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Chapter

Fault Detection, Diagnosis, and
Isolation Strategy in Li-Ion Battery
Management Systems of HEVs
Using 1-D Wavelet Signal Analysis
Nicolae Tudoroiu, Mohammed Zaheeruddin,

Roxana-Elena Tudoroiu and Sorin Mihai Radu

Abstract

Nowadays, the wavelet transformation and the 1-D wavelet technique provide
valuable tools for signal processing, design, and analysis, in a wide range of control
systems industrial applications, audio image and video compression, signal
denoising, interpolation, image zooming, texture analysis, time-scale features
extraction, multimedia, electrocardiogram signals analysis, and financial prediction.
Based on this awareness of the vast applicability of 1-D wavelet in signal processing
applications as a feature extraction tool, this paper aims to take advantage of its
ability to extract different patterns from signal data sets collected from healthy and
faulty input-output signals. It is beneficial for developing various techniques, such
as coding, signal processing (denoising, filtering, reconstruction), prediction, diag-
nosis, detection and isolation of defects. The proposed case study intends to extend
the applicability of these techniques to detect the failures that occur in the battery
management control system, such as sensor failures to measure the current, voltage
and temperature inside an HEV rechargeable battery, as an alternative to Kalman
filtering estimation techniques. The MATLAB simulation results conducted on a
MATLAB R2020a software platform demonstrate the effectiveness of the proposed
scheme in terms of detection accuracy, computation time, and robustness against
measurement uncertainty.

Keywords: battery management system, extended Kalman filter, fault detection
and isolation, 1-D wavelet and transform, signals processing analysis,
wavelet filters bank

1. Introduction

The most viable way to achieve clean and efficient transport is to boost the
automotive industry to be concerned with developing advanced battery technolo-
gies, especially lithium-ion (Li-ion), to increase the number of electric and hybrid
electric vehicles (EVs/HEVs) to dominate the vehicle market. An essential internal
parameter of the Li-ion battery is the state of charge (SOC), defined as the available
capacity of the cell that changes according to the current profile of the driving cycle.
Due to its crucial role in keeping the battery safe for various operating conditions
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and significantly extending battery life, SOC is a topic of great interest, as evidenced
by an impressive number of research papers published in the literature. In the
absence of a measurement sensor, the SOC must be estimated since its calculated
value is not accurate enough. The most used model-based Kalman filters can esti-
mate the battery SOC with a high grade of accuracy [1–4]. The Li-ion battery is an
important component integrated into battery management system (BMS) that per-
forms tasks regarding the safe operation and reliability of the battery, protecting
battery cells and battery systems against damage, as well as battery efficiency and
service life [2–4]. The BMS “plays a significant role in fault diagnosis because it
houses all diagnostic subsystems and algorithms” [2, 3]; thus it monitors the battery
system through sensors and state estimation, such that to detect any abnormalities
during the battery system operation” [2, 5]. A signal processing-based method using
wavelet transforms proved to be a viable alternative to conventional Kalman filter
state estimators, for designing and implementation of real-time FDI strategies. The
new FDI approach avoids battery modeling difficulties and is more straightforward
with better dynamic performance [7]. The drawback of this method is the difficulty
experienced in dealing with the early faults and fault isolation. Its application also
requires a large amount of calculations compared to the model-based methods. An
intelligent fault detection scheme for microgrid based on wavelet transform and
deep neural networks is used in [6] to “provide fast fault type, phase, and location
information for microgrid protection and service recovery” [6]. Similar, a wavelet-
based transient fault detection and analysis is used successfully in [7] for a microgrid
connected power. In this research, our motivation of using 1-D wavelet analysis
comes from the preliminary results obtained for similar investigations on the impact
of nonlinearities and uncertainties of actuators (electro-pneumatic valves), such as
hysteresis, dead zone, dead band, on a healthy pH neutralization plant [8]. An
example of multisignal 1-D wavelet analysis is found in [9], and a useful tutorial of
using wavelet transforms presented in [10]. In [11] is shown a generic Simscape
model of Li-ion Cobalt battery model used to build a SOC AEKF estimator robust to
three different driving cycles profile tests, such as UDDS, EPA-UDDS and FTP-75,
the last one also used in the case study of this research. For FDI techniques based on
1-D wavelet analysis are used specific MATLAB commands provided by MATLAB
Wavelet Toolbox [12]. A strong theoretical background on wavelet transform and
their applications is provided by the fundamental work [13]. In [14] is presented an
interesting fault isolation technique based on wavelet transform, and a detailed
data-based FDI techniques for a nonlinear ship propulsion system are developed in
[15]. Several multimedia applications of wavelet transform can be found in [16], and
a better understanding of wavelet transform analysis, design and implementation of
features extraction methods, for filtering, denoising, decomposition and
reconstructing signals is given in [17–23]. From our most recent preliminary results
in Li-ion battery field, modeling and SOC estimators disseminated in [11, 24, 25], an
interesting state-of-art analysis of similar SOC AEKF estimators performance
reported in the literature is done in terms of statistical performance criteria values,
such as root mean square error (RMSE), mean square error (MSE), mean absolute
error (MAE), standard deviation (std), mean absolute percentage error (MAPE)
and R2 (R-squared). Among three SOC Li-ion battery estimators AEKF, adaptive
unscented Kalman filter (AUKF) and particle filter SOC estimators the AEKF
proved that is the most suitable for HEVs applications.

Let why is used the AEKF SOC estimator of Li-ion battery in the first part of our
research for FDI control strategies, excelling by its simplicity, SOC accuracy, real-
time implementation capability and robustness. The robustness is tested for four
different scenarios, such as to changes in SOC initial values (guess values), from
70–40%, 20%, 90% and 100%, to FTP-75 driving cycle profile test, changes in
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measurement level noise (from 0.001 to 0.01), to changes in the battery capacity
value from 6 Ah to 4.8 Ah due to aging effects, and changes in internal resistance due
to temperature effects, and also for simultaneous changes [11, 23]. Based on a rigorous
performance analysis of SOC residuals error compared to the similar results reported
in the literature with a typically 2% error, in some situations the AEKF estimator SOC
residual error reached values smaller than 1%, such as shown in [25]. Since of the lack
of data in the literature field for similar situations developed in our research for Li-ion
battery, it is not easy to make a state-of-art analysis of the results reported in the
literature related to the FDI techniques design and implementation based on 1-D
wavelet analysis. The efficiency of 1-D analysis is proved in this paper based on
extensive MATLAB simulations to extract the features of input-output signals such as
the energy, skewness, kurtosis, and to compute the MSE statistical criteria perfor-
mance. Finally, the MATLAB simulation results can provide useful information on
detection accuracy, computation time, and robustness against measurement uncer-
tainty, thus showing simply the effectiveness of the FDI proposed scheme. The
temperature fault is detected without doubt inside the Li-ion battery based on the
significant values reached by the details (D1, D2, and D3) and analysis coefficient
(A3) of the output terminal battery voltage residual level three decomposition,
represented by the following sets of values (4.46, 2.7, 5.349, 87.5) for energy feature,
(0.063, �3.92, 13, �1.33) for skewness signal feature, respectively (5.8, 71.4, 389.13,
56) for kurtosis signal feature. Also, the statistic RMSE performance criterion indi-
cates significant values for D1 coefficient in the presence of the of temperature fault
for energy feature (4.4654) and skewness and kurtosis features are the same as for
current fault. To detect both faults, a multiresolution analysis (MRA) is performed,
capable of extracting a smooth trend term, which provides a valuable information to
localize transient changes in the fault injection window [500, 1500] seconds [23].

Thus, the presence of the bias current fault and bias temperature fault is
detected and localized as a transient significant change in the nonstationary Li-ion
output voltage residual signal. For an appropriate choice of the thresholds’ values,
both faults can be detected with a high accuracy detection times directly from S8
graph; thus, the presence of the false alarms is completely removed compared to
Kalman filter FDI estimation techniques. The fault signature and considering the
variation trend in SOC residual and internal resistance of the battery also provides a
piece of useful information for fault isolation.

2. Li-ion battery model, SOC estimation and fault injection mechanism

This section briefly presents the Rint equivalent circuit model (Rint ECM) as a
case study to investigate the effectiveness of the proposed fault detection and
isolation (FDI) strategy, using a conventional EKF SOC estimator, as a support for
performance analysis comparison, in the first part [1–4], and a 1-D wavelet trans-
formation in the second part [8, 9]. For comparison purpose, an improved adaptive
extended conventional Kalman (AEKF) filter algorithm [3, 4, 11] is also briefly
presented for estimating the state of charge (SOC) of the adopted Li-ion battery, as
well as the faults in Appendix A. Residual methodology is useful to detect and
isolate faults. Only three failures of the current, voltage and temperature sensors of
the HEV battery management system (BMS) used for the case study are analyzed.

2.1 Li-ion battery model selection

The Rint ECM Li-ion battery model is one of the most commonmodels to describe
battery dynamics in many real-time implemented HEV applications with an
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acceptable range of performance. The reason for using these models is their simplic-
ity, low number of parameters to adjust and easy implementation in a friendly
MATLAB simulation environment. Therefore, a compromise we need to make
between the accuracy of the battery SOC and the complexity of the model related to
the choice of Li-ion battery, so that, for simulation purpose and “proof concept”, we
adopt a simple Rint ECM Li-ion battery model, as a reasonably simplified version of
RC ECM developed in [1], and in [11] for a Li-ion Cobalt battery, as is shown in
Figure 1.

The Rint ECM Li-ion battery model is an equivalent Thevenin electrical circuit
consisting of an open circuit-controlled voltage (OCV) source and an internal
resistance designated by Rin. The OCV source strongly depends on the state of
charge (SOC), i.e. a dependency described by an extremely nonlinear function
OCV = f (SOC), represented by different combinations of models reported in the
literature such as Shepherd, Nernst and Unnewehr universal model [1, 3, 4]. The
dynamics complexity and the accuracy of ECM increase by adding an RC polariza-
tion cell (first-order RC model), two RC cells (second-order ECM) respectively
three RC cells (third ECM order model), as those developed in [1–3, 11]. The main
input-output and intermediate signals in Figure 1 are Ibatt is the input battery
instantaneous value of the direct current (DC) flowing through the open circuit
controlled-voltage source, and Vbatt denotes the measured output terminal battery
instantaneous value DC voltage that are nonlinear dependent of OCV, as interme-
diate signal. The internal resistance of the battery is affected by several factors. Still,
a significant impact has conductor resistance, electrolyte resistance, ion mobility,
separator efficiency, reactive electrode rates, polarization, temperature, and aging
effects, and SOC changes, as is mentioned in [11]. Since the SOC of the battery is
defined as [1–4, 11]:

SOC ¼ Q �
Ð

idt

Q
, i ¼ Ibatt (1)

with Q denoting the rating battery capacity, in the schematic shown in Figure 1,
the controlled voltage source E (open circuit voltage (OCV)) can be modeled by:

E ¼ OCV tð Þ ¼ f E0,K,
Q �

Ð

idt

Q
, t

� �

¼ f E0,K, SOC, tð Þ ¼ E0 � Kh SOCð Þ (2)

The battery terminal voltage Vbatt is related to OCV according to following
nonlinear equation:

Figure 1.
ECM Rint Li-ion battery model (see [11]).
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Vbatt ¼ OCV tð Þ � RinIbatt tð Þ ¼ E0 � Kh SOCð Þ (3)

where K ¼ K1 K2 K3 K4½ ] is a 1 � 4 dimensional vector, whose components
have the given values suggested in [1], and h SOCð Þ ¼ � 1

SOC � SOC ln SOCð Þ
�

ln 1� SOCð Þ�T is a 4 � 1 dimensional vector nonlinear function.
However, for the implementation of the proposed FDI techniques, a high-

precision model is not required, because the extraction of ECM parameters is
beneficial to monitor the battery SOC, rather than to model the battery
performance.

2.1.1 Rint ECM Li-ion battery model dynamics represented in continuous and discrete
time state space representation

For a discharging current cycle, when u tð Þ ¼ i tð Þ≥0, and for a charging current
cycle u tð Þ<0 the dynamics in continuous time t of an ECM Rint Li-ion battery
model is described by the following three Equations [1–4, 11]:

dx1
dt

¼ � ηu tð Þ
Cnom

, x1 ¼ SOC, x1 0ð Þ ¼ SOC_ini, u tð Þ≥0 (4)

OCV tð Þ ¼ E0 � K2x1 �
K1

x1
þ K3 ln x1ð Þ þ K4 ln 1� x1ð Þ (5)

y tð Þ ¼ OCV tð Þ � Rinu tð Þ (6)

where η is the coulombic efficiency that has different values for charging and
discharging cycles, E0, K1, K2, K3, and K4 are the OCV battery characteristic curve
coefficients, whose values are given in [1], “chosen to fit accurately the Li-ion
battery model to manufacture’s data by using a least squares curve fitting estimation
method” [1–3]. Similar, the equivalent battery model in discrete time can be written
in the following form:

x1 kþ 1ð Þ ¼ x1 kð Þ þ ηTsu kð Þ
Cnom

, x1 kð Þ ¼ SOC kð Þ ¼ SOC kTsð Þ (7)

OCV kð Þ ¼ E0 � K2x1 kð Þ � K1

x1 kð Þ þ K3 ln x1 kð Þð Þ þ K4 ln 1� x1 kð Þð Þ (8)

y kð Þ ¼ OCV kð Þ � Rinu kð Þ (9)

where Ts ¼ 1 secondð Þ � is sampling time,k∈Z used to denote the discrete
time instant tk = kTs.

Because the internal resistance Rin is an essential parameter of the battery that is
affected much more by the temperature than other parameters of the cell, it is
necessary to attach to the Li-ion battery model a thermal model, described in
continuous time by a first order differential equation:

Tc
dTcell

dt
¼ �Tcell þ RthPloss þ Tamb (10)

where: Ploss ¼ Rambu tð Þ2, and u tð Þ ¼ i tð Þ.
In discrete time the Eq. (7) becomes:
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Tcell kþ 1ð Þ ¼ 1� Ts

Tc

� �

Tcell kð Þ þ RthTsPloss kð Þ
Tc

þ Tamb

Tc
(11)

and Tc ¼ 2000 [s] is the thermal resistance, Tamb ¼ 293:15 K½ � signifies the ambi-
ent temperature in degree Kelvin (T is the most used to denote the absolute temper-
ature in degree Kelvin), and Ploss denotes the power losses dissipated on the internal
resistance Rin, and Tcell is the temperature of the battery cell in degree Kelvin.

2.1.2 The Rint ECM Li-ion battery healthy model: Residual generation and MATLAB
simulations

The healthy ECM batterymodel (free faults model)MATLAB simulations to
an input driving cycle Federal Test Procedure (FTP-75) for a city, are shown inFigure 2.

In Figure 2(a) is shown the FTP-75 driving cycle test profile, Figure 2(b)
depictures the battery terminal voltage, Figure 2(c) reveals the battery SOC,
Figure 2(d) discloses the temperature profile of the thermal model initiated by an
ambient temperature of 20°C, and Figure 2(e) exposes the effect of the battery
temperature on internal resistance Rin.

2.2 The adaptive extended Kalman filter Li-ion battery SOC estimator for fault
detection and isolation

For Li-ion batteries, the aspects such as accuracy performance of the SOC esti-
mation and the prediction of the terminal voltage are essential to be analyzed, thus
ensuring the safe operation of the cell, and thus maintaining a long life. Therefore, a
brief presentation of an appropriate estimation technique is of real use. Moreover,
for any battery, whether it is a Li-ion battery, SOC cannot be measured accurately,
so it is necessary to estimate it. The most popular estimation algorithm reported in
the literature is the Kalman filter (KF) with its improved version for models with
extremely nonlinear dynamics, such as an extended Kalman filter (EKF) /adaptive
extended Kalman filter (AEKF) [1–4, 11].

2.2.1 The adaptive extended Kalman filter Li-ion battery SOC estimator- brief
presentation

Since the preliminary results obtained in [11] convinced us about the efficiency
of applying the AEKF SOC estimator for a Simscape model of Li-ion battery, quite
well documented in [4], then the same estimator is used in this paper. For the
adopted battery model, the SOC estimator adaptation consists in changing the
dimensionality of the state space and the values of the adjustment parameters. For
good documentation, the reader can see, in Appendix A, a brief presentation of the
steps of AEKF estimation algorithm. Furthermore, the choice of using the AEKF for
condition monitoring purposes is explained in this subsection. As is mentioned in
the first section, the BMS, through its hardware and software components, plays a
vital role in an HEV integrated structure for supervision, control and monitoring all
the internal battery parameters. In a BMS, time-based monitoring and FDI tech-
niques based on Kalman filter state and parameters estimators are implementing,
and the faults in a system are detected only when measured values exceeded their
normal limits [5, 26]. Furthermore, since the Li-ion battery SOC is non-measurable
and a critical internal parameter of the battery, the use of AEKF SOC estimator for
its estimation is wholly justified.
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2.2.2 AEKF SOC estimator of Rint ECM Li-ion battery healthy model: Residue
generation and evaluation

For a healthy Li-ion battery (free faults), the MATLAB simulations result of
applying AEKF SOC estimator, whose steps are briefly presenting in Appendix A, is
shown in Figure 3. In Figure 3(a) is shown the battery terminal voltage AEKF
estimate values versus the Rint ECM Li-ion battery model terminal voltage true
values. The MATLAB simulations result reveals an AEKF SOC estimator with an
excellent prediction ability for battery terminal voltage. Figure 3(b) depictures the
residual battery terminal voltage calculated as a difference between the battery

Figure 2.
The ECM Li-ion battery healthy model: (a) FTP-75 driving cycle current profile; (b) output terminal voltage;
ECM battery model SOC; (d) temperature profile for changes in ambient temperature; (e) the effect of
temperature profile on battery internal resistance.
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terminal voltage true values and the corresponding estimate values of battery
terminal voltage, as in Eq. (12).

The residues of battery SOC and for internal resistance are calculated by using
the Eqs. (13) and (14):

Ry kð Þ ¼ y kð Þ � ŷ kð Þ (12)

RSOC kð Þ ¼ SOC kð Þ � ^SOC kð Þ (13)

RRcell kð Þ ¼ Rcell kð Þ � Rcell�fault kð Þ (14)

For a healthy battery model, the residual is inside the minimum and maximum
values of two thresholds, calculated as [5]:

Thrymin ¼ my � 3σy, Thrymax ¼ my þ 3σy (15)

ThrSOCmin ¼ mSOC � 3σSOC, Thrymax ¼ mSOC þ 3σSOC (16)

ThrRcell,min ¼ mRcell � 3σRcell, ThrRcell,max ¼ mRcell þ 3σRcell (17)

where Thrymin and Thrymax denote the minimum value and respectively maxi-
mum value of the threshold, my is the mean of the clean battery terminal voltage
residual values, and σy means the standard deviation of the clean battery terminal
voltage residual values.

Figure 3.
AEKF estimator and Li-ion ECM battery model – Healthy system: (a) AEKF output terminal voltage estimate
versus ECM terminal voltage true value; output terminal voltage residual; (b) terminal voltage residual (c)
AEKF SOC estimate versus ECM SOC true value; (d) SOC residual.
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In Figure 3(c) is depicted the battery AEKF SOC estimate values versus the
battery model SOC true values, and in Figure 3(d) is showing the battery SOC
residual calculated in the same manner as the battery terminal voltage. The MATLAB
simulations result reveals an excellent SOC accuracy, and for a clean battery model
the SOC residual is inside the band delimited by the minimum respectively maximum
values of the SOC threshold calculated by using a similar formula as in Eq. (9). In
Figure 4(a) is shown the robustness of AEKF SOC estimator to a change in the initial
value of SOC from default value 70% to a SOCini = 40%. A level of the noise in
measurements is more realistic in HEVs applications since the initial value of SOC
must be guessed, and due to contamination of the measurements with noise. The SOC
residual that is showing in Figure 4(b) remains inside the band delimited by the
same minimum and maximum values of SOC threshold, and in Figure 4(c) the
battery terminal voltage residual also remains inside the band.

2.2.3 Fault injection mechanism and fault detection based on AEKF SOC
estimator - scenarios and residual generation and evaluation

The fault injection mechanism based on AEKF fault estimation and residual
generation consists of injecting additive bias sensors faults in the input-output
Li-ion battery Rint ECM model, as following:

y kð Þ ¼ OCV kð Þ � Rin u kð Þ þ f u
� �

þ f y (18)

Tcell kþ 1ð Þ ¼ 1� Ts

Tc

� �

Tcell kð Þ þ RthTsPloss kð Þ
Tc

þ Tamb kð Þ
Tc

þ f T (19)

Figure 4.
Robustness of AEKF SOC to changes in SOC initial value, SOCini =70%: (a) robustness to a decrease of 30%
from default value SOCini =70% to a SOCini =40%; (b) SOC residual; (c) battery terminal voltage residual.
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Rin,cell kð Þ ¼ Ramb exp α
1

Tcell kð Þ �
1

Tamb kð Þ

� ��

(20)

where f u denotes the current sensor fault, f y is the terminal voltage sensor fault,

and f T signifies the temperature fault. The Eq. (12) is useful to measure the impact

of fT on the internal resistance, where ∝ ¼ E
RT denotes Arrhenius rate constant, E is

the activation energy, E ¼ 20 kJ=mol½ �, R signifies the Boltzmann constant, R ¼
8:314 J=molK½ �, as is shown in [26]. As it can be seen in Eqs. (10)–(12) in this
research paper are presented only three scenarios for fault injection.

• First scenario - bias sensor fault injection inside the window (500, 1000) seconds.

At the instance 500 seconds is injected a fault in the Voltage measurement sensor
of magnitude 1 V, and after 500 seconds the fault is removed, as shown in Figure 5(a).

In Figure 5(b) is shown the impact of the injected fault on battery terminal
voltage, real and estimated values. The MATLAB simulation result reveals an
abnormal behavior of terminal voltage estimate inside the same window of fault
injection. The detection of the event is faster at the beginning of the window,
persisting only 500 seconds, until the fault is removing. The residual battery termi-
nal voltage is showing in Figure 5(c). It exceeds the band of the clean terminal
voltage signal inside the fault window; thus, the same fault is detecting. An abnor-
mal behavior of battery SOC is revealed in Figure 5(d) inside the fault window and
persists inside the window until the fault is removed at instance 1000. The SOC
residual generated by injecting the bias voltage in the Li-ion cell sensor terminal
voltage is shown in Figure 5(e) that also detects the occurrence of the fault inside
the same window. After the fault is removed the SOC residual enters inside of the
band and indicates a normal SOC behavior. In Figure 5(e) the MATLAB simula-
tions result reveals the fact that the injected fault has not a significant impact on the
internal resistance Rin.

• Second scenario: bias current sensor fault injection

Between samples 500 and 1000 is injected a fault in the currentmeasurement sensor
of magnitude 2A, such is showing in the Figure B1(a) fromAnnex B. Similar as for the
first scenario the battery voltage reacts to the fault injection as is shown inFigureB1(b),
and its residual depictured in Figure B1(c) detects the presence of the fault at the
beginning of the window injection. In this scenario, compared to the first scenario, the
fault persists until the endof the driving cycle; so its evolution after removing the fault is
misclassified and can be considered as a false alarm, that is useful for constructing the
FDI logic of fault localization (isolation). A similar situation appears for battery SOC
shown in Figure B1(d) and for its residual in FigureB1(e). In Figure B1(f) the internal
resistance Rin has the same evolution as in the first scenario. These last aspects are
beneficial also for creating the FDI logic for isolation.

• Third scenario: injection of bias temperature sensor fault

In the temperature sensor, a fault of magnitude 10°C is injected in the same
window, similar for first and second scenario, as is shown in Figure B2(a) from
Annex B. The MATLAB simulations result from the impact on the temperature
profile of the fault injected is showing in a Figure B2(b). Also, the internal battery
resistance is showing in the Figure B2(c), and the battery SOC is disclosed in
Figure B2(d) together to its residual in Figure B2(e). The battery terminal voltage
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is showing in Figure B2(f) together to its residual depicted in Figure B2(g). This
scenario of point view of fault detection is the same as the first scenario with the
fault persistent only inside the window and removed at the end of the same win-
dow. Only the internal resistance of the battery withstands a significant impact
inside the window, a valuable indication for fault localization.

2.2.4 The residual evaluation and FDI logic isolation

Residual evaluation supposes to define “proper functions for the generated
residue evaluation so that fault occurring in the system can be detected correctly”,
as is stated in [5]. Roughly, in the ideal case, “if no fault occurs, the residue will be

Figure 5.
First scenario of fault injection: (a) bias fault injection of magnitude 1 V in battery cell terminal voltage
measurement sensor; (b) AEKF terminal voltage estimate versus EMC battery model terminal voltage true
value; (c) battery terminal voltage residual; (d) AEKF SOC estimate versus EMC battery model SOC true
value; (e) SOC residual; (f) the battery internal resistance.
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zero and otherwise, it will be non-zero” [5]. More precisely, in a general formula-
tion, the residue evaluation can be defined as:

ifRk ¼ 0, the battery is fault free, otherwise the battery is faulty (21)

where Rk might be Ry kð Þ,RSOC kð Þ and RRcell kð Þ, as defined in Eqs. (9)–(11).
It is possible that in many cases, “the residue might be non-zero even though no

fault has occurred; therefore, the evaluation function of Eq. (18) will not be proper.
For this purpose, a statistical evaluation function can be defined as [5]:

Ifmy � μσy ≤Rk ≤my þ μσythe Li‒ion battery is fault free (22)

otherwise:

Rk ≤my � μσy and=or Rk ≥my þ μσy, the Li‒ion battery is faulty (23)

for which the values of the parameter μ, i.e. μ ¼ 1, 2 and 3, regarding the
evaluation function is a trade-off between maximizing the probability of fault
detection and minimizing the probability of wrong fault alarm. If μ ¼ 3 then the
probability:

p{my � 3σy ≤Rk ≤my þ 3σyg ¼ 98:5% is maximum possible.
The fault signature for AEKF SOC estimator based diagnostic scheme is shown

in Table 1.
For the second scenario the isolation of the fault can be done based on the

tendency of SOC, i.e. for first scenario the SOC increases (Res_SOC >0) after the
fault injection, while for second scenario it decreases (Res_SOC < 0) and persists
until the end of driving cycle, generating a false alarm.

3. 1-D wavelet transform signal analysis used to extract the faults
features in Li-ion batteries

This section investigates the use, in a new approach, of 1-D wave signal analysis,
a valuable tool for determining the essential characteristics of faults that occur in a
Li-ion battery, a useful basic principle for developing a simple detection of their
defects. These techniques are based on detecting changes that occur abruptly in the
variation of the residual signal due to a faulty current sensor or a defective temper-
ature measurement sensor, such as those developed in the previous section. There-
fore, a similar method of residual generation and evaluation is useful to provide a
valuable information to use the wavelet transformation ability to extract the essen-
tial features (patterns) of the faults from the output voltage residual of the battery.
These faults visibly affect the performance of the Li-ion battery, such as the output
voltage and SOC. The dynamics of the battery model under investigation is shown
in Section 2. Note that SOC plays a critical role in locating faults (isolation).

Res_y Res_SOC Res_Rcell Fault signature

1 1 (>0) 0 Voltage sensor fault

1 1 (<0) 0 Current sensor fault, False alarm

1 1 1 Temperature fault sensor

Table 1.
Fault signature for AEKF SOC estimator based diagnostic scheme.
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3.1 Wavelet transform: Brief presentation and description

Over time, Fourier transform (FT) has proven to be a useful tool for analyzing
signal frequency components in a wide variety of applications. However, it has a
significant disadvantage, because when it covers the entire time axis, it is impossible
to see when a frequency increase. Instead, the short-term Fourier transform (STFT)
uses a sliding window to find the spectrogram, which provides complete information
on both time and frequency. A small impediment when using STFT in applications is
due to the length of the window that limits the frequency resolution [10]. In these
situations, the wavelet transforms (WT) seems to be a feasible solution, since it can
be applied on a small wavelet of limited duration. Specifically, the wavelet provides
local frequency information compared to FT, which captures the global features such
as the harmonic components of the entire signal. Besides, the scaled wavelets allow to
analyze the signal on different scales. The essential functions designate the “wave-
lets,” which are nothing else than scaled and shifted copies of the same “mother
wavelet.” With a proper choice of the mother wavelet, the basis wavelets can be
orthonormal, or at least linearly independent. Thus, the wavelets form a complete
basis, and the wavelet transforms are designed to be reversible.

3.1.1 Continuous and discrete wavelet transforms

A wavelet is a waveform of effectively limited duration that has an average value
of zero and nonzero norm, as is stated in [12]. The wavelets compared to sine
waves, as the basis of Fourier analysis, “tend to be irregular and asymmetric, while
sinusoids are smooth, predictable, and their duration is not limited” [12]. Thus, a
wavelet is a wave-like oscillation with an amplitude that starts at zero, increases,
and then decreases back to zero. Furthermore, the majority of signals and images of
interest “exhibit piecewise smooth behavior punctuated by transients”, and the
“signals with sharp changes might analyze with an irregular wavelet than with a
smooth sinusoid”, thus an excellent idea for applying it to develop the detection
techniques of the faults [12]. A fundamental work recommended to readers to
obtain an excellent theoretical background on the wavelets is the reference [13]. Let
us consider the wavelet analyzing function, also called “mother wavelet,” and a
continuous wavelet transform (CWT). The CWT compares the signal under inves-
tigation, denoted by y(t), to shifted and scaling (compressed or stretched) versions
of the wavelet function [12]. Since the physical signal y(t), which can be the output
of the plant or a residual error, is real-valued, then also the CWT is a real-valued as a
function of scale and position. For a scale parameter, a > 0, and location, b, a
possible representation of a 1-D CWT can be the same as in [12, 13]:

CWT a, b; y tð Þ,ψ tð Þð Þ ¼ 1
ffiffiffi

a
p

ð

þ∞

�∞

y tð Þψ ∗ t� b

a

� �

dt (24)

where ψ tð Þ ∗ is the conjugate function of ψ tð Þ, and CWT a, b; y tð Þ,ψ tð Þð Þ denotes
the coefficients of the wavelet transform CWT. They are affected by the values of
scaled and shifting position parameters a, respectively b, as well as by the choice of
wavelet function ψ tð Þ. A “mother wavelet” is a waveform for which the most energy
is restricted to a finite duration [8]. It is defined as,

ψ tð Þ a,bð Þ ¼
1
ffiffiffi

a
p ψ

t� b

a

� �

(25)
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where 1/a denotes the frequency and 1/
ffiffiffi

a
p

is a normalizing constant of each
scale parameter. Anyway, there are an infinite number of the functions that can be
considered as a “mother wavelet”. In Eqs. (24) and (25) the variable a is called also
“scale” or “dilation” variable since performs a stretching or compressing action on
the “mother wavelet”, while the variable b is referred as “time shifting” or “trans-
lation” that delays or accelerates the signal start [5]. The CWT a, b; y tð Þ,ψ tð Þð , as
result of wavelet transform on signal y(t) is the wavelet coefficients vector of length

L (number of samples) and components (Ai,Di, i ¼ 1,N where N ¼ length yð Þ, as
function of scale a, and translation b, i.e., a function:

A D½ � ¼ CWT a, b; y tð Þ,ψ tð Þð Þ ¼ cwt a, bð Þ (26)

Each coefficient of the vector c a, bð Þ (Ai,Di, i ¼ 1,NÞ “represents how closely
correlated a scaled wavelet is with the portion of the signal y(t) which is determined
by translation” [12]. In fact, the c(a, b) coefficients are the time-scale view of the
signal y(t), and so the CWT is an important analysis tool capable to “offers insight
into both time and frequency domain signal properties” [12]. The results of this
interpretation lead to the following useful observations that will be considered for
developing the proposed wavelet signals processing and analysis strategy [16]:

• The higher scales correspond to the “most” stretched wavelets, furthermore
“the more stretched the wavelet, the longer the portion of the signal with
which is compared, and thus the coarser the signal patterns features measured
by the wavelet coefficients.”

• The coarser features capture the low frequency components (Ai, i ¼ 1,NÞ
called “approximations” that provide basic shapes and properties of the
original signal y(t)

• The low scale components (Di, i ¼ 1,NÞ are called “details” and capture the
high frequency information.

• The CWT is computationally inefficient, since it requires to calculate the
c(a, b) coefficients at every single scale, so computationally expensive.

An alternative to the CWT is the discrete wavelet transform DWT, much
more efficient and of high accuracy, defined in a similar way that CWT in
Eq. (24) [14]:

DWT j,k a, b; y tð Þ,ψ tð Þð Þ ¼ 1
ffiffiffiffiffi

a
j
0

q

ð

þ∞

�∞

y tð Þψ a
�j
0 t� kb0

� 	

dt ¼
ð

þ∞

�∞

y tð Þψ j,k tð Þdt (27)

For a parameter (a0, b0) setting to the values: a0 = 2, b0 = 1 is obtained a
particular dyadic sampling of the time-frequency plane (a set of coefficients per
octave), as is mentioned in [14]. Thus, for this particular sampling, it is possible to
obtain for the set ψ j,k an orthonormal basis with a “mother wavelet” ψ tð Þ, well

localized both in time and frequency, such as the wavelets Morlet, Haar and
Daubechies have shown in Figure 6 [14]. The DWT is based on the wavelet analysis
at scales and translations that are power of two, such as 2, 4, 6, 16, and so on
[12–14], and wavelet approximations Aψ j0, k

� �

and detailed Dψ j, kð Þ coefficients at
stage k, are defined as in [10],
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Aψ j0, k
� �

¼ 1
ffiffiffiffi

N
p

X

n

y nð Þψ j0,k
n½ �, j0, k, nϵN, natural numbers (28)

Dψ j, kð Þ ¼ 1
ffiffiffiffi

N
p

X

n

y nð Þψ j,k n½ �, j> j0, j, k, nϵN, natural numbers (29)

Finally, according to Eqs. (28) and (29) the original signal can be approximated as,

y nð Þ ¼
X

k

Aψ j0, k
� �

þ
X

k

Dψ j, kð Þ (30)

or simpler,

y ¼ AN þ
X

N

i¼1

Di (31)

starting from last stage N toward the first stage in decomposition, and
recursively, at stage level k, it can be writing:

Ak ¼ Dkþ1 þ Akþ1, k ¼ 1,N (32)

In [16] is mentioned the “approximations” of the signals under investigation “pro-
vide basic trends and characteristics of the original signals, whereas the details provide
the flavor signal”. The result of the applying DWT on the original signal y is the so-
called wavelet decomposition around both key coefficient vectors, [A] (“approxima-
tion” coefficient vector), and [D] (“detail” coefficient vector). The decomposition is
repeating on the approximations in each stage. The multiple stage DWT will break
down the original signal into many successively lower resolution components, as is
described in [15]. According to [15] “at each stage, the approximation coefficients
vector [A] represents the basic trends of the original signal characteristics, while the
details coefficients vector [D] provides the flavor of the signal”. The inverse process
opposite to decomposition is the signal reconstruction by using an inverse discrete
wavelet transform (IDWT). More details about sample wavelet definitions known as
Haar, Morlet and Daubechies wavelets, the reader can find in [8, 13, 17]. As is shown in
Figure 6, in control systems applications is preferred the Morlet wavelet function for
continuous analysis using CWT [13, 14], compared to Haar and the Daubechies wave-
let family functions that are very useful for DWT [8–10]. Using the MATLAB/
SIMULINKWavelet and Processing Toolboxes in real-time, the proposed 1-D wavelet
analysis strategy is implementing by following the guidelines from [8, 10–12].

3.1.2 Wavelet transform analysis of the faults features extraction in a rechargeable
Li-ion battery - setups

Signal processing is a well-known tool to deal with fault diagnosis. It is useful to
analyze directly the signals measured online, avoiding system modeling compared to
Kalman filter techniques that are model-based. A wave transformation offers a new
approach to the analysis of transient regimes that vary over time. It has a specific
ability to analyze signals simultaneously in both time and frequency domains.
Besides, it can automatically adjust the analysis windows according to frequency,
namely, shorter windows for higher frequencies and vice versa. Therefore, the wave-
let transform is very suitable for identifying the characteristics of the faults that occur
in the Li-ion battery under investigation. However, the identification of such
wavelet-based features in HEV Li-ion BMS applications is a novelty. Signal features,
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such as discontinuity or singularity, are easily detectable through a 1-D wavelet
transform. Sudden signal transitions lead to wave coefficients with high absolute
values. The changes in the evolution of the signal provide valuable information when
something fundamental has occurred in the evolution of the signal. These features
suggest an excellent idea in our case study on how to detect measurement sensor
errors that often occur in a Li-ion battery used in HEV applications.

Step 1. Simulink model diagram of Li-ion battery and fault injection mechanism
setup.

At this stage is investigated the capability of using 1-D wavelet analysis to detect
some anomalies in a BMS of the Li-ion battery caused by two faults injected in a
current, respectively temperature sensor. Figure 7 shows the Simulink diagram of a
general model of the Li-ion battery, including the thermal model and fault injection
mechanism in both healthy and thermal blocks.

Step 2. Healthy and faulty models of Li-ion battery setup.
The Simulink diagrams of healthy and defective battery cell models are

depictured in Figures 8 and 9. In these figures are visible also the fault injection
blocks inside the battery (Figure 8) and thermal (Figure 9) models.

3.1.3 Wavelet transform analysis: MATLAB implementation and simulations

Step 1. Wavelet filter bank decomposition – Biorthogonal wavelet description.
Based on a 1-D DWT signal decomposition, the analysis (decomposition) and

synthesis (reconstruction) filters are of more interest than the associated scaling

Figure 6.
Wavelet function samples: (a) Morlet wavelet function with 10 vanishes moments; (b) Haar wavelet function;
(c) Daubechies wavelet function with 4 vanishes moments and its corresponding scaled function.
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function and wavelet for a 1-D CWT. For example, in Figure 10 are implemented in
MATLAB two analysis filters and other two synthesis filters for a B spline
biorthogonal wavelet that can reproduce polynomials (vanishing moment property)

Figure 7.
Simulink diagram of Li-ion battery including the thermal model and fault injection mechanism setup.

Figure 8.
Simulink diagram of thermal model and fault injection mechanism setup.
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with three vanishing moments in the reconstruction filter and five vanishing
moments in the decomposition filter, very useful to be used in fault detection. More
precisely, both phases analysis and synthesis require two low pass filters (LPF) to
filtrate low frequencies signals, respectively two high pass filters (HPF), to filtrate
the high frequencies signals [8, 12, 18–21].

Furthermore, the orthogonal and biorthogonal filters banks are an arrangement
of low pass, high pass, and bandpass filters that divide the signals data sets into sub-

Figure 9.
Simulink diagram of Li-ion battery faulty model setup.

Figure 10.
Analysis and synthesis low pass and high pass decomposition filters, respectively low pass, and high pass
reconstruction filters.
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bands [12, 17–21]. If the sub-bands are not modified, these filters enable perfect
reconstruction of the original data. In most of applications, the data are processed
differently in the different sub-bands and then reconstruct a modified version of
the original data. Orthogonal filter banks do not have linear phase, compared to
biorthogonal filter banks that have linear phase [12, 18–20]. The wavelet and scaling
filters are specifying by the number of the vanishing moments, which allows
removing or retaining polynomial behavior in the signals data sets.

In addition, lifting allows designing perfect reconstruction filter banks with
specific properties. To obtain and use the most common orthogonal and
biorthogonal wavelet filters can be used Wavelet Toolbox™ functions [20]. The
design of custom perfect reconstruction filter bank is performing through elemen-
tary lifting steps. Besides, can also be added own custom wavelet filters. By using
the wavelet filter bank architecture depicted in Figure 11, it is possible to obtain
residues that change noticeably in order to offer precious information about the
timely detection of the faults and its severity [20, 21]. A sub-band model is
suggesting in [18, 19] of the form:

MðzÞ ¼ 1� z�1
� ��s ðaþ bz�1Þ (33)

where s is an integer number, and a, b are real numbers. In [18] is used the ‘db8’
wavelet for wavelet filter bank design of level 3 decomposition for a Single-Input
Single-Output (SISO) plant extended in [19] for a multiple inputs and multiple
outputs (MIMO) plant. Besides, in same reference is developed a wavelet based-
frequency sub-band analytical redundancy scheme to calculate the residuals for
different faults that uses for wavelet filter bank synthesis and analysis a level three
decomposition, as is shown in Figure 11. The same wavelet filter bank is adopted in
our case study, even if the decomposition resolution can increase by increasing the
number of levels. Nevertheless, in our case study, the focus is only on the “concept
of proof” and to demonstrate the effectiveness of the proposed error detection
technique, based on the use of the multi 1-D signal waveform analysis tool. In
Figure 11, G(z) and H(z) represent the z-transforms of the low pass filter (LPF)
and high pass filter (HPF) respectively. A two-channel critically sampled filters
bank play an important role to filtrate the input signal, i.e. the output battery
voltage residual, by using a pair of low pass filter (LPF) and high pass filter (HPF)
[18, 19, 21]. The subband outputs of the filters are downsampling by two to pre-
serve the overall number of samples. To reconstruct the input, upsampling by two
and then interpolate the results using the low pass and high pass synthesis filters. If
the filters satisfy specific properties, a perfect reconstruction of the input is
achieved [18–21].

Figure 11.
Wavelet filter bank. Three level decomposition using low and high pass filters for down sampling by two.
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In Figure 12 (a) and (b) are presented the schematic of a Wavelet Filter Bank
decomposition on two levels (a), respectively a simple interpretation of the DWT
coefficients in frequency domain [14].

The schematic from Figure 12(a) give us the idea of a recursive numerical
algorithm for the DWT coefficients computation based on digital filters at all levels
j = 1:N, which take advantage of using a digital signal processor (DSP):

a0k ¼ y kð Þ; a j
k ¼

X

l

~h2k�la
j�1
l ; d

j
k ¼

X

l

~g2k�la
j�1
l (34)

Step 2. Fault injection scenarios presentation:
For simulation and “proof-concept” purpose, only two scenarios for error injec-

tion are developed in this section, namely a 2A bias fault injected into the current
sensor, and a 10°C bias temperature fault injected into the thermal model of Li-ion
BMS. The faults are injected separately, in the same window [500,1500] seconds,
and their impact on the battery output voltage is analyzed by using the same Li-ion
battery residual generation and evaluation method, like in the previous section.

Step 2.1 Scenario 1: Bias current fault MATLAB implementation.
As first scenario is considered a 2A bias fault injected in the current sensor inside

the window (500,1500) seconds.
Step 2.1.1 Li-ion output voltage and MATLAB SOC residual generation-original

and reconstructed signals.

Figure 12.
DWT coefficients interpretation (snapshot from [14]): (a) wavelet filter bank, the approximations (a1k, a

2

kÞ
and details (d1k, d

2

kÞ DWT coefficients corresponding to a decomposition level 2; (b) frequency domain.

Figure 13.
The impact of the injected bias current fault on the Li-ion battery SOC.
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The MATLAB simulations results are shown in the Figures 13 and 14 for battery
SOC (healthy, faulty and residual), respectively for battery voltage residuals,
(healthy and faulty) original and reconstructed, using the analysis (approximation)
and details wavelets filters (in reconstruction).

Step 2.1.2. Denoising residual signals methods – MATLAB implementation.
In Figure 15 is used the denoising capability of 1-D wavelet synthesis filters

‘sym4’ to reduce as much as possible the noise level in the healthy and faulty signals.
In [22, 23] is showing how to use wavelets to denoise signals and images. Because
wavelets localize features in measurement dataset to different scales, an important
signal or image features can be preserved while removing noise [22]. The “basic idea
behind wavelet denoising, or wavelet thresholding, is that the wavelet transform
leads to a sparse representation for many real-world signals and images” [22]. Thus,

Figure 14.
Li-ion battery terminal output voltage: (a) healthy signal; (b) faulty signal.

Figure 15.
Li-ion battery output voltage residual – Noisy and denoised signals.
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the wavelet transform concentrates the signal and image features in a few large-
magnitude wavelet coefficients [22]. Wavelet coefficients which are small in value
are typically noise and can be “diminished” those coefficients or much better can be
removed without affecting the signal or image quality. Thresholding operation of
the coefficients is followed by the reconstruction of the data using the inverse
wavelet transform. The denoising operation of the input-output signals can be
performed by using an average moving method [23], or decimated (“wdenoise”
MATLAB command) and undecimated (“wden” MATLAB command) wavelet
transforms [22]. In Figure 15 is shown the residual between the noisy and denoise
signals, where wavelet denoising has removed a considerable amount of the noise
while preserving the sharp features in the signal, which is also a challenge for
Fourier-based denoising or filtering. The Fourier-based denoising, or filtering, is
using a low pass filter (LPF) to remove the noise. However, “when the data has
high-frequency features such as spikes in a signal or edges in an image, the low pass
filter smooths these out”, as is stated in [22]. Moreover, the wavelets can be used to
denoise signals in which the noise is nonuniform [22].

Step 2.1.3. Fault detection features:
In Figure 13, it easy to see the impact of the injected fault in the windows

(500,1500) seconds, where the SOC change by maximum 10%. The information
extracted from SOC residual in Figure 13 and output voltage residual in Figure 15,
is valuable to detect the incipient moment of the fault, its duration and severity if a
threshold value is chosen. The presence of the fault inside the window [500,1500] is
visible since sudden changes in the SOC and output voltage of residual levels is easy
to visualize. The fault removal at the end of the injected window is noticeable due to
a sudden change of the signals’ levels in the opposite direction at the initiating time
instant of the fault injection. In Figure 16(a) and (b) is depicted the output voltage
residuals noisy and denoised originals and their perfect reconstruction. An impres-
sive result is showing in Figure 17, where the presence of the fault inside the
injected window is without doubt detecting by analyzing the wavelet variance in
signal by scale before injected fault, inside the window and after removing the fault,
in bar representation. For the proposed fault detection strategy design, a discrete
wave transformation is useful to apply on the output voltage signal of the Li-ion
battery. It is equivalent to the analysis branch (with downsampling) of the

Figure 16.
The Li-ion battery terminal output voltage residual - original and reconstructed waveforms using analysis
wavelets filters (reconstruction): (a) contaminated with noise; (b) denoised signals.
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two-channel filter bank (decomposition) using LPFs, and HPFs suggested in
[17, 18]. They are used for downsampling the input signal up to level 3, as shown in
Figure 18 for all three levels the details of the wave coefficient D1, D2 and D3 and
the analysis coefficient A3.

Step 2.1.4. 1-D wavelet transform analysis used for battery voltage residual three
levels decomposition – Approximation coefficient A4, and Details coefficients D1,
D2 and D3:

Figure 17.
Li-ion terminal output voltage residual – Wavelet variance in signal by scale before injected fault, inside the
window and after removing the fault - bar representation.

Figure 18.
Li-ion battery output voltage residual decomposition on three levels.
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In Figure 18 is presented the MATLAB simulation result of the battery voltage
residual decomposition on three level based on the wavelet filter banks shown in
Figures 11 and 12.

For decomposition is used a Symlet wavelet transform ‘sym4’ with four
vanishing moments. The feature extracted from the wavelet coefficients are sum-
marized in Table 2 and interpreted at the end of this section, in comparison with
the second fault.

Step 2.2. Scenario 2 MATLAB implementation:
As a second fault is investigated a 10°C bias fault injected in the temperature

sensor inside the window (500,1500) seconds.
Step 2.2.1 Li-ion output voltage and MATLAB SOC residual generation-original

and reconstructed denoised signals:
Like for the first scenario, the same information is extracted from the Figures 19

and 20. In Figure 19(a) is shown the battery SOC with almost a zero impact of the
injected temperature fault since we assumed in this research that SOC does not
change significantly if the temperature inside the battery changes. This assumption
is not realistic, since in “real life” the SOC and internal resistance of Li-ion battery
are dependent on temperature. This assumption was adopted to simplify the Li-ion
battery model substantially, since a battery model of high complexity is beyond the
topic developed in this research work. Moreover, the assumption is also justified by
the fact that the fault detection analysis by using a 1-D wavelet analysis tool is
performing online. A model is not required, that is a significant advantage of the
new approach compared with the model based Kalman filter technique approach
developed in the previous section, for which the SOC accuracy of the battery model
is critical. Besides, the main objective of this paper is to provide a “proof concept”
and to demonstrate the effectiveness of the use of 1-D wavelet analysis of finding
the essential features in the output voltage residual variance for MATLAB design
and implementation of the investigated fault detection technique. In Figure 19 (b),
(c) and (d) are visualized the healthy, faulty and the battery temperature residual
(b), the healthy, In faulty and the output voltage residual (c), respectively the use

Details coefficients Analysis coefficients

Extracted features Faults D1 D2 D3 A3

Energy Current fault 1.7821 0.8357 0.3631 97

Temperature fault 4.46 2.7 5.349 87.5

Skewness Current fault 0.063 �0.17 0.15 �4.9

Temperature Fault 0.063 �3.92 13 �1.33

Kurtosis Current fault 5.8 11.1 23.11 27.38

Temperature fault 5.8 71.4 389.13 56

RMSE statistic criterion-performance D1 coefficient

Energy Current fault 1.7821 Remark:

Temperature fault features shows significant values.
Temperature fault 4.4654

Skewness Current fault 0.063

Temperature fault 0.063

Kurtosis Current fault 5.7581

Temperature fault 5.7581

Table 2.
The main features extracted for faults detection.
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of 1-D wavelet ‘Sym4’ for denoising output voltage residual (d). The residual of
denoised battery output voltage and its corresponding constructed wave are
presenting in Figure 20(a).

Step 2.2.2. Fault detection features.
The MATLAB simulation result shown in Figure 19 (b), (c) and (d) reveal that

the presence of the temperature fault is noticeable by its effect on the output
voltage residual at the beginning, inside and at the end of the injected window. and
the coefficients D1, D2, D3 and A3 of the ‘Sym4’ wavelet are shown in Figure 20
(b). The features extracted from Figure 20(b) are summarized in Table 2 and
analyzed at the end of this section.

3.1.4 Wavelet transform analysis of fault detection technique. Performance comparison

A rigorous performance analysis of using 1-D wavelet transform tool for fault
detection strategy is accomplished based on the information extracted from the
details’ coefficients of output voltage residual decomposition for both scenarios.

Figure 19.
Li-ion battery temperature fault injected: (a) SOC and its residual; (b) healthy, faulty, and residual
temperatures; (c) healthy, faulty, and residual battery internal resistance; (d) original (noisy), denoised and
residual output voltage signals.
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From the details coefficients values D1, D2, and D3 can be extracted the wavelet
energy, skewness, and kurtosis features. These statistics can identify the types of
faults based on their distinct value, as are defined in [14], MATLAB Wavelet
Toolbox (for wavelet energy), respectively MATLAB Statistics and Machines
Learning Toolbox for skewness and kurtosis).

• The wavelet energy is an important indicator that gives a valuable information
about the presence of the fault inside a window that has a concentrated large
value of the wavelet energy, defined as,

Figure 20.
Li-ion battery output voltage residual second scenario: (a) original denoised output voltage residual; (b) the
details (D1, D2, D3) and approximation (A3) Symlet4 (four vanishing moments) wavelets coefficients
decomposition at level 3.
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EWDT ¼
X

3

j¼1

D j (35)

• The skewness is a measure of the asymmetry of the data around the sample
mean. If skewness is negative, the data spreads out more to the left of the mean
than to the right. If skewness is positive, the data spreads out more to the right.
It is defined as,

SKWTDi
¼ Ef Dij � μiÞ3


 �

σ3i
(36)

• The kurtosis is a measure of whether the distribution is too peaked, i.e. a very
narrow distribution with most of the responses in the center, and is defined as,

KTWTDi
¼ Ef Dij � μiÞ4


 �

σ4i
(37)

where μi is the mean of Dij, σi is the standard deviation of Dij, and E(.)
represents the expected value. The values of the three indicators defined in
Eqs. (31)–(33) are entered in Table 2 for both error scenarios.

The excess kurtosis and skewness of every coefficient A3, D1, D2 and D3 in the
dataset, can be interpreted as follows:

a. For skewness, if the distribution of responses for a variable stretches toward
the right or left tail of the distribution, then the distribution is referred to as
skewed. A general guideline for skewness is that if the number is greater than
+1 or lower than �1, this is an indication of a substantially skewed
distribution.

b. For kurtosis, if the number is greater than +1, the distribution is too peaked.
Otherwise, a kurtosis of less than �1 indicates a distribution is too flat.

c. When both skewness and kurtosis are zero, the pattern of responses is
considered a normal distribution.

Besides, an assessment statistic criterion root mean square error (RMSE) is
introduced in Table 2 for a particular analysis of the high frequency detail compo-
nent D1 dataset.

The MATLAB simulation results analyzed from the perspective of the fault fea-
tures extracted from Table 2 reveal the fact that the temperature fault shows signif-
icant values compared to a possible occurrence of current fault in Li-ion battery.

Figures 21 and 22 show how multiresolution decomposition technique, such as
1-D wavelet analysis, allow us to study signal components in relative isolation on the
same time scale as the original data [22]. Multiresolution analysis (MRA) refers to
“breaking up a signal into components, which produce the original signal exactly
when added back together” [22]. The components ideally decompose the variability
of the data into physically meaningful and interpretable parts, as is stated also in [22].

The term MRA is often associated with wavelets, and in the “real life” the signals
consist of a mixture of different components. Often the interest is focused only in a
subset of these components. That is why the MRA allows us to restrict the analysis
of the original signal, by separating it into components at different resolutions.
Extracting signal components at different resolutions means a decomposition of
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variations in the data on different time scales, or equivalently in different frequency
bands [22]. Consequently, the signal variability at different scales or frequency
bands can be seen simultaneously.

In the Figures 21 and 22, using a wavelet MRA, the Li-ion battery output voltage
residual signal is analyzed in MATLAB at eight resolutions or levels, following the
procedure shown in [22] for both faults isolation.

Both graphs from Figures 21 and 22 starts from the uppermost plot and proceed
down until is reached the plot of the original data and is worth noting that the
components have become progressively smoother. D2 graph isolates the time-
localized high-frequency component, which can be seen and investigated as an
essential signal feature practically in isolation. The next two graphs contain the
lower frequency oscillation. It is worth to mention that “an important aspect of
multiresolution analysis, namely important signal components may not end up
isolated in one MRA component, but they are rarely located in more than two” [22].
Finally, from the S8 graph can be extracted a smooth trend term, which provides us
a valuable information to localize transient changes, as it can see in the fault
injection window [500, 1500] seconds. Thus, the presence of the bias current fault
and bias temperature fault is detected and localized as a significant transient change
in the nonstationary Li-ion output voltage residual signal. For an appropriate choice
of the thresholds’ values, both faults can be detected directly from the S8 graph,
removing the presence of the false alarms completely.

Besides, the value of the RMSE statistical criterion of the energy feature
extracted from the detail coefficient D1, for both faults, shown in Figures 18 and 20
(b), undoubtedly confirms the validation of the results obtained in Table 3, ade-
quate to differentiate between the two faults. However, in Table 3 is shown the
Fault signature of 1-D wavelet analysis transform, useful for fault isolation. To
distinguish between both faults injected in Li-ion battery, i.e. current sensor bias
fault, respectively, temperature bias fault a valuable information is provided by
battery SOC and battery internal resistance residuals. It is showing in Table 3, like
for based model AEKF FDI strategy developed in Section 2. An exciting piece of

Figure 21.
Li-ion output voltage residual signal using a wavelet MRA for scenario 1 of bias current fault on 8 resolutions
(levels) decomposition–extracted smooth trend (S8) and localize transient changes.
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information is related to the “border effects of error injection”, clearly visible when
the temperature fault is removing, because the healthy signal emerges from the
defective one in the window, before the corresponding time tf = 1500 seconds.
These “frontier effects” require further investigation in future work.

4. Conclusions

In this research paper is opened a new research direction in HEV BMS applica-
tions field by performing many investigations on the use of multisignal 1-D wavelet
analysis to improve the accuracy, robustness, the design and the implementation in
real-time of Fault detection techniques. Among the most relevant contributions of
the authors can be highlighted the following:

• The selection of a suitable and straightforward Li-ion battery model, accurate
enough for data generation, and to design and implement a robust adaptive
extended Kalman filter SOC estimator to changes in SOC initial values, in the
level of measurement noise that contaminate the input-output dataset, to
changes in the battery capacity value due to aging effects, and changes in the
internal resistance of the battery due to temperature effects

• Representation of the battery model in continuous and discrete time
state-space

Figure 22.
Synthetic signal using a wavelet MRA on 8 resolutions (levels) decomposition for scenario 2 of bias temperature
fault – Extracted smooth trend (S8) and localize transient changes.

Res_y Res_SOC Res_Rcell Fault signature

1 1 (<0) 0 Current fault, no false alarm

1 0 1 Temperature fault, no false alarm

Table 3.
Li-ion battery - fault signature 1-D wavelet analysis transform.
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• Develop the most appropriate thermal model of the battery for data generation
and to setup the temperature mechanism fault injection

• Adaptive Extended Kalman Filter SOC estimator with fading feature and
covariance matrices of noises correction—brief presentation and MATLAB
design and implementation.

• The battery SOC and output voltage residual generation and bias current fault
injection mechanism

• The fault detection and isolation estimation technique based on AEKF SOC
estimator

• Wavelets transform analysis of the faults features extraction in a rechargeable
Li-ion battery

• SOC and output voltage residual generation-original and reconstructed signals

• 1-D wavelet transform analysis used for battery voltage residual three levels
decomposition – Approximation coefficient A4, and Details coefficients D1, D2
and D3

• Denoising residual signals methods analysis – MATLAB implementation

• Wavelets transform analysis to extract the fault features for their detection.
Performance analysis

• Extracting signal components at different resolutions by using a
multiresolution analysis (MRA) method for fault detection

• The use of the fault signature for fault localization (isolation)

These investigations are performed for the case study, principally chosen to eval-
uate the impact of two bias faults injected in a current and temperature sensor on the
output voltage of a BMS Li-ion rechargeable battery used in HEVs applications.

The effectiveness of fault detection strategy is demonstrated through an exten-
sive number of simulations in a MATLAB R2020a software environment. The
preliminary simulation results are encouraging, and extensive investigations will be
done in future work to extend the applications area. The performance analysis from
the last section reveals that 1-D wavelet analysis is a useful tool for signals
processing, design and implementation based on wavelet transforms found in a
wide range of control systems industrial applications. Compared to AEKF estima-
tion technique described in Section 2, the 1-D wavelet analysis tool has a significant
advantage to perform online. Also, it does not require the model of the battery,
since it uses directly the input-output signals generated by the battery model. More
precisely, it is based only on the measurement input-output dataset collected by a
data acquisition (DAQ) system incorporated in BMS of HEVs. Besides, the battery
SOC and output voltage signals’ accuracy is not affected by noise as long as is using
the signals denoising techniques, such in the case of AEKF fault detection and
isolation technique during the noise correction step of the algorithm.
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Abbreviations

EV electric vehicle
HEV hybrid electric vehicle
BMS battery management system
FTP-75 Federal test procedure at 75 F
OCV open-circuit voltage
SOC state of charge
KF Kalman filter
EKF extended Kalman filter
AEKF adaptive Kalman filter
WCT wavelet continuous transform
WDT wavelet discrete transform
LPF low pass filter
HPF high pass filter
Sim4 Simlet wavelet with 4 vanishing moments
RMSE root mean square error
MSE mean square error
MAE mean absolute error
MAPE mean absolute percentage error
std standard deviation
R2 R-squared

Appendix A - AEKF SOC estimator steps of Li-ion battery combined
model

Step 1. Rint ECM battery nonlinear model represented in discrete time [3, 4, 11]:

x1 kþ 1ð Þ ¼ x1 kð Þ þ ηTsu kð Þ
Cnom

þ w kð Þ ¼ f x1 kð Þ, u kð Þð Þ þ w kð Þ, x1 kð Þ ¼ SOC kð Þ (38)

OCV kð Þ ¼ K0 � K2x1 kð Þ � K1

x1 kð Þ þ K3 ln x1 kð Þð Þ þ K4 ln 1� x1 kð Þð Þ (39)

y kð Þ ¼ OCV kð Þ � Rinu kð Þ þ v kð Þ ¼ g x1 kð Þ, u kð Þð Þ (40)

where the process noise w kð Þ and measurement output noise v kð Þ are white
uncorrelated noises of zero mean and covariance matrices Q kð Þ and R kð Þ
respectively, i.e.

w kð Þ � 0,Q kð Þð Þ, v kð Þ � 0,R kð Þð Þ
E w kð Þw jð ÞT
� 	

¼ Q kð Þδkj,E v kð Þv jð ÞT
� 	

¼ R kð Þδkj

δkj ¼
0, k 6¼ j

1, k ¼ j

( )
(41)

Step 2. Initialization:

x̂0 ¼ E x0½ � � the  initial mean  value

P̂x0 ¼ E x0 � x̂0ð Þ x0 � x̂0ð ÞT
h i

� the initial state covariance matrix
(42)

Step 3. Model linearization - The Jacobian matrices of the model linearization are
given by:
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A kð Þ ¼ ∂f k, x kð Þ, u kð Þð Þ
∂x kð Þ

�

�

�

�

x̂ kjkð Þ

C kð Þ ¼ ∂g k, x kð Þ, u kð Þð Þ
∂x kð Þ

�

�

�

�

x̂ kjk�1ð Þ

(43)

For k∈ 1,þ∞½ Þ do.
Step 4. Prediction phase (forecast or time update from kjkð Þ to kþ 1ð Þ∣k):

Step 4.1 Predict the state ahead:

x̂ kþ 1jkð Þ ¼ A kð Þx̂ kjkð Þ þ B kð Þu kð Þ (44)

Step 4.2. Predict the covariance error ahead:

P̂ kþ 1jkð Þ ¼ A kð ÞP̂ kjkð ÞA kð ÞT þ α�2kQ kð Þ (45)

Remark. In this phase, the predicted value of the state vector x̂ kþ 1jkð Þ is
calculated based on the previous state estimate x̂ kjkð Þ and the state covariance

positive definite matrices P̂ kjkð Þ and P̂ kþ 1jkð Þ (unidimensional in the case study)
are affected by a fading memory coefficient α.

Step 4.3 Compute the updated value of Kalman filter gain:

K kð Þ ¼ α2kP̂ kþ 1jkð ÞH kð ÞT H kð Þα2kP̂ kþ 1jkð ÞH kð ÞT þ R kð Þ
� 	�1

(46)

Step 5. Correction phase (analysis or measurement update):
In this phase the Li-ion battery SOC estimated state is updated when an output

measurement is available in two steps:
Step 5.1 Update the SOC estimated state covariance matrix with a

measurement:

P̂ kþ 1jkþ 1ð Þ ¼ I � K kð ÞH kð Þð ÞP̂ kþ 1jkð Þ I � K kð ÞH kð Þð ÞT þ α�2kK kð ÞR kð ÞK kð ÞT

(47)

Step 5.2 Update the SOC estimated state variable with the measurement:

x̂ kþ 1jkþ 1ð Þ ¼ x̂ kþ 1jkð Þ þ K kð Þ y kð Þ � g x̂ kþ 1jkð Þ, u kð Þ, kð Þð (48)

Step 5.3 Update the estimated output (battery terminal voltage):

ŷ
€

kjkð Þ ¼ g x̂ kjkð Þ, u kð Þ, kð Þ (49)

Step 6. Adaptive noise covariance matrices correction:
For k > = L, the length of the window’s samples, compute:

Step 6.1. Output variable error and the correction factor:

Err kð Þ ¼ ymes kð Þ � g x
_
kjkð Þ, uk

� �

c kð Þ ¼
Pk

i¼k�Lþ1Err kð ÞET
rr kð Þ

L

(50)

Step 6.2. Measurement noise correction:

R kð Þ ¼ c kð Þ þH kð ÞP
_

kjkð ÞH kð ÞT (51)
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Step 6.3. Process noise correction:

Q kð Þ ¼ K kð Þc kð ÞK kð ÞT (52)

Annex B – Figures

Figure B1.
Second scenario of fault injection: (a) bias fault injection of magnitude 2A in a current measurement sensor;
(b) battery terminal voltage residual; (c) AEKF SOC estimate versus EMC battery model SOC true value;
(d) SOC residual.
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Figure B2.
Third scenario of fault injection: (a) bias fault injection; (b) temperature profile; (c) temperature effect on
battery internal resistance Rin; (d) AEKF SOC estimate versus ECM battery model SOC true value; (e) SOC
residual; (f) AEKF terminal voltage estimate versus ECM battery model terminal voltage true value; (g)
battery terminal output voltage residual.
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