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Abstract

Increase in global warming poses a severe threat on agricultural production 
thereby affecting food security. A drastic reduction in yield at elevated tempera-
ture is a resultant of several agro-morphological, physiological and biochemical 
modifications in plants. Heat tolerance is a complex mechanism under polygenic 
inheritance. Development of tolerant genotypes suited to heat extremes will be 
more advantageous to tropical and sub tropical regimes. A clear understanding 
on heat tolerance mechanism is needed for bringing trait based improvement in a 
crop species. Heat tolerance is often correlated with undesirable traits which limits 
the economic yield. In addition, high environmental interactions coupled with 
poor phenotyping techniques limit the progress of breeding programme. Recent 
advances in molecular technique led to precise introgression of thermo-tolerant 
genes into elite genetic background which has been reviewed briefly in this chapter.

Keywords: global warming, high temperature, polygenic inheritance, breeding 
approaches, thermo-tolerant genes

1. Introduction

Increase in global temperature had major impact on crop productivity especially 
in tropical and sub tropical regimes. Based on climate model predictions, around 
1.8–4.0°C rise in air temperature was expected in 21st century [1]. The increase in 
temperature beyond a certain threshold level tends to induce detrimental effects in 
plant growth and development. In general, the elevation in temperature of 10–15°C 
above ambient triggers heat shock in crop plants. The extent of induced heat stress 
depends on the duration, intensity and rate of increase in global air temperature 
[2]. Indian lowlands share 15 per cent of global wheat production. The change in 
global climate would shift these fertile lowlands into heat stressed unproductive 
environment [3]. Similarly, the cultivation of cereals in Southern Africa and South 
East Asia was predicted to be heat stressed zone in near future [4]. Around 4–14% 
yield decline in rice was encountered due to elevated temperature of 1°C in South-
East Asia [5]. The declined productivity due to elevated temperature imposes the 
urgent need for development of climate resilience genotypes. Evolving heat tolerant 



Plant Breeding - Current and Future Views

2

cultivars would highly benefit the livelihood of developing countries as around 
70–80% of population relies on agriculture. Understanding the effect of heat stress 
on crop plants and its adaptation mechanisms would help in framing out the breeding 
strategies for high temperature tolerance.

Heat tolerance in crop plants is a complex mechanism involving adaptations 
through altered physiological process, morpho-anatomical features and induction 
of several biochemical pathways. On exposure to high temperature, several signal 
transduction pathways were triggered leading to changes in gene expression. As a 
result, varied stress related proteins were synthesized contributing heat tolerance in 
plants [6]. The tolerance mechanism to high temperature stress varies within geno-
types of a plant species. The existing variation between and within species provide 
scope for evolving heat tolerant lines through conventional breeding approaches 
[7]. Dissecting out genetic information through molecular tools would hasten the 
development of climate resilient cultivars contributing to food security in near 
future. A brief review on plant response, adaptation mechanisms and genetic 
approaches to combat heat stress were presented in this chapter.

2. Effect of heat stress on crop plants

Heat stress had varying impact on different phenological stages viz., germina-
tion, seedling, vegetative, flowering and reproductive of crop plants [8]. The plant 
response to heat stress depends on the duration, degree of rise in temperature and 
plant type. Under tropical regimes, high temperature with intense solar radiation 
poses a major limiting factor for yield by inducing leaf abscission, leaf senescence, 
scorching of leaves, branches and stems, growth inhibition, pollen infertility and 
poor seed formation [9, 10]. A significant decline in relative growth rate, shoot dry 
weight and net assimilation rate was recorded in sugarcane, maize and pearl millet 
on exposure to high temperature stress [11]. High reduction in grain quality was 
recorded in most of the cereal crops grown under heat stress environments [12]. 
Several physiological processes such as partitioning of assimilates, plant-water 
relations and shoot growth was affected due to heat stress in common bean [13]. In 
general, the susceptibility to heat stress was found higher at reproductive stage of 
plant development. An excessive yield loss is recorded in legumes on exposure to 
high temperature (30–35°C) during anthesis stage [14]. Drastic reduction in grain 
number and weight was observed in wheat at high temperature regimes [15]. Heat 
stress affects several metabolic pathways leading to accumulation of reactive oxygen 
species (ROS) which is a major component for oxidative stress in crop plants [16]. 
The photosystem centres (PS I and PS II) of chloroplast, mitochondria and peroxi-
somes are the major sites for generation of ROS in plants [17]. High temperature 
stress disrupts the stability of cell membrane through protein denaturation [18]. 
The induction of ROS due to high temperature stress was correlated with prema-
ture leaf senescence in Gossypium sp. [19]. Accumulation of ROS in root cells was 
evidenced in wheat on exposure to high temperature for two days [20].

3. Adaptation mechanisms

Plants tend to adapt several complex mechanisms through phenological and 
morphological changes to combat high temperature stress (Figure 1). On heat 
stress regimes, plants exhibit varied short term escape/avoidance mechanisms viz., 
altered leaf orientation, transpirational cooling, altered membrane lipid properties, 
early maturation and so on for its survival. Plants show varied degree of leaf rolling 
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upon intensity of solar radiation. A significant tolerance to high temperature was 
observed in wheat by maintenance of water potential in flag leaf through adop-
tion of leaf rolling under heat shock conditions [21]. Increase in trichomatous and 
stomatal densities, waxy layer on leaves, and larger xylem vessels are the common 
features induced during heat stress [22]. On contrary, plants also evolve long term 
tolerance mechanisms for its effective survival and productivity under high tem-
perature. Induction of osmoprotectants, antioxidants, late embryogenesis abundant 
proteins, dehydrins, and heat shock proteins are the major factors involved in 
counteracting the heat shocks. Accumulation of osmolytes such as proline, treha-
lose, and glycine betaine plays a vital role in imparting tolerance via cellular osmotic 
adjustment, detoxification of ROS, stabilization of enzymes and membrane pro-
teins [23]. Several enzymatic and non-enzymatic antioxidant defense components 
are also involved in protection against oxidative stress induced by free radicals [24]. 
The activities of ROS scavenging enzymes are temperature specific. In general, 
most of the antioxidant enzymes show increased activity with elevation in tempera-
tures. It is also influenced by genotype, growing season and phenological stages of 
plant [25]. Under high temperature conditions, several signaling molecules such 
as nitrous oxide, Ca-dependent protein kinases, Mitogen mediated protein kinase, 
sugars, and phytohormones play a role in stimulation of stress responsive genes 
via transduction pathways [26]. Evolving adaptation mechanisms (either tolerance 
or avoidance) to high temperature and drought would be more rewarding at arid 
conditions as it is often correlated.

4. Thermo-tolerance through breeding strategies

4.1 Screening criteria

Breeding for high temperature tolerance requires an essential knowledge on 
plant adaptation response to heat shocks. In general, the genotypes exhibiting 
less detrimental effect on photosynthesis and reproductive development tend to 

Figure 1. 
Adaptation mechanisms for high temperature tolerance in crop plants.



Plant Breeding - Current and Future Views

4

survive well under heat prone areas [27]. Involvement of these two components in 
selection criteria would be beneficial in evolving thermo tolerant cultivars. Tolerant 
genotypes evolve several morphological, physiological and biochemical alterations 
in response to heat shocks. Knowledge on sensitivity of several phenological stages 
to high temperature will pave way for trait specific improvement. High temperature 
is often correlated with other environmental factors which poses a major limitation 
for selection under field conditions. At present, varied selection criteria has been 
developed by scientists, which favors delineation of superior variety at prevailing 
environment [28]. Heat tolerant index has been evolved for sorghum which depicts 
the proportion of growth recovery after exposure to high temperature stress. It 
is the ratio of increase in coleoptile growth in a heat stress environment [50°C] 
to the enhancement in coleoptile length under normal environment (non-stress) 
[29]. It proves cost effective and rapid method to screen a large population size 
within shorter period. A proper validation of such technique would facilitate the 
development of tolerant lines in other crop species. Pollen viability and fruit set was 
considered as major selection criteria to predict yield under high temperature stress 
in tomato [30]. Physiological based trait selection such as harvest index, photosyn-
thetic efficiency, respiration rate, delayed senescence and canopy architecture will 
also contribute towards increased tolerance to heat stress [31, 32].

4.2 Genetic resources for thermo tolerance

Inter-mating among closely related individuals for improvement of eco-
nomic traits resulted in decline of genetic variability in a crop species [33]. 
Characterization of gene pool including land races and wild relatives would offer 
several tolerant genes for abiotic tolerance. Extensive efforts were made in screen-
ing of heat tolerant genotypes which can be directly introduced as a cultivar or 
utilized to introgress gene into new genetic background [34]. Thermo-tolerant 
lines were successfully isolated from wild gene pool in wheat [35]. High magni-
tude of variation was observed in wild progenitor “Aegilops tauschii” of wheat for 
cell viability and membrane stability [36]. Similarly, a heat tolerant source for 
reproductive stage was identified in A. geniculata and A. speltoides Tausch which 
would pave way in development of thermo-tolerant hexaploid wheat cultivars in 
near future [37]. A higher growth rate and improved photosynthetic efficiency 
was observed in wild relative “Oryza meridionalis” of rice at high temperature 
[38]. Indirect selection on pollen viability led to identification of thermo-tolerant 
accessions in soybean (DG 5630RR) [39], chickpea (ICC15614 & ICC1205) [40], 
maize (AZ100) [41], and several other crop species. Direct selection based on yield 
under target environment (heat stress) resulted in development of tolerant lines in 
many tropical grain legumes. Four tolerant genotypes/accessions viz., SRC-1-12-
1-48, SRC-1-12-1-182, 98012-3-1-2-1 and 98020-3-1-7-2 were isolated in common 
bean by employing stress tolerant indices [42]. Nine thermo-tolerant wild acces-
sions were delineated in USDA upland cotton germplasm by employing chlorophyll 
fluorescence technique [43].

4.3 Conventional breeding approaches

Evolving thermo-tolerance through conventional breeding approach proves 
promising in many crop species. Breeding for early maturing genotype in broc-
coli had improved head quality by avoiding heat stress at flowering stage [44]. In 
general, breeding programmes are carried out in hotter regions which promote 
selection of thermo-tolerant traits. Physiological based trait breeding was practiced 
at International Maize and Wheat Improvement Center (CIMMYT) for development 
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of heat tolerant cultivars in wheat. The parental genotypes were characterized 
through various crossing schemes and appropriate breeding programme was framed 
for improvement of thermo related traits [45]. A wild ancestor “T. tauschii” was 
utilized as a gene donor for achieving increased grain size and filling percent under 
high temperature through recurrent selection [46]. Similarly, three cycles of recur-
rent selection had led to improved yield under heat stress regimes in potato [47]. 
Thermo tolerant alleles were introgressed into heat sensitive cultivar “Paymaster 
404” from a donor accession “7456” of G. barbadense through backcross breeding 
[48]. A significant improvement in yield was realized under heat stress environment 
by adoption of gametic selection in maize [41]. A deep rooted cultivar “Nagina 22 
(N22)” of aus rice exhibited high pollen viability and spikelet fertility (64–86%) 
under heat stress [49]. The thermo-tolerance of N22 was successfully introgressed 
into Xieqingzao B line through backcross method [50]. Dissecting out the genetic 
and physiological basis of thermo-tolerance will hasten up the development of 
resilient cultivars suited to hotter regions.

4.4 Advanced breeding approaches for thermo tolerance

The genetic basis of thermo-tolerance is not clearly understood because of 
complex trait inheritance. Advances in molecular approaches such as DNA marker 
identification and genotyping assay had paved way in determination of several 
QTL’s associated with high temperature tolerance [51]. In wheat, QTL’s were identi-
fied for canopy temperature, and chlorophyll fluorescence imparting tolerance to 
heat stress [52]. A major QTL “Htg 6.1” in lettuce was involved in enhancement of 
seed germination capacity at high temperature [53]. A recessive QTL for increased 
spikelet fertility under high temperature was dissected out in rice at chromosome 4. 
The identified QTL were found in several populations of heat tolerant rice cultivars 
[54]. Six QTL’s were involved to enhance fruit set at high temperature in tomato 
[55]. Five thermo tolerant QTL’s were identified in Brassica campestris by employing 
random amplified polymorphic DNA (RAPD) and amplified fragment length poly-
morphism (AFLP) markers [56]. In maize, eleven major QTL’s for increased pollen 
germination and pollen tube growth under high temperature was mapped using 
restriction fragment length polymorphism (RFLP) markers [57]. Identification of 
candidate QTL’s would pave way in precise introgression of heat tolerant genes into 
superior cultivars through marker assisted breeding approach.

The closely associated markers with targeted QTL will hasten the recovery of 
superior genotypes with heat tolerant traits in a population. A marker assisted 
breeding approach was employed in rice to derive heat tolerant line with superior 
grain quality. Two flanking markers viz., ktIndel001 and RFT1 enclosing 1.5 Mb 
chromosomal region was transferred from tolerant cultivar “Kokoromachi” to 
Tohoku 168. Significant improvement in grain quality under high temperature 
was observed in the derived NIL’s compared to susceptible cultivar “Tohoku 168” 
[58]. Fourteen SSR markers linked to heat susceptibility index of grain filling per 
cent and single kernel weight was identified in bread wheat which was employed 
in marker assisted selection (MAS) to screen genotypes for thermo tolerance [59]. 
Utilization of MAS approach for heat tolerance remains less efficient because of 
high gene x environment and epistatic interactions. The low breeding efficiency can 
be resolved by genomic selection (GS) approach which involves wide number of 
molecular markers exhibiting high genome coverage. High genetic gain is realized 
in GS approach due to close association between predicted and true breeding value 
over generations [60].

At present, transgenic approach also proves to be desirable tool for designing 
thermo tolerant lines via introgression of genes from diverse gene pools [61]. The 
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genetic transformation was focused primarily on transcription factors, induction of 
heat shock proteins, molecular chaperones, osmolytes, antioxidant components and 
growth regulators [62]. Heat shock proteins play a primary role in imparting thermo 
tolerance in crop species. It is functionally associated with diverse group of molecu-
lar chaperones that is involved in restoration of degraded proteins to their native 
structure under high temperature. Induction of heat shock proteins through genetic 
manipulation was achieved in arabidopsis [63], maize [64], rice [65], soybean [66], 
and pepper [67]. The DREB gene family was also reported to impart heat tolerant 
response in many crop species. Over expression of ZmDREB2A in maize [68] and 
GmDREB2A in soybean [69] was associated with increased survival and adaptation 
under high temperature. Transgenic techniques were employed to alter membrane 
lipid properties for thermo-tolerance in crop species. High proportion of saturated 
fatty acid in membrane had increased tolerance under heat stress. Suppression of 
omega-3 fatty acid desaturase gene in chloroplast had reduced the accumulation of 
trieonic fatty acid in transgenic tobacco [70] and tomato [71] leading to thermo-
tolerance. A significant accumulation of glycine betaine (osmolyte) was achieved 
in arabidopsis through transfer of “cod gene” from Arthrobacter globiformis [72]. 
High proportion of glycine betaine protects the PSII component by inhibiting the 
ROS activities under heat stress. Implementation of transgenic approaches in other 
crop species will accelerate the development of resilient genotypes suited to high 
temperature regimes.

5. Conclusions

Development of thermo-tolerant lines has to be prioritized to meet out the 
future climatic change coupled with food demands. Knowledge on plant response 
and adaptation mechanisms to heat stress is required for framing out breeding 
strategies. It remains a challenging task in evolving resilient genotypes suited to 
high temperature because of less efficient screening protocols at field conditions. 
The existence of low genetic variation for heat response related traits limited 
the progress of conventional breeding approach in many crop species. Use of 
molecular breeding strategies had opened up several heat tolerant related QTL’s in 
crop species. However, still precise research work involving huge marker data is 
needed for attaining high breeding efficiency for thermo tolerance. Recently, the 
involvement of transgenic approach paved way for utilization of tolerant source 
from diverse gene pools. Study on induction of heat shock proteins led to increased 
thermo tolerance in many crop species. Similarly, other heat response related traits 
such as induction of antioxidant components, osmolytes, and chaperones were 
also included in transgenic approach for inducing heat stress tolerance. Thus, high 
economic yield could be realized at elevated temperature regimes with the involve-
ment of combined breeding approaches.
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