We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

Chapter

Incomplete Data Analysis

Bo-Wei Chen and Jia-Ching Wang

Abstract

This chapter discusses missing-value problems from the perspective of machine
learning. Missing values frequently occur during data acquisition. When a dataset
contains missing values, nonvectorial data are generated. This subsequently causes a
serious problem in pattern recognition models because nonvectorial data need
further data wrangling before models are built. In view of such, this chapter reviews
the methodologies of related works and examines their empirical effectiveness. At
present, a great deal of effort has been devoted in this field, and those works can be
roughly divided into two types — Multiple imputation and single imputation,
where the latter can be further classified into subcategories. They include deletion,
fixed-value replacement, K-Nearest Neighbors, regression, tree-based algorithms,
and latent component-based approaches. In this chapter, those approaches are
introduced and commented. Finally, numerical examples are provided along with
recommendations on future development.

Keywords: data imputation, missing value analysis, missing data, data wrangling,
data analytics

1. Introduction

With recent development of the Internet of Things (IoT), communication tech-
nology, and wireless sensor networks, a huge amount of data is generated every day
[1, 2]. It becomes easier to collect data in quantities than before, but new challenges
subsequently arise. For example, in manufacturing industries, manufacturers often
utilize and deploy thousands of sensors in production lines to monitor the quality of
products and to detect possible anomaly or abnormal events. Those sensing data are
stored in databases for further analysis. Nonetheless, the collected data are not
always perfect. Missing-value entries may appear in databases. When a dataset
contains missing values, it is referred to as an incomplete dataset. Missing values in
manufacturing industries frequently occur due to sensor failure, particle occlusion,
and physical/chemical interferences [3-5]. Unfortunately, most of them happen due
to unknown causes and unforeseen circumstances. In addition to manufacturing
industries, missing value problems also frequently occur in biomedical areas, for
instance, microarray profiling — One of the commonly used tools in genomics [6].
Microarrays are well known for rapidly automated measurement at massive scale —
High-throughput biotechnologies [7], but microarrays suffered from missing-value
problems [8]. During microarray profiling, missing values might occur as a result of
different reasons, such as human errors, dust or scratches on the slide [9], spotting
problems, poor/failed hybridization [10], insufficient image resolutions, and fabri-
cation errors [11]. Those unpredictable factors thereby increase the opportunity of

1 IntechOpen

Applications of Pattern Recognition

defect microarrays. In fact, missing-value problems almost challenge every part of
our daily applications ranging from manufacturing/biotechnology industries that
rely on sensors to typical service industries that involve questionnaire-based sur-
veys. Questionnaires are used to collect information from respondents. Nonethe-
less, respondents occasionally fail to provide answers that match the format to fit
the response categories [12], subsequently generating unanswered questions or
invalid formats/responses (e.g., out-of-range values). There are many reasons for
such problems, e.g., respondents refused to answer, respondents chose wrong for-
mats [13, 14], respondents intentionally/unintentionally left blanks, testers
addressed unclear/confusing choices, designs involved sensitive/private questions,
and interviews were interrupted. These factors could result in missing values in
questionnaires.

The difficulty of processing incomplete data is that when a dataset contains
missing values, the corresponding entries are marked with invalid values. Accord-
ingly, such a dataset becomes nonvectorial because invalid values are present (which
are constantly represented as Not-a-Number (NaN)). To tackle those entries with
NaN, mathematical operations (e.g., pairwise distance) need further revision under
such circumstances because nonvectorial arithmetic is not well defined.

To handle missing-value problems, data imputation is generally used. Data
imputation is a statistical term that describes the process of substituting estimated
values for missing ones. Related approaches for data imputation [15] can be classi-
fied into two types: Multiple imputation and single imputation. The former is aimed
at generating two distributions. One is a distribution for selecting hyperparameters,
and the other is a distribution for generating data. Multiple imputation uses a
function for generating distributional hyperparameters and takes samples from
such a function to obtain an averaged distributional hyperparameter set. Multiple
imputation then utilizes this averaged distributional hyperparameter set to create a
statistical distribution for describing the data distribution. Finally, data samples are
drawn to replace missing values. Popular methods for multiple imputation include
Expectation Maximization (EM) algorithms or Monte Carlo Markov Chain
(MCMC) strategies [16, 17]. Regarding single imputation, it does not involve
drawing data samples from an uncertain function to substitute for missing data as
multiple imputation does. In brief, single imputation relies on neither sample drawing
nor uncertain functions. At present, a great deal of effort has been devoted to single
imputation, for example, hot-deck/cold-deck, deletion, fixed-value replacement
(e.g., zeros, means, and medians), K-Nearest Neighbors (KNNs) [18], regression
[10, 19, 20], tree-based algorithms [21, 22], and latent component-based approaches
(including matrix completion) [15, 23, 24]. This chapter focuses on K-Nearest Neigh-
bors, regression, tree-based algorithms, and latent component-based approaches
because the imputation errors of deck/cold-deck and fixed-value replacement are not
satisfactory. Moreover, deletion could result in loss of discriminant features or
samples. Therefore, the subsequent sections lay emphasis on the other methods.

The rest of this chapter is organized as follows. Section 2 introduces related
works, and their methods are subsequently introduced. Sections 3 shows the
numerical results, and finally the conclusions are drawn in Section 4.

2. Imputation methods

The following subsections introduce data imputation using KNNs, regression,
tree-based algorithms, and latent component-based approaches, respectively. For
clarity, the description on the dataset uses the following definitions and notations.
A nonmissing-value dataset is represented as X = {x,, [# =1 2, N}, where

Incomplete Data Analysis
DOI: http://dx.doi.org/10.5772/intechopen.94068

x, €ERM N €7, refers to the number of samples, and the dimensionality of a
sample is M € Z, . Herein, the dimensionality represents the number of independent
variables, predictor variables, features, dimensions, control variables, or explana-
tory variables. Those terms are used, depending on various research fields, e.g., data
science, machine learning, and statistics. Furthermore, X is max-min normalized.

If supervised learning is required, the label information and the response vari-
able corresponding to each sample x,, are respectively defined as ¢, and y,,. The
former belongs to categorical variables € R after encoded, and ¢ = {c,|#n =12 _ N}.
The latter belongs to numerical variables €R, andy = {y,|# =1 2 N}. Moreover,
the sizes of X, ¢, and y are M-by-N, 1-by-N, and 1-by-N. For X, ¢, and y that
contain missing values, X, ¢, and y are used.

2.1 Imputation based on K-nearest neighbors

KNNImpute [9] is a popular imputation tool that leverages KNN algorithms to
find the K-nearest neighbors nearby a given sample x; that contains missing values
(if no missing values are present, x, € RM). The substituted values are generated
based on the weighted average of those K-nearest neighbors. Notably, there is a
limitation for the selected K-nearest neighbors when KNNImpute is executed. That
is, the dimensions of those K-nearest neighbors corresponding to missing-value
entries should contain nonmissing-value data. In the plain version, label informa-
tion was not used while the K-nearest neighbors were searched (Table 1).

In the above-mentioned algorithm, “:” means selecting the entire rows or col-
umns based on the position, and the operator @ means to replace the missing values
with the corresponding generated substituted values. Moreover, distance(-,-) sig-
nifies the distance between two samples, e.g., Euclidean or Manhattan distance.
Those substituted values were fixed and unchanged once they were generated.
Nonetheless, such substituted values were highly affected by initial conditions, such
as the subset of M independent variables and the number of nearest neighbors.
Iterative K-Nearest Neighbor imputation (IKNNimpute) [25] improved one of such
drawbacks by using a loop that iteratively produced substituted values, chose the
subset of M independent variables, and reselected near neighbors. Table 2 lists a

. . . 0y . .
simple version of IKNNimpute, where X [j] represents the matrix, of which the
missing-value entries are filled in with substituted values in the j-th iteration, and J

denotes the number of iterations. Besides, X' is formed by horizontally concatenat-
ing X and X;. Gray KNNs [26] further proposed Gray Relational Analysis to capture

Algorithm: KNNImpute

Input: X and %,
Output: x;
1 Select M’ dimensions (M’ <M and M’ € Z.) without missing values from %

2 Store the indices of the selected dimensions in an M'-by-1 vector s

w

Apply KNN algorithm to (%), . based on the dataset X

4 Store the K-nearest samples in an M’-by-K matrix K

w

Compute a K-by-1 weight vector Q = [1/distance(k, t)|k =1, ..., K]
6 (f(t)s,: = (it)s,®(KQ)

Table 1.
KNNImpute.

Applications of Pattern Recognition

Algorithm: IKNNImpute

Input: X and %,

Output: X and %,

1 Form X' by horizontally concatenating X and %;
2 Form X' [1] by filling in the missing-value entries of X' with initial replacement
3 Forj=1J
4 Forn = 1:(N + 1)
> Apply KNN algorithm to %, [j] based on the dataset X 1l
6 Store the K-nearest samples in an M-by-K matrix K
7 Compare a K-by-1 weight vector Q = [1/distance(k,n)|k =1, ..., K]
8 %, [j + 1] = %, [j]®(KQ)
9 End
10 End
Table 2.
IKNNImpute.

pairwise distance between samples, so that near neighbors were appropriately
measured and described.

2.2 Imputation based on regression

The underlying model of this category is primarily based on well-known
Ordinary Least Squares (OLS), which focuses on minimizing least squares errors

2_

=y -wX=Tr((y-wX) (y-w'X)).

Eos = [y -

Herein, ||-|, is the £,-norm distance, w € R means an unknown weight vector,
T represents matrix transpose, and § = w' X. Moreover, w = (XX') ' Xy is the
closed form for finding the weight vector. Given a nonmissing-value sample x,, of
which the response variable j, is unknown, w'x, can generate estimated results.
Such methods included Least Squares Imputation (LSImpute) [10], Local LSImpute
(LLSImpute) [19], Sequential LLSimpute (SLLSimpute) [27], Iterated LLSImpute
(ILLSImpute) [20], Weighted ILLSImpute [28], Regularized LLSImpute
(RLLSImpute) [29], and so on.

In LSImpute [10], the authors examined two types of correlations — those
among independent variables (i.e., estimating y, based on X and y) and those
among samples (i.e., estimating y, based only on the subsets of y). In the latter, y,
and the selected subsets from y should be highly correlated during OLS modeling
[30]. A combined model was also derived by taking the weighted average from the
estimated j, based on independent variables and that based on samples. Unlike
LSImpute, LLSImpute [19] was aimed at the correlation among independent vari-
ables, but the response variable became multivariate, namely, Y = {Y,|z =12 N},
where Y, € RY, and Y was an L-by-N matrix. The fitting weight was converted
from w to an M-by-L matrix W. For ILLSImpute, different subsets of independent
variables in X were drawn and examined during iterations to estimate an optimal j,.
SLLSimpute [27] adopted multistage data imputation, where the whole missing-
value entries were divided into multiple groups based on the missing rate of each

Incomplete Data Analysis
DOI: http://dx.doi.org/10.5772/intechopen.94068

independent variable. The groups with lower missing rates were filled in with
substituted values first. Then, those recovered groups were utilized for estimating
the other groups with higher missing rates during data reconstruction. For other
methods like Weighted ILLSImpute [28] and Regularized LLSImpute (RLLSImpute)
[29], variants of OLS models were utilized to adapt to data imputation, for example,
Locally Weighted OLS, £,-norm regularized OLS (i.e., ridge regression), £;1-norm
OLS (e.g., LASSO (Least Absolute Shrinkage and Selection Operator), Group
LASSO, and Sparse Group LASSO), and regression based on other norms [31].

2.3 Imputation based on tree-based algorithms

Since Random Forests (RFs) [32] were proposed, the performance of tree-
structured classification and regression algorithms were significantly enhanced. Ran-
dom Forests adopted Bagging (i.e., Bootstrap Aggregating) techniques to perform data
sampling and perceptron learning. Multiple trees were created based on randomly
selected features several times (where the numbers of features should be smaller than
M), and each set of sampled data after Bootstrapping was used to train only one tree. A
distinct structure used in Random Forests was called proximity matrix, which recorded
the concurrence of pairwise samples in a leaf node, namely, the frequencies when two
samples coexist in the same leaf node. Such a proximity matrix was symmetric, of which
the size was N-by-N, and it was used as imputation weighting during data recovery.

Based on [22], two basic principles for handling incomplete data can be derived by
summarizing the strategies mentioned in [22] — Preimputation [33] and on-the-fly
imputation [21]. The former filled in missing-value entries with fixed replacement at
the beginning. Replacement was iteratively updated using proximity matrices. RF
growing process repeated until convergence. For the latter method, on-the-fly impu-
tation did not fill in missing-value entries with initial substituted values, and it skipped
using missing-value samples for computing splitting nodes. When missing-value sam-
ples reached leaves, imputation started. As assignment of missing-value samples to
leaves involved randomness, iterations until convergence improved imputation.

2.4 Imputation based on latent component-based approaches

This type of method has a general procedure for reconstructing an incomplete

data matrix. Firstly, the missing-value entries of a data matrix X are filled in with
replacement (e.g., zeros). Secondly, new matrix factors or vector factors are initial-
ized by generating random numbers. In typical, two or three matrix/vector factors
are used, e.g., Pe RM*D and T e RP*N . Besides, the product of those factors should

be close to X. Thirdly, iterations are performed to improve the replacement. Unlike
the aforementioned types of methods, this type has a unique characteristic —
Setting the number of latent components D € Z,; — before imputation starts.

Popular methods included SVDImpute (i.e., imputation based on Singular Value
Decomposition) [34], Nonlinear Iterative Partial Least Squares-Principal Compo-
nent Analysis (NIPALS-PCA) [35], matrix completion/approximation, and so forth.
The common place of SVDImpute and NIPALS-PCA was that projection matrices
(or eigenvectors) were computed, whereas plain NMF did not.

2.4.1 SVDImpute
For SVDImpute, let X[1] represent the data matrix, of which the missing-value

entries are filled in with substituted values in the :-th iteration. Subsequently, SVD
is perform on X[1], so that

Applications of Pattern Recognition

(UZVT)[i] = SVD(X[1]) (2)

where U is an M-by-M unitary matrix, X represents an M-by-N diagonal matrix,
of which the diagonal terms are nonnegative real numbers sorted in descending
order, and V denotes an N-by-N matrix. By selecting the top D largest diagonal
values from X, the following two corresponding matrices P and T are formed

Pl =U. 1p[l
{ T = (2V7), i’)

where “:,1:D” means selecting columns ranging from the first one to the D-th
one, and “L:D,:” extracts rows. The process of (3) is the same as Truncated SVD.
Subsequently, the reconstructed data matrix becomes

A ~

X[t +1] = XS(P[T[). (4)

Herein, the operator @ means to replace the missing values of X with the
corresponding generated values by P[:]T[:]. Egs. (2)-(4) iterate until convergence.

2.4.2 NIPALS-PCA

As for NIPALS-PCA (abbreviated as NP below), it minimizes the reconstruction
error of

Enp = i i (Ho (X - PT))fnn
m=1 n—1 , (5)
— Z{ <H o} (X - (PT):,n>>T (Hn © (X - (PT):’"»}

where © is the elementwise multiplication, H denotes an M-by-N index matrix
of the nonmissing-value entries in X. That is, if the entry)N(m,n is nonmissing,
then H,, , is one. Otherwise, it shows a zero. Let ® = diag(H.,) and ¥ = diag(H,,,.),
wheren =1,2,...,N,and m = 1,2, ... ,M. Eq. (5) becomes convex if either P or T is
fixed. Then, a solution can be achieved based on Alternating Least Squares (ALS).
Taking the derivative form of (5) with respect to T.,, and zeroing the result yield

T., = (PT®P) 'PT®X.,. (6)

Likewise, taking the derivative form of (5) with respect to P,, . and arranging the
result generate

P,. =X, YT (TYT") . 7)

At the beginning, NIPALS-PCA utilizes the SVD result in the first iteration (see
(2)) and extracts the top D components from U and V as P and T (see (3)).

Subsequently, alternating computation between P, T, and X&(PT) until conver-
gence generates solutions.

2.4.3 NMFImpute

Alternating Least Squares has been widely applied to many models, especially
matrix completion/approximation. Nonnegative matrix factorization (NMF) is an

6

Incomplete Data Analysis
DOI: http://dx.doi.org/10.5772/intechopen.94068

important topic in matrix completion/approximation, and it became a highlight
when it was applied to recommendation systems in a Netflix contest [36-38]. At
present, NMF has developed multiple variants, including (i) regularization based on
Li-norms, £-norms [39], £,1-norms, nuclear norms, mixed norms, and graphs,
(ii) different loss functions like Huber loss, the correntropy induced metric

[40, 41], Cauchy functions [42], and Truncated Cauchy functions [43, 44], and (iii)
many more, such as projected gradient NMF [45], projective NMF [46, 47], and
orthogonal NMF [48]. The following uses the plain version of NMF as an example
to elaborate the detail. NMF minimizes the Least Squares error of

Exwr = | X — PT; = Tr{ (X - PT) (X - PT) }, (8)

where Tr(-) is the trace operator. Eq. (8) is nonconvex and hard to solve. When
one variable is fixed, (8) becomes convex. One can use ALS or Coordinate Descend
to find the solution. Differentiating (8) with respect to P,, ; and T, ,, (where
d =1,2,...,D), respectively, yields

oE)
. =2(PTTT —XTT) ,
m,d ’
bl . 9
O _ 2(PTPT — P'X) ?
aTd,n dn

The multiplicative update rules for (9) are, respectively,

XT"
P,.= , Pra® 10
! e (8 ! (PTTT> m d) ()

and

P'X
Tyn = s Tapn T ’ 11
d, max <£ dn @ (PTPT>M> (11)

where ¢ is an extremely small positive number, and division is elementwise.
Egs. (10), (11), and (4) iterate until convergence.

3. Experimental results

To show the imputation performance of the above-mentioned methods, experi-
ments on open datasets were conducted. The datasets included Abalone (Aba),
Scene (SCN), White Wine (WW), and Indian Pines (IP). The number of samples
were 4177, 2407, 4898, and 21025, respectively. Furthermore, the dimensionality
was, respectively, 561, 294, 11, and 200. Imputation approaches included KNN
Regression Imputation (KNRImpute), KNNImpute with K = 5, Regression Tree
Imputation (RTImpute), Random Forest Imputation (RFImpute), and NIPALS-
PCA Imputation (PCAImpute) with only one component. All of them were found in
open sources.

To generate missing values for each dataset, this study used a random generator
to decide missing-values entries. For KNRImpute, KNNImpute, RTImpute, and
RFImpute, they required that missing values should not be uniformly distributed in
data. Otherwise, imputation could not be performed. Thus, not every of the inde-
pendent variables were chosen. Missing-value rates ranged from 3.00% to 9.00%,

7

Applications of Pattern Recognition

with a separation of 2.00%. When a dataset was recovered, the difference between
the substituted values and the ground truth was compared. The criteria for exam-
ining the quality of imputation included root-mean-squared errors (RMSEs) and
coefficients of determination (R?). For coefficients of determination, this study
reshaped (i.e., vectorized) a dataset into a vector and then used the following
definition to compute R”. Assume that x, represents an element of a ground-truth
dataset (g = 1, ... ,MN), X, denotes the corresponding recovered value, and X,
denotes the mean of all the ground-truth values in the same dataset

0.030 T T 0.030 T T T T
—KNRImpute —RTImpute PCAImpute B KNRImpute MIRTImpute [PCAlmpute
~— KNNImpute —RFImpute [KNNImpute IRFImpute
0.024
=3 0.018
w
2
& 0.012
0.006
0.000 = i -
3 5 7 9 3 5 7 9
Missing Ratio (%) Missing Ratio (%)
—KNRImpuie—RTImp‘ute ~—PCAImpute ' .KN]ilmputc.RTImpultc [PCAImpute '
—KNNImpute —RFImpute [KNNImpute liRFImpute
1.000 B
= 0.980
2]
=
% 0.960
0.940
0.920 . .
3 5 7 9 3 5 7 9
Missing Ratio (%) Missing Ratio (%)
Figure 1.

Average and the standard deviation of the RMSEs and R? based on dataset Aba. The top ones are RMSEs, and
the bottom are R*. The standard deviation was divided by 10.000 for better resolutions.

0.040 T 0.040 T T T
—KNRImpute—RTImpute —PCAImpute BMKNRImpute BIRTImpute [IPCAImpute
~KNNImpute —RFImpute [KNNImpute BIRFImpute
0.032 1 0032
= 0.024 1 = 0.0241
w w
E =
0.016 - 0.016 F
0.008 0.008 - . W B
0.000 : . 0.000
3 5 7 9 3 5 7 9
Missing Ratio (%) Missing Ratio (%)
—KNRImpute—RTImpute — PCAImpute BKNRImpute MRTImpute [/ PCAImpute | "
—KNNImpute —RFImpute "/ KNNImpute BIRFImpute
1.000 s ——
0990f 1
~ e
& T—
0.998
0.997 A
0.996 5 :
3 5 7 9 3 5 7 9
Missing Ratio (%) Missing Ratio (%)
Figure 2.

Average and the standard deviation of the RMSEs and R* based on dataset SCN. The top ones are RMSEs, and
the bottom are R*.

Incomplete Data Analysis
DOI: http://dx.doi.org/10.5772 /intechopen.94068

R=1-3" (g —%)"/D_ (e —%)" (12)

When R was close to one, substituted values approached the ground truth. This
implied that the difference between the substituted values and the ground truth was
smaller.

Figures 1-4 display the average and the standard deviation of the RMSEs and
R2, where the horizontal axis denotes the missing rates, and the vertical axis is the
evaluation result. The left subplots are line plots, and the right ones show bar charts
with standard variation. As shown in the figures, standard variation was quite small.

0.020 T 0.020 T T T T
—KNRImpute—RTImpute —PCAlmpute BKNRImpute lIRTImpute [[IPCAImpute
—KNNImpute—RFImpute [WKNNImpute BIRFImpute

0.016 - b 0.016

= 0.012 1 g 0.0121
w v
s L - S
& 0.008 _— T 4 P00}
0.004 J\ 0.004 [
—-’A
0.000 : L 0.000
3 5 7 9 3 5 T 9
Missing Ratio (%) Missing Ratio (%)
Lt —KNlepute—RTlmplute ~—PCAlmpute : .Kmil'“l"“e.RT'mp“‘te [EPCAImpute I ‘
—KNNImpute —RFImpute [IKNNImpute BIRFImpute
0.950 —-
. I - =
L e \
0.925-
0.900 . -
3 5 7 9 3 5 7 9
Missing Ratio (%) Missing Ratio (%)
Figure 3.

Average and the standard deviation of the RMSEs and R? based on dataset WW. The top ones are RMSEs, and
the bottom are R*. The standard deviation was divided by 10.000 for better resolutions.

0.015 T 0.015 T T T T
—KNRImpute—RTImpute — PCAlmpute BKNRImpute lIRTImpute [IPCAImpute
— KNNImpute —RFImpute [IKNNImpute lIRFImpute
0.012F B 0.012F
=2 0.009F 1 m0.009f
1z _ 7]
o006t 1 ®0.006f
0.003 q 0.003
0.000 A : 0.000
3 e} 7 9 3 5 T 9
Missing Ratio (%) Missing Ratio (%)
—KNRImputc—RTImpute —PCAImpute BKNRImpute MIRTImpute FIPCAImpute | j
~—KNNImpute —RFImpute [KNNImpute BIRFImpute
1.000 — 1.000
0999 —_ 1 0.999
o To— . ~
-1 — ~
0.998 I 0.998
0.9971 g 0.9971
0.996 L . 0.996
3 5 7 9 3 5 o1 9
Missing Ratio (%) Missing Ratio (%)
Figure 4.

Average and the standard deviation of the RVMSEs and R* based on dataset IP. The top ones are RMSEs, and the
bottom are R.

Applications of Pattern Recognition

Besides, RMSEs became higher when missing rates were increased. Observations
showed that KNRImpute, RTImpute, and RFImpute generated similar RMSEs.
Overall, KNNImpute and PCAImpute were affected by the hyperparameters.

4, Conclusions

This chapter introduces recent methods for processing missing values. Besides,
four types of commonly used algorithms, namely, K-Nearest Neighbors, regression,
tree-based algorithms, and latent component-based approaches, were examined.
Their advantages and disadvantages were also discussed in each subsection. It is
worth noting that data imputation usually does not require training data. It becomes
impractical when data imputation needs supervisory information or the ground
truth (notably, the ground truth is unobservable). This is because when missing
values occur in training data and even when the ground truth is missing, the
supervised methods even cannot work to learn the ground truth. Therefore, those
selected four types of commonly used algorithms in this chapter did not rely on and
require any supervisory information.

To evaluate those commonly used algorithms, this chapter conducted experi-
ments on open datasets. Criteria including root-mean-squared errors and coeffi-
cients of determination were adopted. Numerical results were also displayed in the
experimental section for reference.

In more recent years, surveys showed that a deep learning model “Generative
Adversarial Network (GAN)” has attracted much attention, and several novel
imputation methods based on GANs have been proposed, e.g., MisGAN [49],
MIWAE [50], and GAIN [51]. For future studies, deep learning architectures such
as Deep PCA, PCANet, and Deep NMF, can be integrated into those four types of
commonly used algorithms, namely, K-Nearest Neighbors, regression, tree-based
algorithms, and latent component-based approaches and subsequently enhance data
imputation.

Acknowledgements
The authors would like to appreciate Guan-Yu Huang for conducting experi-

ments to collect results. This work is supported in part by Pervasive Artificial
Intelligence Research (PAIR) Labs, Taiwan.

10

Incomplete Data Analysis
DOI: http://dx.doi.org/10.5772 /intechopen.94068

Author details
Bo-Wei Chen' and Jia-Ching Wang**

1 Department of Electrical Engineering, National Sun Yat-sen University,
Kaohsiung City, Taiwan

2 Department of Computer Science and Information Engineering, National Central
University, Taoyuan City, Taiwan

*Address all correspondence to: jew@csie.ncu.edu.tw

IntechOpen

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

11

Applications of Pattern Recognition

References

[1]]J. Reilly, S. Dashti, M. Ervasti, J. D.
Bray, S. D. Glaser, and A. M. Bayen,
“Mobile phones as seismologic sensors:
Automating data extraction for the
iShake system,” IEEE Transactions on

Automation Science and Engineering, vol.
10, no. 2, pp. 242-251, Apr. 2013.

[2] Z. Peng, S. Gao, B. Xiao, S. Guo, and
Y. Yang, “CrowdGIS: Updating digital
maps via mobile crowdsensing,” IEEE
Transactions on Automation Science and
Engineering, vol. 15, no. 1, pp. 369-380,
Jan. 2018.

[3] L. Xu and Q. Huang, “EM estimation
of nanostructure interactions with
incomplete feature measurement and its
tailored space filling designs,” IEEE
Transactions on Automation Science and
Engineering, vol. 10, no. 3, pp. 579-587,
Jul. 2013.

[4] D. Li, Y. Zhou, G. Hu, and C.J.
Spanos, “Handling incomplete sensor
measurements in fault detection and
diagnosis for building HVAC systems,”
IEEE Transactions on Automation Science
and Engineering, vol. 17, no. 2, pp. 833-
846, Apr. 2020.

[5] S.-K. S. Fan, C.-Y. Hsu, D.-M. Tsai, F.
He, and C.-C. Cheng, “Data-driven
approach for fault detection and
diagnostic in semiconductor
manufacturing,” IEEE Transactions on

Automation Science and Engineering, vol.
17, no. 4, pp. 1925-1936, Oct. 2020

[6] M. M. Babu, “An introduction to
microarray data analysis,” in
Computational Genomics: Theory and
Application, R. P. Grant, Ed. UK: Taylor
& Francis, 2004, pp. 225-249.

[7] T. Aittokallio, “Dealing with missing
values in large-scale studies: Microarray
data imputation and beyond,” Briefings
in Bioinformatics, vol. 11, no. 2, pp. 253—
264, Mar. 2009.

12

[8] M. S. B. Sehgal, I. Gondal, and L. S.
Dooley, “Collateral missing value
imputation: A new robust missing value
estimation algorithm for microarray
data,” Bioinformatics, vol. 21, no. 10,
pp. 2417-2423, Feb. 2005.

[9] O. Troyanskaya, M. Cantor, G.
Sherlock, P. Brown, T. Hastie, R.
Tibshirani, D. Botstein, and R. B.
Altman, “Missing value estimation
methods for DNA microarrays,”
Bioinformatics, vol. 17, no. 6, pp. 520
525, 2001.

[10] T. H. Bg, B. Dysvik, and I. Jonassen,
“LSimpute: Accurate estimation of
missing values in microarray data with

least squares methods,” Nucleic Acids
Research, vol. 32, no. 3, Feb. 2004.

[11] C.-C. Chiu, S.-Y. Chan, C.-C. Wang,
and W.-S. Wu, “Missing value
imputation for microarray data: A
comprehensive comparison study and a
web tool,” BMC Systems Biology, vol. 7,
no. 6, Dec. 2013.

[12] E. D. de Leeuw, “Reducing missing
data in surveys: An overview of
methods,” Quality e Quantity, vol. 35,
no. 2, pp. 147-160, May 2001.

[13] S. Dorofeev, Statistics for Real-life
Sample Surveys: Non-simple-random
Samples and Weighted Data. Cambridge,
UK: Cambridge University Press, Jul.
2006.

[14] K. P. Soman, S. Diwakar, and V.
Ajay, Insight into Data Mining: Theory
and Practice. India: Prentice-Hall, Apr.
2010.

[15] D. Bertsimas, C. Pawlowski, and Y.
D. Zhuo, “From predictive methods to
missing data imputation: An
optimization approach,” Journal of
Machine Learning Research, vol. 18, no. 1,
pp. 7133-7171, Jan. 2017.

Incomplete Data Analysis
DOI: http://dx.doi.org/10.5772/intechopen.94068

[16] Y. C. Yuan, “Multiple imputation
for missing data: Concepts and new
development,” SAS Institute
Incorporation, Rockville, MD, Technical
Report, 2000.

[17] T. H. Lin, “A comparison of multiple
imputation with EM algorithm and
MCMC method for quality of life
missing data,” Quality ¢ Quantity, vol.
44, no. 2, pp. 277-287, Feb. 2010.

[18] D. I. Gad and B. R. Manjunatha,
“Performance evaluation of predictive
models for missing data imputation in
weather data,” in Proc. 2017
International Conference on Advances in
Computing, Communications and
Informatics, Udupi, India, 2017, Sep. 13-
16, pp. 1327-1334.

[19] H. Kim, G. H. Golub, and H. Park,
“Missing value estimation for DNA
microarray gene expression data: Local
least squares imputation,”
Bioinformatics, vol. 21, no. 2, pp. 187-
198, Aug. 2004.

[20] Z. Cai, M. Heydari, and G. Lin,
“Iterated local least squares microarray
missing value imputation,” Journal of
Bioinformatics and Computational
Biology, vol. 4, no. 5, pp. 935-957, Oct.
2006.

[21] H. Ishwaran, U. B. Kogalur, E. H.
Blackstone, and M. S. Lauer, “Random
survival forests,” Annals of Applied
Statistics, vol. 2, no. 3, pp. 841-860,
Sep. 2008.

[22] F. Tang and H. Ishwaran, “Random
forest missing data algorithms,”
Statistical Analysis and Data Mining, vol.
10, no. 6, pp. 363-377, 2017.

[23] T. Marwala, Computational
Intelligence for Missing Data Imputation,
Estimation, and Management: Knowledge
Optimization Techniques. Pennsylvania,
USA: Information Science Reference,
Mar. 2009.

13

[24] C. M. Salgado, C. Azevedo, H.
Proenga, and S. M. Vieira, “Missing
data,” in Secondary Analysis of Electronic
Health Records, M. C. Data, Ed. Cham,
Switzerland: Springer, 2016.

[25] L. P. Bras and J. C. Menezes,
“Improving cluster-based missing value
estimation of DNA microarray data,”

Biomolecular Engineering, vol. 24, no. 2,
pp- 273-282, Jun. 2007.

[26] S. Zhang, “Nearest neighbor
selection for iteratively kNN
imputation,” Journal of Systems and
Software, vol. 85, no. 11, pp. 2541-2552,
Nov. 2012.

[27] X. Zhang, X. Song, H. Wang, and H.
Zhang, “Sequential local least squares
imputation estimating missing value of
microarray data,” Computers in Biology
and Medicine, vol. 38, no. 10, pp. 1112-
1120, Oct. 2008.

[28] Z. Yu, T. Li, S.-J. Horng, Y. Pan, H.
Wang, and Y. Jing, “An iterative locally
auto-weighted least squares method for
microarray missing value estimation,”
IEEE Transactions on NanoBioscience,
vol. 16, no. 1, pp. 21-33, Jan. 2017.

[29] A. Wang, Y. Chen, N. An, J. Yang, L.
Li, and L. Jiang, “Microarray missing
value imputation: A regularized local
learning method,” IEEE/ACM
Transactions on Computational Biology
and Bioinformatics, vol. 16, no. 3,

pp- 980-993, May-Jun. 2019.

[30] M. S. Sehgal, I. Gondal, and L.
Dooley, “Gene expression imputation
techniques for robust post genomic
knowledge discovery,” in Computational
Intelligence in Medical Informatics, A.
Kelemen, A. Abraham, and Y. Liang,
Eds. Berlin, Heidelberg, German:
Springer-Verlag, 2009, pp. 185-206.

[31] X. Chen, Y. Cai, Q. Liu, and L. Chen,
“Nonconvex L,-norm regularized sparse
self-representation for traffic sensor

Applications of Pattern Recognition

data recovery,” IEEE Access, vol. 6,
pp. 2427924290, 2018.

[32] L. Breiman, “Random forests,”
Machine Learning, vol. 45, no. 1, pp. 5-
32, Oct. 2001.

[33] D. J. Stekhoven and P. Bithlmann,
“MissForest—Non-parametric missing
value imputation for mixed-type data,”
Bioinformatics, vol. 28, no. 1, pp. 112-
118, 2011.

[34] K. A. Severson, M. C. Molaro, and R.
D. Braatz, “Principal component
analysis of process datasets with missing

values,” Processes, vol. 5, no. 3, pp. 38—
55, Jul. 2017.

[35] B. Grung and R. Manne, “Missing
values in principal component analysis,”
Chemometrics and Intelligent Laboratory
Systems, vol. 42, nos. 1-2, pp. 125-139,
Aug. 1998.

[36] A. Paterek, “Improving regularized
singular value decomposition for
collaborative filtering,” in Proc. 13th
ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining,
San Jose, California, United States,
2007, Aug. 12-15, pp. 39-42.

[37] X. Kong, F. Xia, J. Wang, A. Rahim,
and S. K. Das, “Time-location-
relationship combined service
recommendation based on taxi
trajectory data,” IEEE Transactions on
Industrial Informatics, vol. 13, no. 3,

pp- 1202-1212, Jun. 2017.

[38] C. Hsu, M. Yeh, and S. Lin, “A
general framework for implicit and
explicit social recommendation,” IEEE
Transactions on Knowledge and Data
Engineering, vol. 30, no. 12, pp. 2228-
2241, Dec. 2018.

[39] Y. Zhou, D. Wilkinson, R.
Schreiber, and R. Pan, “Large-scale
parallel collaborative filtering for the
Netflix prize,” in Proc. 4th International
Conference on Algorithmic Applications in

14

Management, Shanghai, China, 2008,
Jun. 23-25, pp. 337-348.

[40] L. Du, X. Li, and Y.-D. Shen,
“Robust nonnegative matrix
factorization via half-quadratic
minimization,” in Proc. 12th IEEE
International Conference on Data Mining,
Brussels, Belgium, 2012, Dec. 10-13,
pp. 201-210.

[41] R. He, L. Wang, Z. Sun, Y. Zhang,
and B. Li, “Information theoretic
subspace clustering,” IEEE Transactions
on Neural Networks and Learning
Systems, vol. 27, no. 12, pp. 2643-2655,
Dec. 2015.

[42] A. Liutkus, D. Fitzgerald, and R.
Badeau, “Cauchy nonnegative matrix
factorization,” in Proc. 2015 IEEE
Workshop on Applications of Signal
Processing to Audio and Acoustics, New
Paltz, New York, United States, 2015,
Oct. 18-21.

[43] N. Guan, T. Liu, Y. Zhang, D. Tao,
and L. S. Davis, “Truncated Cauchy
non-negative matrix factorization,”
IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 41, no. 1,
pp. 246-259, Jan. 2019.

[44] H. Wang, W. Yang, and N. Guan,
“Cauchy sparse NMF with manifold
regularization: A robust method for

hyperspectral unmixing,” Knowledge-
Based Systems, vol. 184, Nov. 2019.

[45] C.-J. Lin, “Projected gradient
methods for nonnegative matrix
factorization,” Neural Computation, vol.

19, no. 10, pp. 2756-2779, Oct. 2007.

[46] Z. Yuan and E. Oja, “Projective
nonnegative matrix factorization for
image compression and feature
extraction,” in Proc. Scandinavian
Conference on Image Analysis, Joensuu,
Finland, 2005, Jun. 19-22, pp. 333-342.

[47] Z. Yang and E. Oja, “Linear and
nonlinear projective nonnegative matrix

Incomplete Data Analysis
DOI: http://dx.doi.org/10.5772/intechopen.94068

factorization,” IEEE Transactions on
Neural Networks, vol. 21, no. 5, pp. 734—
749, May 2010.

[48]]J. Wen, J. E. Fowler, M. He, Y.-Q.
Zhao, C. Deng, and V. Menon,
“Orthogonal nonnegative matrix
factorization combining multiple
features for spectral-spatial
dimensionality reduction of
hyperspectral imagery,” IEEE
Transactions on Geoscience and Remote
Sensing, vol. 54, no. 7, pp. 4272-4286,
Jul. 2016.

[49] S. C.-X. Li, B. Jiang, and B. M.
Marlin, “MisGAN: Learning from
incomplete data with generative
adversarial networks,” in Proc. 7th
International Conference on Learning

Representations, New Orleans, Louisiana,
USA, 2019, May 06-09.

[50] P.-A. Mattei and J. Frellsen,
“MIWAE: Deep generative modelling
and imputation of incomplete data
sets,” in Proc. 36th International
Conference on Machine Learning, Long
Beach, California, USA, 2019, Jun. 09-
15, pp. 4413-4423.

[51]]. Yoon, J. Jordon, and M. v. d.
Schaar, “GAIN: Missing data imputation
using generative adversarial nets,” in
Proc. 35th International Conference on

Machine Learning, Stockholm, Sweden,
2018, Jul. 10-15, pp. 5675-5684.

15

