Sam Higginbottom University of Agriculture, 
Technology and Sciences, Allahabad, for providing the facilities and support to 
complete the present work.

Conflict of interest

The author declares no conflict of interest.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 



14

Homology Molecular Modeling - Perspectives and Applications

References

[1] Ebejer Jean-Paul, Fulle Simone, Morris 
Garrett M., Finn Paul W. The emerging 
role of cloud computing in molecular 
modelling, Journal of Molecular Graphics 
and Modelling, 2013; 44,177-187.

[2] Adcock S A, McCammon J A. 
Molecular dynamics: survey of methods 
for simulating the activity of proteins. 
Chem Rev. 2006;106:1589-1615.

[3] Hinchliffe Alan. Molecular Modelling 
for Beginners, 2nd Edition. John Wiley 
& Sons Ltd. 2003.

[4] Leach AR. Molecular Modelling: 
Principles and Applications. Prentice 
Hall, 2001.

[5] Thomas H. Cormen, Charles E. 
Leiserson, Ronald L. Rivest, Clifford 
Stein. Introduction to Algorithms, 
Second Edition. MIT Press and 
McGraw-Hill, 2001;790-804.

[6] Disser, Yann, Skutella Martin. The 
Simplex Algorithm Is NP-Mighty. ACM 
Trans. Algorithms. 2018;15(1):5:1-5:19.

[7] Maros István, Mitra Gautam. Simplex 
algorithms. In J. E. Beasley (ed.). Advances 
in linear and integer programming. Oxford 
Science. 1996;1-46.

[8] Soumitra Sitole. Univariate Search 
Method (Optimizing Quadratic 
Equations with Two Variables), 
MATLAB Central File Exchange. 2020.

[9] Wiberg K J. A Scheme for Strain 
Energy Minimization. Application to 
the Cycloalkanes. Am. Chem. Soc., 
1965; 87,5,1070-78.

[10] Nocedal Jorge, Wright 
Stephen J. Line Search Methods. 
Numerical Optimization. New York: 
Springer. 1999; 34-63.

[11] Wenyu Sun, Ya-Xiang Yuan. Line 
Search. Optimization Theory and 

Methods: Nonlinear Programming. 
New York: Springer. 2006;71-117.

[12] Elber R, Meller J , Olender R. 
Stochastic Path Approach to Compute 
Atomically Detailed Trajectories: 
Application to the Folding of C Peptide 
The Journal of Physical Chemistry B. 
1999;103(6),899-911.

[13] Hsieh W, Kuo M, Yau H F, Chang 
Chi Ching. A simple arbitrary phase-
step digital holographic reconstruction 
approach without blurring using two 
holograms. OPT REV. 2009;16,466-471.

[14] Fletcher R, Reeves C M. Function 
Minimization by conjugate gradients. 
The Computer Journal. 1964;7,2,149-154.

[15] Polak E, Ribiere G. Rev. Fr. Infolrm. 
Rech. Operations 16R1,1969;35-43.

[16] Ypma, Tjalling J. Historical 
development of the Newton–Raphson 
method, SIAM Review. 1995;37(4), 
531-551.

[17] Gil A, Segura J, Temme N M. 
Numerical methods for special 
functions. Society for Industrial 
and Applied Mathematics 
(SIAM). 2007; http://dx.doi.
org/10.1137/1.9780898717822

[18] Süli Endre, Mayers David. An 
Introduction to Numerical Analysis. 
Cambridge University Press, 2003.

[19] Broyden C G. Quasi-Newton Methods. 
In Murray, W. (ed.). Numerical Methods 
for Unconstrained Optimization. London: 
Academic Press. 1972;pp.87-106.

[20] Haelterman Rob, Eester Dirk 
Van, Verleyen Daan. Accelerating 
the solution of a physics model 
inside a tokamak using the (Inverse) 
Column Updating Method. Journal 
of Computational and Applied 
Mathematics. 2015;279:133-144.



15

Energy Minimization
DOI: http://dx.doi.org/10.5772/intechopen.94809

[21] Peng C, Ayala PY, Schlegel H B, 
Frisch M J. Using Redundant Internal 
Coordinates to Optimise Equilibrium 
Geometries and Transition States. 
Journal of Computational Chemistry. 
1996;17:49-56.

[22] Westheimer F H. Steric Effects in 
Organic Chemistry, ed. M. S. Newman, 
John Wiley & Sons, New York, 1956.

[23] Hendrickson J B. Molecular 
Geometry. I. Machine Computation 
of the Common Rings. J. Am. Chem. 
Soc.1961; 83, 22, 4537-47.

[24] Schlegel H B. Optimization of 
Equilibrium Geometries and Transition 
Structures In Lawley K P (Editor) Ab 
Initio Methods in Quantum Chemistry - 
I New York, John Wiley, 1987; 249-286.


