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Chapter

Higher Order Haar Wavelet
Method for Solving Differential
Equations
Jüri Majak, Mart Ratas, Kristo Karjust and Boris Shvartsman

Abstract

The study is focused on the development, adaption and evaluation of the higher
order Haar wavelet method (HOHWM) for solving differential equations. Accuracy
and computational complexity are two measurable key characteristics of any
numerical method. The HOHWM introduced recently by authors as an improve-
ment of the widely used Haar wavelet method (HWM) has shown excellent
accuracy and convergence results in the case of all model problems studied. The
practical value of the proposed HOHWM approach is that it allows reduction of the
computational cost by several magnitudes as compared to HWM, depending on the
mesh and the method parameter values used.

Keywords: higher order Haar wavelet method, convergence analysis, accuracy
estimates, improvement of widely used Haar wavelet method

1. Introduction

Wavelets are most commonly used in signal processing applications to denoise
the real signal, to cut a signal into different frequency components, to analyze the
components with a resolution matched to its scale, also in image compression,
earthquake prediction and other algorithms.

However, the current study is focused on the area where the use of wavelet
methods shows a growth trend, i.e., in the solution of differential equations. Many
different wavelets based methods have been introduced for solving differential and
integro-differential equations. The Legendre wavelets are utilized to solve fractional
differential equations in [1–4] and integro-differential equations in [5, 6]. In [7, 8],
the Daubechies wavelet based approximation algorithms are derived to solve ordi-
nary and partial differential equations. In [9], the Lucas wavelets are combined with
Legendre–Gauss quadrature for solving fractional Fredholm–Volterra integro-
differential equations. The series solution of partial differential equations through
separation of variables is developed by using the Fourier wavelets in [10]. The Riesz
wavelets- based method for solving singular fractional integro-differential equa-
tions was developed in [11]. In the studies in [12], the Galerkin method was com-
bined with the quadratic spline wavelets for solving Fredholm linear integral
equations and second-order integro-differential equations. The Chebyshev wavelets
method for partial differential equations with boundary conditions of the telegraph
type is examined in [13].
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The simplest of all wavelet-based approaches was introduced by Alfred Haar
already in 1910 [14]. The Haar wavelet-based approach for solving differential and
integro-differential equations was introduced in 1997 [15, 16]. Based on the Haar
wavelet method (HWM), Chen and Hsiao in [15, 16] proposed an approach where
the higher order derivative involved in the differential or integro-differential equa-
tions is expanded into the series of Haar wavelets. This approach is based on the
nature of Haar functions. Due to the piece-wise constant nature of the Haar func-
tions they are not differentiable but are integrable. In [15, 16], the problems of the
lumped and distributed parameter system and those of linear time delayed systems
were solved. The Chen and Hsiao approach-based HWM was adapted successfully
for solving a wide class of differential, integro-differential and integral equations
[17–45]. Pioneering work in the development of Haar wavelet-based techniques was
conducted by Lepik [17–23], covering ordinary and partial differential equations
[17, 19, 21], integro-differential equations [18], integral equations [20], and
fractional integral equations [22]. The HWM approaches and their applications are
summarized in a monograph [23]. The HWM is adapted for the analysis of
nonlinear integral and integro-differential equations in [24–27], covering one- and
multi-dimensional problems. Solid mechanics, particularly composite structures,
are examined using the HWM in [28–33]. These studies cover free vibration
analysis of orthotropic plates [28], functionally graded composite structures [30–32],
delamination detection in composite beams [29], and other structures.

Some recent trends in the development and application of the HWM can be
outlined as solutions of fractional differential and integro-diffrential equations
[34–38] as well as the development of a non-uniform and adaptive grid. In the case
of fractional differential or integro-differential equations, two principally different
HWM approaches regarding to wavelet expansion are available in the literature.
The aim of the first approach is to expand the highest order fractional derivative
included in the differential equation directly into Haar wavelets, i.e., direct conver-
sion of the Chen and Hsiao approach for fractional differential equations. In
[34–38], the Haar wavelet operational matrix of fractional order integration is
introduced and implemented for solving differential and integro- differential equa-
tions. The aim of the second approach is to utilize the definitions of fractional
derivatives (Caputo derivative, etc.) and convert fractional differential terms into
integrals, which contain integer derivatives only. Such an approach has been intro-
duced by Lepik in [22] and utilized in a number of papers [39–41]. The two
approaches considered are implemented and compared in [42]. It is pointed out in
[42] that the two approaches have the same rate of convergence if the order of the
fractional derivative exceeds one (α > 1). However, if the order of the fractional
derivative is less than one (α < 1), the second approach has the rate of convergence
equal to two, but the rate of convergence of the first approach is 1 + α, i.e., less than
two. Thus, in the case of α < 1, the second approach has a higher convergence rate
and can be preferred.

HWM with a nonuniform grid was introduced in [43] using a proportionally
changing grid size. The same approach was utilized for the free vibration analysis of
non-uniform axially graded beams in [44] and for solving singularly perturbed
differential difference equations of neuronal variability in [45].

In most of the studies [17–45], it was concluded that HWM is simple to imple-
ment. In the review paper [46], it was pointed out that the HWM is efficient and
powerful in solving a wide class of linear and nonlinear reaction–diffusion equa-
tions. However, the convergence theorem and accuracy estimates derived for the
HWM in [47, 48] state that the order of convergence of the Chen and Hsiao
approach-based HWM is equal to two. The latter result is rather modest in the
context of engineering. Comparison of the HWM with widely used numerical
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methods in engineering reveals that HWM needs principal improvement in order to
compete with the differential quadrature method (DQM) [49].

The HOHWM as an improvement of HWM was recently introduced by Majak
et al. in [50]. The convergence rate of the method was improved from 2 to 2 + 2 s,
where s stands for the method parameter. This new method is currently underused,
but the first results obtained have shown that a principal growth of the accuracy can
be achieved with a minimum growth of complexity [51–53]. In [52], the free vibra-
tions analysis of the Euler-Bernoulli nanobeam was performed. Figure 1 shows the
numerical complexity estimates of the HWM and HOHWM solutions yielding a
similar absolute error. Here the numerical complexity is determined by number of
main operations of the most complex subtask - solution of discrete algebraic system
of equations [52].

The logarithmic scale is used in Figure 1 since the complexity of the HWM
appears several orders higher (10ˆ8) than that of the HOHWM (10ˆ3… 10ˆ5). These
results were obtained using the method parameter s = 1 (i.e., fourth order conver-
gence). In practice, one of most important factors is the computational cost. In the
case of the considered problem, the computational cost of the HOHWM solution is
10ˆ3… 10ˆ5 times lower than that of the HWM. The obtained results hold good in
the case of all four boundary conditions considered: pinned-pinned (P–P), clamped-
pinned (C-P), clamped-clamped (C-C), and clamped-free (C-F).

2. Theoretical basis of the HWM and the HOHWM

This section introduces the Haar functions and presents the theoretical basis of
both, the HWM and the HOHWM, covering basic principles, algorithms, conver-
gence and accuracy issues.

2.1 Haar functions

The HWM and the HOHWM use different approaches, but both use Haar
function expansions for the approximation of derivatives. The Haar functions hi xð Þ,
are given as in [14].

hi xð Þ ¼
1 for x∈ ξ1 ið Þ, ξ2 ið Þ½ Þ
�1 for x∈ ξ2 ið Þ, ξ3 ið Þ½ Þ
0 elsewhere

8

>

<

>

:

(1)

Figure 1.
Numerical complexity. Free vibration analysis of the nanobeam.
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where i ¼ mþ kþ 1, m ¼ 2 j is a maximum number of square waves deployed in
the interval A,B½ � and the parameter k indicates the location of the particular square
wave,

ξ1 ið Þ ¼ Aþ 2kμΔx, ξ2 ið Þ ¼ Aþ 2kþ 1ð ÞμΔx, ξ3 ið Þ ¼ Aþ 2 kþ 1ð ÞμΔx, (2)

μ ¼ M=m,Δx ¼ B� Að Þ= 2Mð Þ,M ¼ 2J: (3)

In Eq. (3) M ¼ 2Jstands for maximum resolution. Obviously, the Haar functions
hi xð Þ form an orthonormal basis. The integrals of order n of the Haar functions (1)
can be expressed as in [17]

pn,i xð Þ ¼

0 for x∈ A, ξ1 ið Þ½ Þ
x� ξ1 ið Þð Þn

n!
for x∈ ξ1 ið Þ, ξ2 ið Þ½ Þ

x� ξ1 ið Þð Þn � 2 x� ξ2 ið Þð Þn
n!

for x∈ ξ2 ið Þ, ξ3 ið Þ½ Þ

x� ξ1 ið Þð Þn � 2 x� ξ2 ið Þð Þn þ x� ξ3 ið Þð Þn
n!

0

for
x∈ ξ3 ið Þ,B½ Þ

elsewhere
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(4)

Formulas (4) hold for a general case where i> 1, in the case i ¼ 1 holds pn,1 ¼
x�Að Þn
n!

. The interval A,B½ � in Eqs. (1)–(3) can be converted to the unit interval 0, 1½ �
by use of the exchange of variables τ ¼ x� Að Þ= B� Að Þ .

In the case of uniform mesh the collocation points can be introduced as.

xl ¼
2l� 1
4M

, l ¼ 1, … , 2M: (5)

The elements of the discrete 2M∙2M Haar matrix can be expressed as values of
Haar functions in collocation points given by Eq. (5)

H2M
il ¼ hi xlð Þ: (6)

The elements of the matrix of n–th order integrals of the Haar function can be
evaluated as

Pnð Þ2Mil ¼ pn,i xlð Þ, (7)

where pn,i xð Þ is defined by formulas (4).

2.2 Haar wavelet method (HWM)

The Chen and Hsiao approach based HWM, utilized in [15–49]. can be consid-
ered as a commonly/widely used HWM.

2.2.1 Method description

Let us consider first the n-th order ordinary differential equation in the general
form as.
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G x, u, u0, u00, … u n�1ð Þ, u nð Þ
� �

¼ 0: (8)

Let us assume that f xð Þ is an integrable square and finite function. The Haar
wavelet expansion for the function f xð Þis given as (here ai stand for the unknown
wavelet coefficients).

f xð Þ ¼
X

∞

i¼1

aihi xð Þ: (9)

According to the HWM approach introduced by Chen and Hsiao in [15, 16] the
highest order derivative involved in Eq. (8) is expanded into the series of Haar
wavelets, i.e.,

dnu xð Þ
dxn

¼
X

∞

i¼1

aihi xð Þ, (10)

Based on the definition of the Haar function (1)–(3), Eq. (10) can be expressed as.

dnu xð Þ
dxn

¼ a1h1 þ
X

∞

j¼0

X

2 j�1

k¼0

a2 jþkþ1h2 jþkþ1 xð Þ: (11)

The solution of the differential Eq. (8) can be obtained by integrating Eq. (11)
n-times as.

u xð Þ ¼ a1x
n

n!
þ
X

∞

j¼0

X

2 j�1

k¼0

a2 jþkþ1pn,2 jþkþ1 xð Þ þ BT xð Þ: (12)

In Eq. (12) pn,2 jþkþ1 xð Þ stand for n -th order integrals of the Haar functions given
by Eq. (4) and BT xð Þis a boundary term. Obviously, in the numerical analysis the
finite number of the terms corresponding to the fixed maximum resolution
(N ¼ 2M) can be considered as.

u xð Þ ¼ a1x
n

n!
þ
X

2M

j¼0

X

2 j�1

k¼0

a2 jþkþ1pn,2 jþkþ1 xð Þ þ BT xð Þ: (13)

The integration constants included in the boundary term BT xð Þ can be deter-
mined from the boundary conditions. Substituting the solution (13) and its deriva-
tives in the differential Eq. (8) and employing discrete collocation points (5), we
obtain 2M∙2M algebraic system of equations for determining unknown wavelet
coefficients ai . Finally, when the wavelet coefficients ai are known, the solution of
the differential Eq. (8) can be evaluated using expression (13). Note that the collo-
cation points defined by Eq. (5) correspond to uniform mesh. Obviously, various
non-uniform meshes can be utilized instead of Eq. (5).

Let us consider next a partial differential equation in the general form as

R x, y,
∂u

∂x
,
∂u

∂y
,
∂
2u

∂x2
,
∂
2u

∂y2
,
∂
2u

∂x∂y
, … ,

∂
nþqu

∂xn∂yq

� �

¼ 0, (14)

where n and p stand for the highest order derivatives with respect tox and y,
respectively. The solution domain is considered rectangle 0,L1½ �x 0,L2½ �. According
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to the Chen and Hsiao approach the highest order derivative involved in the differ-
ential equation is expanded into Haar wavelets (in this case of 2D expansion)

∂
nþqu

∂xn∂yq
¼
X

2M1

i¼1

X

2M2

l¼1

ailhi xð Þhl yð Þ: (15)

In Eq. (15) 2M1 and 2M2stand for the number of grid points with respect to x
and y coordinates, respectively. Such a 2D wavelet expansion was introduced by
Lepik in [19] and is most commonly used. Similar to the 1D case, integrating the
relation (15) n-times with respect to x and q times with respect to y, we obtain the
solution of the differential Eq. (14) as [19].

u x, yð Þ ¼
X

2M1

i¼1

X

2M2

l¼1

ailpn,i xð Þpq,l yð Þ þ BT x, yð Þ: (16)

The boundary term BT x, yð Þ includes nþ q integration constants which can be
determined from the boundary conditions. Substituting Eq. (16) in the differential
Eq. (14) and satisfying the obtained equation at the collocation points (e.g., in
uniform grid points), we obtain an algebraic system of rank 2M1ð Þ2∙ 2M2ð Þ2 with
respect to the wavelet coefficients. By substituting the wavelet coefficients in
Eq. (16), the solution of the differential Eq. (14) can be evaluated at any point in the
given domain.

2.2.2 Convergence theorem and accuracy estimates

The convergence theorem for the Chen and Hsiao based HWM was proved by
Majak et al. in [47].

Theorem. Let us assume that f xð Þ ¼ dnu xð Þ
dxn ∈L2 Rð Þ is a continuous function

on 0, 1½ � and its first derivative is bounded.

∀x∈ 0, 1½ � ∃η :
df xð Þ
dx

�

�

�

�

�

�

�

�

≤ η, n≥ 2 boundary value problems
� �

: (17)

Then, the Haar wavelet method based on the approach proposed by Chen and
Hsiao in [15, 16] will be convergent, i.e., the L2 -norm of the error function EMj j
vanishes as J goes to infinity. The order of convergence is equal to two.

EMk k2 ¼ O
1

2Jþ1

� �2
" #

: (18)

The proof is given in [47]. The error bound is derived as.

EMk k2 ≤
ηCn

6
1

2Jþ1

� �2

¼ 4
9

η

floor n=2ð Þ!ð Þ2
1

2Jþ1

� �2

: (19)

In the particular case where n ¼ 1, the error bound can be derived as.

EMk k2 ≤
η
ffiffiffi

3
p 1

2Jþ1

� �2

: (20)
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The error bounds (19) and (20) are main/biggest error terms determining the
rate of convergence. A detailed accuracy analysis of the HWM for the fourth order
ordinary differential equations is performed in [48], where two error terms are
pointed out as.

EMk k2 ≤
η

12
1
N

� �2

þ 1
28

1
N

� �4
" #

: (21)

It appears that the second error term is the fourth order term, which does not
play any role in the standard HWM application. However, this information is
important in cases where extrapolation is employed for obtained solutions. For
example, by applying the Richardson extrapolation, the first error term is canceled
and the order of convergence increases from two to four (the value three is omitted
since the third order term in error estimate is missing). Furthermore, it has been
shown in [48] that the error estimate includes even order terms only. This aspect
can be considered in further improvement of the HWM.

Obviously, at the same assumptions, the multi-dimensional Haar wavelet
method is also convergent and the rate of convergence is equal to two.

The obtained results will be validated by a number of case studies by computing
the numerical rates of convergence and comparing the obtained and theoretical
results. These results are confirmed in [47–53] and in other papers.

2.3 Higher order Haar wavelet method

As mentioned above, the HOHWMwas introduced in [50] as an improvement of
the widely used Chen and Hsiao approach based HWM. The HOHWM is based on:

• higher order wavelet expansion,

• algorithm for determining complementary integration constants.

It can be pointed out that utilizing the higher order wavelet expansion itself does
not provide substantial increase of the rate of convergence and accuracy. The algo-
rithm used for determining complementary integration constants plays key role.

2.3.1 Method description

Let us consider first the n-th order ordinary differential Eq. (8).
According to the the Haar wavelet expansion is expressed as.

dnþ2su xð Þ
dxnþ2s ¼

X

∞

i¼1

aihi xð Þ, s ¼ 1, 2, … (22)

In the simplest case, wheres ¼ 1, the nþ 2 order derivative is expanded into
Haar wavelets. The even values 2 s are used, based on the analysis of error estimates
of the HWM given in the previous section. Integrating the expression (22) nþ 2
times with respect to x we obtain the solution of the differential Eq. (8) as.

u xð Þ ¼ a1x
nþ2s

nþ 2sð Þ! þ
X

∞

j¼0

X

2 j�1

k¼0

a2 jþkþ1pnþ2s,2 jþkþ1 xð Þ þ SBT xð Þ þHBT xð Þ: (23)
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The boundary terms SBT xð Þ and HBT xð Þ include nþ 2s integration constants cr.

SBT xð Þ ¼
X

n�1

r¼0

cr
xr

r!
,HBT xð Þ ¼

X

nþ2s�1

r¼n

cr
xr

r!
: (24)

The integration constants c0, c1, … , cn�1 can be determined from the boundary
conditions. To determine the remaining 2 s integration constants, the following two
algorithms are proposed by authors in [50].

Using selected uniform grid points (nearest to the boundary from both sides).

xi ¼
i

N
, xi ¼ 1� i

N
, i ¼ 0, … , s� 1: (25)

Using selected Chebyshev–Gauss–Lobatto grid points (nearest to the boundary
from both sides).

xi ¼
1
2

1� cos
i� 1ð Þπ
N � 1ð Þ


 �

, i ¼ 1, … , s, i ¼ N � sþ 1, … ,N: (26)

In the particular case s ¼ 1 the differential Eq. (8) is satisfied in the boundary
points.

G 0, u 0ð Þ, u0 0ð Þ, u00 0ð Þ, … u n�1ð Þ 0ð Þ, u nð Þ 0ð Þ
� �

¼ 0,G 1, u 1ð Þ, u0 1ð Þ, u00 1ð Þ, … u n�1ð Þ 1ð Þ, u nð Þ 1ð Þ
� �

¼ 0: (27)

Obviously in the latter case the two algorithms considered above, coincide.

3. Numerical convergence analysis and Richardson extrapolation

The derivations of the numerical estimates of the order of convergence, as
well as extrapolation formulas can be found in [54] and are omitted herein for
the sake of conciseness. Let us denote the numerical solutions on a sequence of
nested grids by Fi�2,Fi�1, Fi, corresponding to grid sizes hi�2=hi�1 ¼ hi�1=hi ¼ 2.
Then the order of convergence of the numerical method can be estimated by the
formula.

kEi ¼ log
Fi�1 � Fexact

Fi � Fexact

� �

= log 2ð Þ, (28)

if the exact solution Fexact is known. If the exact solution is unknown, the
following formula can be employed [54].

ki ¼ log
Fi�2 � Fi�1

Fi�1 � Fi

� �

= log 2ð Þ: (29)

The accuracy of the results can be improved by employing the Richardson
extrapolation formula as [54].

Ri ¼ Fi þ
Fi � Fi�1

2k � 1
: (30)
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The accuracy of the extrapolated results Ri can be estimated by applying formu-
las (28) or (29) to these results. The numerical rates of convergence computed for
case study, described in Section 5.1, are depicted in Figure 2.

The numerical rates of convergence determined are in agreement with conver-
gence theorem for the HWM (Section 2.2.2) and relation given for the HOHWM in
Section 2.3 (the rate of convergence of the HOHWM is equal to 2 + 2 s).

4. Complexity analysis

As pointed out above, the accuracy and numerical/time complexity are two key
characteristics for any numerical method, algorithm. The computing time is often
used as a measure of complexity of algorithms using particular software. More
general approach applied commonly in algorithm theory is to estimate the number
of basic operations required by each algorithm. The latter approach is independent
of software used and does not even require execution of the algorithms. For this
reason, in the current study the numerical complexity of the algorithms is estimated
based on the number of basic operations.

According to the HWM and the HOHWM algorithms the solution of the differ-
ential equation is obtained from the solution of the discrete algebraic system of
equations and certain additional operations for composing the linear system and
evaluation of the solution in given points. The mentioned additional operations are
similar for both methods and have lower asymptotic complexity than the solution of
the algebraic system of equations. Thus, the numerical complexity of the HWM and
the HOHWM can be compared based on number of basic operations needed for
solving algebraic system of equations determined by the rank of the algebraic
system of equations (systems are similar by structure).

In the case of the same number of collocations points N, the ranks of the
algebraic systems corresponding to the HWM and the HOHWM are equal to N and
N + 2 s (here s = 1, 2 or 3), respectively. Furthermore, in the cases where the 2 s
complementary integrations constants are determined analytically, the rank of the
algebraic system of equations of the HOHWM reduces to N. Thus, in the case of the
same mesh used the numerical complexity of the HWM and HOHWM is similar (or
equal depending on implementation). However, these solutions have principally
different accuracy (see Tables 1-5) and such comparison is rather theoretical.

In practice, it is important to compare methods, providing the same accuracy. In
the following the given accuracy is fixed by absolute error less than 2.0e-10 and the
complexities of the HWM and the HOHWM are compared in Figure 3. The

Figure 2.
Numerical rates of convergence for the HWM and the HOHWM.
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logarithmic scale is used in Figure 3, since the complexities of the HWM and the
HOHWM differ by several magnitudes.

In the case of the HWM the absolute error 2.0e-10 was reached by use of 16,384
collocation points (corresponding algebraic system has 16,384 equations). In the
case of the HOHWM the same accuracy was achieved by use just 64, 16 or 4

HWM Extrapolated results

N Solution at point

t = 0.5

Absolute

error

Converg.

rate

Solution at point

t = 0.5

Absolute

error

Converg.

rate

4 0.60256316864 1.72E-03

8 0.60386098486 4.27E-04 2.0150 0.60429211947 4.49E-06

16 0.60418124220 1.06E-04 2.0037 0.60428798114 3.56E-07 3.6598

32 0.60426104700 2.66E-05 2.0009 0.60428765000 2.44E-08 3.8645

64 0.60428098202 6.64E-06 2.0002 0.60428762718 1.59E-09 3.9385

128 0.60428596477 1.66E-06 2.0001 0.60428762569 1.02E-10 3.9680

256 0.60428721039 4.15E-07 2.0000 0.60428762560 6.40E-12 3.9901

Table 1.
HWM results and extrapolated results (Richardon extrapolation).

HOHWM (s = 3,VPA)

N Solution at point t = 0.5 Absolute error Converg. rate

4 0.604287625766393 1.75E-10

8 0.604287625565219 2.64E-11 2.7282

16 0.604287625591526 7.19E-14 8.5195

32 0.604287625591597 2.18E-16 8.3631

64 0.604287625591598 7.32E-19 8.2201

128 0.604287625591598 2.69E-21 8.0890

256 0.604287625591598 9.17E-23 4.8738

Table 3.
HOHWM (s = 3,VPA).

HOHWM(s = 1) HOHWM (s = 2, VPA)

N Solution at point

t = 0.5

Absolute

error

Converg.

rate

Solution at point

t = 0.5

Absolute

error

Converg.

rate

4 0.60426829567 1.93E-05 0.60428745306474 1.73E-07

8 0.60428616352 1.46E-06 3.7247 0.60428762225323 3.34E-09 5.6915

16 0.60428752673 9.89E-08 3.8865 0.60428762553096 6.06E-11 5.7827

32 0.60428761918 6.41E-09 3.9477 0.60428762559057 1.03E-12 5.8780

64 0.60428762518 4.08E-10 3.9748 0.60428762559158 1.68E-14 5.9367

128 0.60428762557 2.56E-11 3.9876 0.60428762559160 2.69E-16 5.9679

256 0.60428762559 1.60E-12 4.0076 0.60428762559160 4.25E-18 5.9853

Table 2.
HOHWM (s = 1) and HOHWM (s ¼ 2,VPA).
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collocations points corresponding to the s = 1, s = 2 or s = 3, respectively (i.e. the
algebraic system needed to solve is reduced to 64, 16 or 4 equations). Thus, it can be

HWM HOHWM (s = 1)

N Solution at point

x = 0.5

Absolute

error

Converg.

rate

Solution at point

x = 0.5

Absolute

error

Converg.

rate

4 5.5271847185 9.63E-02 5.4468387805 1.59E-02

8 5.4504966936 1.96E-02 2.2961 5.4315095153 6.20E-04 4.6851

16 5.4355789218 4.69E-03 2.0639 5.4309280380 3.85E-05 4.0087

32 5.4320493805 1.16E-03 2.0155 5.4308919203 2.40E-06 4.0053

64 5.4311787173 2.89E-04 2.0038 5.4308896716 1.50E-07 4.0014

128 5.4309617728 7.23E-05 2.0010 5.4308895312 9.36E-09 4.0003

256 5.4309075816 1.81E-05 2.0002 5.4308895225 5.85E-10 4.0001

512 5.4308940366 4.51E-06 2.0001 5.4308895219 3.66E-11 3.9999

1024 5.4308906505 1.13E-06 2.0000 5.4308895219 2.29E-12 3.9968

Table 4.
Comparison of the HWM and the HOHWM (s = 1).

HWM HOHWM (s = 1)

N Solution at point

x = 0.5

Absolute

error

Converg.

rate

Solution at point

x = 0.5

Absolute

error

Converg.

rate

4 7.9429919221 2.31E-01 7.7081052185 4.12E-03

8 7.7555236804 4.33E-02 2.4139 7.7125990532 3.78E-04 3.4430

16 7.7224700620 1.02E-02 2.0789 7.7122525729 3.19E-05 3.5669

32 7.7147496939 2.53E-03 2.0189 7.7122227612 2.12E-06 3.9125

64 7.7128508612 6.30E-04 2.0047 7.7122207750 1.34E-07 3.9795

128 7.7123780687 1.57E-04 2.0012 7.7122206490 8.43E-09 3.9949

256 7.7122599897 3.93E-05 2.0003 7.7122206411 5.27E-10 3.9986

512 7.7122304774 9.84E-06 2.0001 7.7122206406 3.30E-11 3.9974

1024 7.7122230998 2.46E-06 2.0000 7.7122206406 2.13E-12 3.9573

Table 5.
Comparison of the HWM and the HOHWM (s = 1).

Figure 3.
Numerical complexities of the HWM and the HOHWM.
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concluded, that making use of the HOHWM instead of the HWM will lead to
principal reduction of numerical complexity of the solution.

The practical value of the developed HOHWM approach is reduction of compu-
tational cost of the solution by several magnitudes (directly determined by numer-
ical complexity). It should be noted that making use of the HOHWM instead of the
HWM, especially in the cases s > 1 will increase implementation complexity, but
not substantially.

5. Case studies

In the following, the two case studies are performed in order to validate the
accuracy and convergence of the recently introduced HOHWM and compare results
with HWM.

5.1 Linear ordinary differential equations

As a rule, the newmethods are validated on the samples where the exact solution is
known. Herein, the linear ordinary differential equations are considered as the first
sample problem. Let us consider a sample problem solved in [17] by applying theHWM

G t, u tð Þ, du tð Þ
dt

,
d2u tð Þ
dt2

 !

¼ d2u tð Þ
dt2

þ α
du tð Þ
dt

þ βu tð Þ � γf tð Þ ¼ 0, (31)

where f tð Þ is a given function (f tð Þ ¼ cos 2tð Þ), p, q and rare constant parameters
(α ¼ 0:05, β ¼ 0:15, γ ¼ 1). The initial conditions u 0ð Þ ¼ 0, du

dt 0ð Þ ¼ 1 are utilized.
In the case of the HWM, the second order derivative is expanded into Haar

wavelets as

d2u tð Þ
dt2

¼ aH: (32)

In Eq. (32), a and H stand for the coefficient vector (row vector) and the
discrete Haar matrix given by formulas (6), respectively. The solution of the dif-
ferential Eq. (31) is obtained by integrating relation (32) twice with respect to t and
satisfying initial conditions

u tð Þ ¼ aP2 þ t, (33)

where the elements of the matrix P2 are defined by (7) and the coefficient vector
a is determined by substituting the solution (33) and its derivatives in Eq. (31) as

a ¼ γf tð Þ � α� βtð Þ H þ αP1 þ βP2½ ��1: (34)

In the case of the HOHWM and s = 1, the fourth order derivative is expanded
into Haar wavelets as

d4u tð Þ
dt4

¼ aH: (35)

The solution of the differential Eq. (31) is obtained by integrating relation (35)
four times with respect to t and satisfying initial conditions
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u tð Þ ¼ aP4 þ c3
t3

6
þ c2

t2

2
þ t, (36)

The remaining two integration constants in Eq. (36) can be determined by satis-
fying Eq. (31) at the boundary points t ¼ 0 and t ¼ 1: The latter two algebraic
equations can be added to the algebraic system obtained by substituting the solution
(36) and its derivatives in Eq. (31). In the latter case, the algebraic system includes
2Mþ 2 equations. An alternate approach is to determine the remaining two integra-
tion constants analytically from the same conditions and replace to algebraic system.

The numerical results obtained by utilizing the HWM and the HOHWM are
compared in Tables 1-3.

It can be observed from Tables 1-3 that in the case of the HWM, the order of
convergence tends to two and in the case of the HOHWM, it tends to 2 + 2 s, i.e., to
four if s = 1, to six if s = 2 and to eight if s = 3. Use of HOHWM provides a principal
increase of accuracy. The maximum accuracy obtained by the use of the HWM at
256 collocation points (N = 256) has been achieved by using the HOHWM at 16
collocation points if s = 1, and at 4 collocation points if s = 2. In the case of the
HOHWM and s = 3, the accuracy achieved at 4 collocation points was significantly
higher than that of the HWM with 256 collocation points.

In Figure 4 are shown the error ratios for different mesh (N = 4,16,64 and 256).
The absolute error of the HWM is divided by error of the HOHWM, where blue,
green and gray colors correspond to the HOHWM parameter s values 1,2 and 3,
respectively. Thus, in the case of mesh N = 4, making use of the HOHWM instead of
the HWM reduced the absolute error 8.91E+01 (s = 1) to 9.83E+06 (s = 3) times. In
the case of mesh N = 256, the use of the HOHWM reduced the absolute error 2.59E
+05 (s = 1) to 4.53E+15 (s = 3) times. Since the error ratio depends strongly on the
mesh used, the logarithmic scale was used in Figure 4.

The numerical analysis is performed usingMATLAB software. Since the accuracy
achieved by the use of theHOHWMin the case of s = 2 and s = 3 exceeds the limits of the
double precision computing, the variable precision computing (VPA) was used.

Note that this is needed only in the case of particular problems and large mesh
where the accuracy exceeds the limits of double precision computing.

5.2 Nonlinear Lienard equations

The nonlinear differential equation given as

d2u xð Þ
dx2

þ f uð Þ du xð Þ
dx

þ g uð Þ ¼ 0 (37)

Figure 4.
Ratios of the absolute error of the HWM and the HOHWM.
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is known as the Lienard equation. In the following, it is assumed that f uð Þ ¼ 0
and g uð Þ ¼ 0. Let us consider solution in the interval 0, 1½ � and assume the boundary
conditions in the form.

u 0ð Þ ¼ u0, u 1ð Þ ¼ u1: (38)

In the current study the nonlinear differential Eq. (37) is linearized by applying
the quasi-linearization technique as [55].

d2urþ1 xð Þ
dx2

þ durþ1 xð Þ
dx

ur xð Þ þ dur xð Þ
dx

urþ1 xð Þ � dur xð Þ
dx

ur xð Þ ¼ 0: (39)

Obviously, Eq. (39) can be solved iteratively with respect to r.
In the case of the HWM, the second order derivative is expanded into Haar

wavelets

d2urþ1 xð Þ
dx2

¼ aH (40)

and the solution of the Lienard Eq. (37) can be derived as

u xð Þ ¼ arþ1P2 � arþ1xP2 1ð Þ þ 2xbr: (41)

In the case of the HOHWM and s ¼ 1 the fourth order derivative is expanded
into Haar wavelets

d4urþ1 xð Þ
dx4

¼ aH (42)

and the solution of the Lienard Eq. (37) can be derived as

u xð Þ ¼ arþ1P4 � arþ1 bry� zð ÞP4 1ð Þ � bryP3 1ð Þ � yP2 1ð Þð Þ þ brz� br
2y,

y ¼ x3 � 3x
6þ 2br

, z ¼ 3x
3þ br

: (43)

In Eqs. (41) and (43), the value of the parameter br depends on the particular
boundary conditions applied. Let us consider first the following boundary conditions.

u 0ð Þ ¼ 0, u 1ð Þ ¼ 6 tanh 3ð Þ (44)

then the exact solution is u xð Þ ¼ 6 tanh 3xð Þ and br ¼ 6 tanh 3ð Þ. The results
obtained by the use of the HWM and the HOHWM are compared in Table 4 (point
x = 0.5 is used).

Next let us consider the following boundary conditions.

u 0ð Þ ¼ 0, u 1ð Þ ¼ 8 tanh 4ð Þ (45)

In the latter case, the exact solution is u xð Þ ¼ 8 tanh 4xð Þ and br ¼ 8 tanh 4ð Þ. The
results obtained by the use of the HWM and the HOHWM are compared in Table 5.

It can be observed from Tables 4, 5 that the rates of convergence of the HWM
and the HOHWM (with s = 1) tend to two and four, respectively. The accuracy
obtained using the HWM with maximum resolution 2 M = 1024 is achieved in the
case of the HOHWM with only 32 collocation points.
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6. Conclusions

The HOHWM introduced recently by authors as an improvement of the HWM
in order to compete with the numerical methods widely used in engineering. It was
shown that using the HOHWM instead of the HWM will improve principally the
accuracy of the solution and increase the rate of convergence in the case of all
problems studied. It was found that the rate of convergence of the HOHWM
depends on the model parameter s and is equal to 2 + 2 s.

From a practical point of view, it is important that the HOHWM can achieve
the same accuracy as the HWM with significantly lower mesh and reduced
computational cost.

In the simplest case of the HOHWMwhere s = 1, the order of the convergence of
the HOHWM is equal to four. The user can select suitable s value depending on the
accuracy requirements of a particular problem considered.

In future study, the new method proposed can be extended/adapted for solving
a wide class of differential and integro-differential equations, including fractional
differential equations, multidimensional problems, nonlinear boundary value
problems arising in engineering design.
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