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Chapter

Stock Market Trend Prediction
Using Hidden Markov Model
Deneshkumar Venugopal,

Senthamarai Kannan Kaliyaperumal

and Sonai Muthu Niraikulathan

Abstract

In Recent years many forecasting methods have been proposed and implemented
for the stock market trend prediction. In this Chapter, the trend analyses of the stock
market prediction are presented by using Hidden Markov Model with the one day
difference in close value for a particular period. The probability values π gives the
trend percentage of the stock prices which is calculated for all the observe sequence
and hidden sequences. This chapter helps for decision makers to make decisions in
case of uncertainty on the basis of the percentage of probability values obtained from
the steady state probability distribution.

Keywords: stock market, HMM, TPM, EPM and trend prediction

1. Introduction

The fundamental idea behind a hidden Markov model is that there is a Markov
process we cannot observe that determines the probability distribution for what we
do observe. Thus a hidden Markov model is specified by the transition density of
the Markov chain and the probability laws that govern what we observe given the
state of the Markov chain. Given such a model, we want to estimate any parameters
that occur in the model. And also determined the most likely sequence for the
hidden process. Finally we may want the probability distribution for the hidden
states at every location.

Let yt represents the observed value of the process at location t for t ¼ 1, :… ,T, θt
the value of the hidden process at location t and let ϕ represents parameters necessary
to determine the probability distribution for yt given θt and θt given θt�1. In our
applications, yt will either be an increase or decrease and the hidden process will
determine the probability distribution of observing different letters.

Our model is then described by the sets of probability distributions p yt∣ θt,
�

ϕÞ

and p θtj θt�1,ϕð Þ. A crucial component of this model is that the yt are independent
given the set of θt and θ only depends directly on its neighbors θt�1 and θtþ1. The
various distribution in which we are interested are p ϕ jy1, … :, yT

� �

, p θtjy1, … :, yT
� �

for all t and p θ1, … ::, θT jy1, … ::, yt
� �

. We will adopt a Bayesian perspective, so that
we treat θt as a random variable [1, 2].

The measure of best is to find the path that has the maximum probability in the
HMM, given the sequence X. Recall that the model gives the joint probabilities
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Pr H,Xð Þ for all sequence, it also gives the posterior probability Pr H,Xð Þ ¼
Pr H,Xð Þ=Pr Xð Þ, for every possible state path H through the model, conditioned on
the sequence X with maximum posterior probability [3, 4]. Given that the denomi-
nator Pr Xð Þ is constant in the conditional probability formula for a given sequence X,
maximizing the posterior probability is equivalent to finding the state path H* that
maximizes the joint probability Pr H ∗ ,Xð Þ: Nguyen [5] has determined the optimal
number of states for the HMM by using the AIC, BIC and HQ information criteria and
also discussed the applications of HMM in stock trading. Hassan and Nath [6] have
applied HMM to the airlines stock forecast. HMMs have been used for pattern recog-
nition and classification problems and it was suitable for modeling dynamic systems.

2. Hidden Markov model

Hidden Markov model (HMM) is a stochastic model which is not directly
observable, It describes the observable events that are depends on internal factors.
The observable events are represented as symbols, where the invisible factor
involved in the observation is represented as a state. HMM is a stochastic model
where the system is assumed to be a Markov Process with hidden states and it gives
better accuracy than the other models. Using the given input values, the parameters
of the HMM (λ) denoted by A, B and π are found out. An HMM is defined as λ =
(S,O,A,B,π) where S = {s1,s2,… ,sN} is a set of N possible states O = {o1,o2,… ,oM} is
a set of M possible observation symbols, A is an N*N state Transition Probability
Matrix (TPM), B is an N*M observation or Emission Probability Matrix (EPM) and
Π is an N dimensional initial state probability distribution vector and A,B and π

should satisfy the following conditions (Figure 1):

X

N

j¼1

aij ¼ 1 where 1≤ i≤N;

X

M

j¼1

bij ¼ 1 where 1≤ i≤N;

X

N

i¼1

πi ¼ 1 where πi ≥0

Figure 1.
Diagram of HMM.
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2.1 Evaluation problem

Given the HMM = {A,B,π} and the observation sequence O = o1,o2,… ,oM, the
probability that model λ has generated sequence O is calculated. Often this problem
is solved by the Forward Backward Algorithm [7, 8].

2.2 Decoding problem

Given the HMM λ = {A,B,π} and the observation sequence O = o1,o2,… ,oM,
calculate the most likely sequence of hidden states that produced this observation
sequence O. Usually this problem is handled by Viterbi Algorithm [7, 8].

2.3 Learning problem

Given some training observation sequences O = o1,o2,… ,oM, and general struc-
ture of HMM (numbers of hidden and visible states), determine HMM parameters
λ = {A,B,π} that best fit training data. The most common solution for this problem is
Baum-Welch algorithm [9, 10] which is considered as the traditional method for
training HMM.

3. Results and discussions

In this chapter, the data has been taken from Yahoofinance.com and the NSE daily
close value data for a month of January 2020 period is considered for the analysis.

Here two observing symbols “I” for Increasing states and the symbols “D” for
decreasing states have been used. If the differences of close value greater than 0 its
observing that the symbol is “f” and If the differences of close value less than 0 its
observing that the symbol is “D”. There are six hidden states assumed and are denoted
by the symbol S1, S2, S3, S4, S5, S6 are indicates that very low, low, moderate low,
moderate high, high and very high respectively. The states are not directly observable.

The situations of the stock market are considered hidden. Given a sequence of
observation we can find the hidden state sequence that produced those observa-
tions. Table 1 shows the daily close value of the stock market.

Interval values:
S1 = �9500 to �551.
S2 = �550 to �251.
S3 = �250 to 249.
S4 = 250 to 8500.
The various probability values of TPM, EPM and π for difference in one day, two

days, three days, four days, five days, six days close value are calculated as given
below (Table 2).

Probability values of TPM, EPM, and π for difference in one day close value
(Figure 2 and Table 3):

S1 S2 S3 S4

S1 0 0 1 0

S2 0 0 1 0

S3 0:071 0:071 0:4286 0:4286

S4 0 0 1 0

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

      

I D

S1 0 1

S2 0 1

S3 0:2849 0:7143

S4 0:5 0:5

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5
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Probability values of TPM, EPM, and π for difference in two day close value
(Figure 3 and Table 4).

S1 S2 S3 S4

S1 0 0 1 0

S2 0 0 1 0

S3 0:0111 0 0:5555 0:3333

S4 0 0:3333 0:5 0:1667

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

      

I D

S1 0:5 0:5

S2 0:5 0:5

S3 0:4444 0:5556

S4 1 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

Probability values of TPM, EPM, and π for difference in three day close value
(Figure 4 and Table 5):

S1 S2 S3 S4

S1 0 0 0 1

S2 0 0 0:75 0:25

S3 0 0:6 0:2 0:2

S4 0:5 0:2 0:2 0:2

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

      

I D

S1 0 1

S2 1 1

S3 0:6 0:4

S4 1 0

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

S. no Date Close

1 01/02/2020 41,626.64

2 01/03/2020 41,464.61

3 01/06/2020 40,676.63

4 01/07/2020 40,869.47

5 01/08/2020 40,817.74

6 01/09/2020 41,452.35

7 01/10/2020 41,599.72

8 01/13/2020 41,859.69

9 01/14/2020 41,952.63

10 01/15/2020 41,872.73

11 01/16/2020 41,932.56

12 01/17/2020 41,945.37

13 01/20/2020 41,528.91

14 01/21/2020 41,323.81

15 01/22/2020 41,115.38

16 01/23/2020 41,386.4

17 01/24/2020 41,613.19

18 01/27/2020 41,155.12

19 01/28/2020 40,966.86

20 01/29/2020 41,198.66

21 01/30/2020 40,913.82

22 01/31/2020 40,723.49

Table 1.
Daily close value of NSE.

4

Forecasting in Mathematics - Recent Advances, New Perspectives and Applications



S. no c.v D in 1 day CV o.s D in 2 days CV o.s D in3 days CV o.s D in 4 day CV o.s D in 5 day CV o.s D in6 days CV o.s

1 41,626.64

2 41,464.61 162.03 I

3 40,676.63 787.98 I �625.95 D

40,869.47 �192.84 D 980.82 I �1606.77 D

5 40,817.74 51.73 I �244.57 D 1225.39 I �2882.16 D

6 41,452.35 �634.61 D 686.84 I �930.91 D 2156.3 I �4988.46 D

7 41,599.72 �147.37 D �487.24 D 1173.58 I 2104.49 I 4260.79 I �9249.25 D

8 41,759.69 �259.97 D 112.6 I �599.84 D 1773.42 I �3877.91 D 8138.7 I

9 41,952.63 �92.94 D �167.03 D 279.63 I �879.47 D 2652.89 I �6530.8 D

10 41,872.73 79.9 I �172.84 D 5.81 I 273.82 I �1153.28 D 3806.18 I

11 41,932.56 �59.83 D 139.73 I �312.57 D 318.38 I �44.56 D �1108.73 D

12 41,945.37 �12.81 D �47.02 D �92.71 D 405.28 I �86.9 D 42.34 I

13 41,528.91 416.46 I 403.65 I �450.67 D 357.96 I 47.32 I �134.22 D

14 41,323.81 205.1 I 211.36 I 192.22 I �642.96 D 1000.92 I �953.6 D

15 41,115.38 208.43 I �3.33 D 214.69 I �22.4 D �620.56 D 1621.48 I

16 41,386.4 �271.02 D 479.45 I �482.78 D 697.47 I �719.87 D 99.31 I

17 41,613.19 �226.79 D �44.23 D 523.68 I �1006.46 D 1703.93 I �2423.8 D

18 41,155.12 458.01 I �684.86 D 640.63 I �116.95 D �889.51 D 2593.44 I

19 40,966.86 188.26 I 269.81 I �415.05 D 1055.68 I 938.73 I �1828.24 D

20 41,198.66 �231.8 D 420.06 I �150.25 D �264.8 D 1320.48 I �381.75 D

21 40,913.82 284.84 I �516.64 I 936.7 I �1086.95 D 822.15 I 498.33 I

22 40,723.49 190.33 I 94.51 I �611.15 D 1547.85 I �2634.8 D 3456.95 I

Table 2.
Daily close value for finding differences in one day, two day, three days, four days, five days, six days close value.
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Probability values of TPM, EPM and π for difference in four days close value
(Figure 5 and Table 6):

S1 S2 S3 S4

S1 0:3858 0:1429 0:1429 0:4286

S2 0:5 0 0:5 0

S3 0 0 1 0

S4 0:4286 0:1429 0 0:4286

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

      

I D

S1 0:1429 0:9573

S2 0:5 0:5

S3 0 1

S4 1 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

S1 S2 S3 S4

I D I D I D I D

S1 0 0 0 0 1 0 0 0

S2 0 0 0 0 1 0 0 0

S3 0.071 0 0.071 0 0.1429 0.2857 0 0.4286

S4 0 0 0 0.8 0.2 0 0 0

Table 3.
Transitions with probability values for one day close value.

Figure 2.
Diagram of TPM day 1.

S1 S2 S3 S4

I D I D I D I D

S1 0 0 0 0 0 0 0.5 0.5

S2 0 0 0 0 0.5 0.5 0 0

S3 0 0.111 0 0 0.3333 0.2222 0.1111 0.2222

S4 0 0 0.3333 0 0.5 0 0.1667 0

Table 4.
Transition table with probability values for difference in two day close value.
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Probability values of TPM, EPM and π for difference in five days close value
(Figure 6 and Table 7):

S1 S2 S3 S4

S1 0:1667 0 0:1667 0:6667

S2 0 0 0 0

S3 0 0 0:6667 0:3333

S4 0:7143 0 0 0:6667

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

      

I D

S1 0 1

S2 0 1

S3 0:3333 0:6667

S4 1 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

Probability values of TPM, EPM and π for difference in six days close value
(Figure 7 and Table 8):

S1 S2 S3 S4

S1 0 0:2 0:2 0:6

S2 0 0 0 1

S3 0:6667 0 0:3333 0

S4 0:5 0 0:25 0:25

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

      

I D

S1 0 1

S2 0 1

S3 0:667 0:3333

S4 1 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

Figure 3.
Diagram of TPM day 2.

S1 S2 S3 S4

I D I D I D I D

S1 0 0 0 0 0 0 0 1

S2 0 0 0 0 0 0.75 0 0.25

S3 0 0 0.4 0.2 0.2 0 0 0.2

S4 0.5 0 0.2 0 0.2 0 0.2 0

Table 5.
Transition table with probability values for difference in three day close value.
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S1 S2 S3 S4

I D I D I D I D

S1 0.1429 0.2429 0 0.1429 0 0.1429 0 0.4286

S2 0.5 0 0 0 0 0.5 0 0

S3 0 0 0 0 0 1 0 0

S4 0.4286 0 0.1429 0 0 0 0.4286 0

Table 6.
Transition table with probability values for difference in four day close value.

Figure 5.
Diagram of TPM day 4.

Figure 4.
Diagram of TPM day 3.
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The various transitions probability values for difference in one day to six days
close values are displayed in Figure 2 to Figure 7 respectively.

Optimum Sequence of States:
To generate a random sequence of emission symbols and states are calculated by

using the function “Hmmgenerate”. The HMMmatlab toolbox syntax is: [Sequence,
States] = Hmmgenerate(L,TPM,EPM). The length of both sequence and state to be
generated is denoted by L [11]. The fitness function used for finding the fitted value
of sequence of states is defined by

S1 S2 S3 S4

I D I D I D I D

S1 0 0.1667 0 0 0 0.1667 0 0.6667

S2 0 0 0 0 0 0 0 0

S3 0 0 0 0 0 0.6667 0.3333 0

S4 0.7143 0 0 0 0 0 0.2857 0

Table 7.
Transition table with probability values for difference in five day close value.

Figure 6.
Diagram of TPM day 5.

S1 S2 S3 S4

I D I D I D I D

S1 0 0 0 0.2 0 0.2 0 0.6

S2 0 0 0 0 0 0 0 1

S3 0.3333 0.3333 0 0 0.3333 0 0 0

S4 0.5 0 0 0 0.25 0 0.25 0

Table 8.
Transition table with probability values for difference in six day close value.
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ðFitness ¼Þ
1

P

compare i, jð Þ

Using the iterative procedure, for each TPM and EPM framed we get an
optimum sequence of states generated.

The length of the sequence taken as L = 4 and the optimum sequence of states
obtained from the all six day’s differences with TPM and EPM is given in the below
and here ‘ε’ is the start symbol.

1. ε ! I

S4

! D

S4

! I

S3

! D

S4

2. ε ! D

S1

! I

S4

! I

S4

! D

S3

3. ε ! I

S4

! I

s2

! D

S3

! D

S1

4. ε ! D

S1

! D

S4

! I

S3

! D

S4

5. ε ! I

S3

! I

S3

! D

S2

! D

S4

6. ε ! I

S4

! D

S1

! I

S3

! D

S4

Here, the one day difference of TPM and EPM has the shortest path. So the best
optimum sequence is found from one day difference in close value. Using the fitness
function we compute the fitness value for each of the optimum sequences of states
obtained (Table 9).

In column four the highest value is the fitness value and the better is the
performance of the particular sequence.

Figure 7.
Diagram of TPM day 6.
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4. Conclusion

Stock prediction is challenging due to its randomness. Hidden Markov Model
can be used for stock prediction by finding hidden patterns. Here the Hidden
Markov model easily recognized four states of the stock market and also it was used
to predict the future values. The highest value in the Optimum State Sequences is
the better performance of the particular sequence. Hidden states and sequences
have been generated to easily identify the level of the sequence whether the next
day value is increasing. And also identified whether the increasing level is moderate
high or high or very high and also decreasing level whether moderate low or low or
very low. This model will be very much useful for short term as well as long term
investors.
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S. no. Comparison of six optimum sequence of states Calculated value Fitness = 1
P

comparision i, jð Þ

1 (1,2) + (1,3) + (1,4) 1 1

2 (2,1) + (2,3) + (2,4) 1.7 0.588

3 (3,1) + (3,2) + (3,4) 2.425 0.412

4 (4,1) + (4,2) + (4,3) 3.15 0.32

Table 9.
Comparison of six optimum state sequences.
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