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Chapter

The Potential of Remote Sensing to
Assess Conditioning Factors for
Landslide Detection at a Regional
Scale: The Case in Southeastern
Colombia

Nixon Alexander Correa-Munioz and
Carol Andrea Murillo-Feo

Abstract

This landslide detection research applied remote sensing techniques. Morphometry
to derive both DEM terrain parameters and land use variables. SAR interferometry
(InSAR) for showing that InSAR coherence and InSAR displacement obtained with
SRTM DEM 30 m resolution were strongly related to landslides. InSAR coherence
values from 0.43 to 0.66 had a high association with landslides. PS-InSAR allowed to
estimate terrain velocities in the satellite line-of-sight (LOS) in the range — 10 to
10 mm/year concerning extremely slow landslide displacement rates. SAR polarimetry
(PolSAR) was used over L-band UAVSAR quad-pol data, obtaining the scattering
mechanism of volume and surface retrodispersion more associated with landslides.
The optical remote sensing with a multitemporal approach for change detection by
multi-year Landsat (5, 7 and 8)-NDVI, showed that NDVI related to landslides had
values between 0.42 and 0.72. All the information was combined into a
multidimensional grid product and crossed with training data containing a Colombian
Geologic Service (CGS) landslide inventory. A detection model was implemented
using the Random Forest supervised method relating the training sample of landslides
with multidimensional explanatory variables. A test sample with a proportion of 70:30
allowed to find the accuracy of detection of about 70.8% for slides type.

Keywords: landslide detection, morphometry, multi-InSAR, pol-SAR, NDVI,
Random Forest

1. Introduction

This research aimed to design a model for the detection of landslides at the
regional scale using Earth Observation data and remote sensing techniques. The
following techniques were used to achieve this goal.

Landslide inventory (LI), for example the CGS-SIMMA as the base for the evalu-
ation of the multivariate data generated by new technologies. It provides information

! Sistema de Informacién de Movimientos en Masa del Servicio Geolégico de Colombia; in English: Mass

Movement Information System from the Colombian Geologic Service.
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about the vector representation such as point objects, date, municipality, mass distri-
bution, type, sub-type, material and origin contributing to landslide detection [1].

At regional scale, landslide detection and landslide distribution analysis allows to
analyse the distribution and classification of landslides [2]. These analysis use
univariate and multivariate statistical methods, obtaining weights by the correlation
between landslides occurrences and conditioning factors. Weight of Evidence
(WofE) method is a bivariate approach where the landslides inventory is used to
calculate weights of conditioning factors in order to delineate potential areas of
landslides. Logistic regression (LR) is one of the statistical methods more used to
evaluate the relationship between landslides and related factors [3].

Remote sensing techniques have been used for landslides detection [4]. One of
them is morphometry based on Digital Elevation Models (DEMs), for a quantitative
analysis of the land surface topography. In this way, the geomorphometry analysis
derives land surface parameters such as slope, aspect, curvature or basic local
descriptors, regional parameters as catchment area, parameters connected with
hydrology like topographic wetness index and so on [5]. Terrain parameters can be
related to landslides to build detection models [6]. Change detection technique [7]
based on the sudden disappearance of vegetation by NDVI difference computation
can serve to landslide detection. Also, SAR-based techniques in rural areas can help
to landslide detection [8].

Interferometric spaceborne radar to measure linear deformation rates has been
implemented on several studies to landslides detection [9]. PS-InSAR (persistent
scatterers) allows measurements with millimetre accuracy of individual features.
PS-InSAR is differential measurements with respect to a reference point that is
assumed to be stable [10]. PolSAR imagery allows to characterise objects on the
ground based on that different structures and geometries show different backscat-
ter values at different SAR polarisations. Quad polarimetric SAR data content
information to landslide detection in forested areas under the assumption that the
dominant mechanism is surface scattering with high homogeneity [11].

This way Earth Observation (EO) data encompasses sensors like SAR, optical
images and GPS on board of platforms either satellite-based, aircraft-based or
ground-based provide high spatial, temporal, and spectral resolution to geohazard
studies [12]. The above combined with machine learning (ML) techniques like Ran-
dom Forest, allow the mapping, monitoring and modelling of landslides occurrences.

2. Landslide inventory and earth observation data

In this section we describe the study area, the landslide inventory, taken the
from the Colombian Geologic Service (CGS), and the Earth Observation data.

2.1 Study area

The study area is located at the southwest of Colombia and covers the inter and
central Andes Mountains in a rectangle within the following WGS84 system coor-
dinates: 02°06'53.50” North, 76°48'49.71” West and 02°34'27.81” North, 76°24'32.25"
West. In here, we found elevations between 848 and 4932 m.a.s.l. The area covers
the inter-Andean valleys of Cauca river and the central mountain range of the
Andes in the southwestern of Colombia. Former is to comprise Tertiary and Qua-
ternary formations and above there are volcanic ash depositions. The Central
Mountain Range of the Andes in Cauca state, have quaternary deposits at the
summit and its western slope it is found diabase rock. Figure 1 shows the study area
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on Alos Pasar elevation data as background and the sheets of the topo-map provided
by the National Geographical Institute ‘Agustin Codazzi’ (IGAC).

2.2 Landslide inventory

The CGS-SIMMA geo-service allowed to build the landslide inventory database
for training the detection model. Landslide database contains an inventory of
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Figure 1.
National and regional location of the study area.

LS Type Detritus Rock Earth Other Total %
Slides 77 14 78 9 178 77.4
Falls 15 8 14 1 38 16.5
Creep 0 2 4 1 7 3.0
Flows 0 0 3 3 6 2.6
Lateral Spreads 0 0 1 0 1 0.4
Total 92 24 100 14 230 100
% 40.0 10.4 43.4 6.1 100
Table 1.

CGS-SIMMA landslide frequency distribution.
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geomorphologic and catalogue type. The former contained more precise informa-
tion in its thematic attributes. The overall distribution of SIMMA landslide inven-
tory was 77.4% of slide type, 16.5% of fall type, and 6.1% of flow and creep type for
a total of 230 registered events (Table 1). The spatial information contained only
allowed mapping in a shapefile of point type.

2.3 Earth observation data

Table 2 summarise the EO data used in this research. EO data corresponds to
DEMs, optical remote sensing and radar remote sensing. DEMs provided from SRTM
DEM 30 m resolution and Palsar RTC elevation data at 12.5 m. Radar data had as
source the spaceborne-based ESA-Copernicus Sentinel-1 satellites and the aerial-
based UAVSAR platform. Optical data was provided by time series analysis of the
multi-year Landsat 5, Landsat 7, and Landsat 8 NDVI surface reflectance images.

Data Platform or mission Band Resolution Cycle Wide swath
(m) (days) (km)
DEM SRTM/NASA' C/X 30 — 225
DEM AP-RTC/JAXA? L 12.5 46 70
Dual-pol (VV/VH) Sentinel-1/ESA® C 15 24 250
Quad-pol UAVSAR/NASA-JPL* L 7 365 days 16
Optical Landsat 8 SR/NASA® 30 16 days 185

"Retrieved from http://svtm.csi.cgiar.org/ and https://earthexplover.usgs.gov.

?Retrieved from https://www.asf.alaska.edu/doi/105067/z97hfcnkr6val.

3Copernicus Sentinel data 2014. Retrieved from ASF DAAC 29 April 2017, processed by ESA.
*UAVSARdatacourtesyNASA/JPL-Caltech, retrieved from https://uavsar.jpl.nasa.gov/cgi-bin/data.pl.
®Retrieved from https://search.earthdata.nasa.gov.

Table 2.
Earth observation data used in this research.

3. Methodology

The main remote sensing techniques over Earth Observation data to extract
features and conditioning factors related to landslides are listed in Table 3.

Figure 2 shows the functional representation of the EO data indicating the entire
flow processing needed to develop the detection model from multi-dimensional

Approach Variable or method Software Software type
Morphometry Land surface parameters Demanal/SAGA/R/ Open-source
ArcSDM!

Spaceborne-based InSAR measurements (coherence and SNAP toolbox/ Open-source and

InSAR displacement) SARProZ’ Commercial

Multi-InSAR Deformation velocities of persistent SARProZ? Commercial
scatterers

Aerial-based PolSAR  Surface, volume, and double-bounce PolSARpro_v5.0* Open-source
scattering mechanism

Optical remote NDVI vegetation indices Google Earth Engine®  Open-source

sensing

Binary model WofE analysis and Logistic regression ArcSDM® Open-source
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Approach Variable or method Software Software type

Multidimensional Random Forest supervised method QGIS/ArcCatalog/R

Open-source and
data fusion

software’ commercial

'DEMANAL package of BLUH software [13].

2Retrieved from https://step.esa.int/main/download/snap-download).
3SarProZ software retrieved from www.sarproz.com.

“ESA’s PolSARpro-v5.0 software.

*Retrieved from hitps://earthexplorer.google.org.

6 Arc-SDM tool [14].

‘R software [15].

Table 3.
Methods and approaches of remote sensing techniques used in this research.
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Figure 2.
Functional data for model building.
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Figure 3.
Chain of processing to landslide detection model.
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data, data training and test of landslides. Also, the scheme shown in the Figure 3
indicates the fusion of all geospatial information by the Random Forest method.

The CGS-SIMMA landslide inventory was split into training and test subset in a
proportion of 70:30 in concordance with the study made by Huang and Zhao [16] in
order to determine the accuracy of each remote sensing method applied and the
detection model generated in this research.

4, Results

The results of remote sensing techniques implemented in the study area are
presented in this section.

4.1 Land surface parameters (LSP) related to landslides

The DEMs Palsar RTC elevation data, SRTM DEM 30 m and 90 resolution, and
ASTER-GDEM were evaluated in relation to GPS control points and a reference
Topo DEM obtained by interpolation of contours at a scale of 1:25 K. The best in
terms of vertical root-mean-square-error (RMSE) was SRTM 30 m resolution, and
its accuracy at a 95% confidence level (7.8 m) corresponded to a better scale than
1:25 K. ALOSP RTC elevation data was the second best DEM. For this reason we
derived from the latter the land surface parameters (LSP) at 12.5 m resolution using
algorithms implemented on SAGA software. Table 4 shows the results of a vertical
accuracy assessment of the global DEMs used in this research.

The land surface parameters: slope, aspect, curvature [17], topographic wetness
index (TWI) [18], valley depth (Vdepth) [18], convergence index (CONVI) [19],
flow path length (FPL), and insolation [20], were converted into independent
components by using Principal Component Analysis (PCA) [21]. These were used
as independent variables into a landform detection model and a landslide regression
model by WofE methods.

Table 5 shows the results of WofE analysis to relate morphometric and land use
conditioning factors with landslide inventory. Only the variable with its class with the
most studentised contrast (bigger than 2) C/s(C) is shown. Figure 4 shows the unit
soils at a scale of 1:100 k, which covers plain, undulated and mountainous terrains.

4.2 InSAR measurements

InSAR measures are phase, coherence, and displacement and they are obtained
by the cross-correlation between two or more SAR images to process the line-of-
sight displacements. This research used C-band data provided by Sentinel/1 ESA’s
Copernicus programme. In this investigation, the effect of a DEM on the InSAR

Metric ALOSP ASTER SRTM1 (30 m) SRTM3 (90 m)

RMSE (m) 39.68 43.52 19.95 2277

SZ (without bias) (m) 4,427 5.331 3.937 4.595

NMAD (m) 3.806 4.663 3.093 3.883

LE95 (without bias) (m) 8.853 10.236 7.795 9.144

SZ= 4.62 + 80.5"tan  5.60 + 89.8"tan  3.54 + 109.9*tan  4.689 + 100*tan
(slp) (slp) (slp) (slp)

Table 4.

Vertical accuracy of the global DEMs compared with Topo-map DEM reference.
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LSP The range of study area Class C/s(C)
Slope 0" -79.4° 6.6° t0 19.9° 21
13.2° t0 26.5° 29
FPL 0-2598 m 0-371m 2
Soil unit 9 classes Humid hill lands (LQ) and very 3.5
wet cold mountain (MK)
Landform 12 classes Backslopes 3.6
Table 5.
WOofE studentised contrast > 1.5 for LSP and land use conditioning factors.
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Figure 4.

Soil units of the study area.

processing was determined [22], concluding that DEM did not have an effect on
InSAR coherence but if the InSAR phase is unwrapped with the DEM variable there
are significance differences. The above is due to the inaccuracies of external DEM.

Two landslide regression models obtained either with InSAR coherence or
InSAR displacement from a DEM variable showed that SRTM DEM 30 m resolution
had the highest association with landslides inventory (Table 6). These models had
an accuracy of 62% and 68% respectively.

From the point of view of the InSAR coherence measurement, all DEMs are not
statistically significant. However, Topo-map showed a weak relation to landslides.
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DEM InSAR coherence InSAR displacement

Coeff. Pr(> z) Pr( > Chi) Coeff Pr(> z) Pr( > Chi)

Intercept —9.345 <2e-16"* —13.15 <2e-16"**

SRTM DEM 30 m 2.627 0.853 0.0014** 0.870 0.0003*** 1.56e-9 ***
SRTM DEM 90 m —2.674 0.850 0.816 —0.467 0.04* 0.22
Palsar RTC —0.085 0.522 0.069 0.323 0.084. 0.057.
Topo-map 0.474 0.004** 0.0031** -0.017 0.924 0.924
AUC 0.62 0.68

Significance of codes: 0 = ™, 0.001 =%, 0.01= "% 0.05=, 0.1=""

Table 6.
Results of InSAR regression analysis by LR method.

Topo-map and SRTM 30 m contributed to a better explanation of the linear regres-
sion model. InSAR displacement with a DEM variable indicated that SRTM 30 m
had the lowest p-value suggesting a strong association of the elevation with the
probability of having a landslide with a positive coefficient. ANOVA verificated
that by adding the SRTM 30 m to the regression model significantly reduces the
residual deviance.

WofE analysis showed that the maximum studentised contrast for InSAR coher-
ence was in the range of 0.43 to 0.66.

Multi-InSAR processing by PS-InSAR method allowed to estimate the deforma-
tion rate in relation to a reference point target which is assumed to be stable. This
approach overloads the substantial limitation of InNSAR measurements: the spatial
and temporal decorrelation and atmospheric distortions due to ionospheric electron
density and tropospheric water vapour.

The C-band sensor on-board the Sentinel-1 satellite served as input data to
implement PSInSAR processing to estimate the annual linear velocities and the time
series of deformations. Table 7 indicates the geometrical characteristics of S1_A of
the ESA’ Copernicus used for PS-InSAR in the study area. The perpendicular base-
line in all cases was lower than 150 m, which is an adequate value for studies of
terrain deformation. The results were a deformation map which consisted in a set of
selected points (12 pts./km?) with both the information of the estimated LOS
velocity (in the range — 10 mm/year to 10 mm/year) and the accumulated dis-
placement. Ordinary Kriging (OK) method allowed to predict the LOS velocity on
landslide inventory (Figure 5). A terrain displacement between —4.5 mm/year and
4.8 mm/year in ascending mode, and between —2.7 mm/year and 7.7 mm/year in
descending mode was predicted with the satellite LOS velocity, indicating the
movement towards (positive values) and away (negative values) the sensor respect
to the master radar scene. The prediction variance found was lower than 1.6 (mm/
year)? in ascending orbit, and lower than 5.63 (mm/year)? in descending pass.

Zone Dates Stack Pass/Pol Bn(m) Bt(days) IncAnc (°)

SE 10-2014/09-2015 and 01-2016/09-2016 24 Asc/VV  7to144 24-384 34.2

NW  10-2014/09-2015 and 01-2016/09-2016 21 Asc/VV  7to144 24-384 34.2

NE 10-2014/05-2016 21 Des/VV  2to117 24-312 34.1
Table 7.

Sentinel-1-IW-SLC dataset.
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H-a category Landslide frequency Relative frequency
4-Medium entropy and multiple scattering 12 9.5
5-Medium entropy and volume scattering 63 50
6-Medium entropy and surface scattering 32 25.4

7-Low entropy and multiple scattering 15 11.9

8-Low entropy and volume scattering 4 3.2

Total: 126 100

Table 8.

H-a decomposition of quad-pol data.

4.3 PolSAR unsupervised classification

Dual Pol-Sentinel-1 analysis allowed to analyse the sigma nought scattering
coefficient with VV and VH polarisation. Copolarization backscattering (—8.5 dB)
was higher than cross-polarisation (—14.5 dB) (Figure 6).

Quad Pol-UAVSAR decomposition allowed to define the mechanism of scatter-
ing on landslides inventory using entropy/alpha within the Cloude Pottier method.
The scattering mechanism dominant in the study area were volume scattering
(vegetation) and surface scattering (Table 8). The results indicate that 50% of the
landslide have a scattering mechanism of volume and 25.4% of surface type. The
WofE method validated that the H-« classification of volume and surface scattering
were highly related to landslides.

4.4 NDVI time series analysis

Time series analysis of the multi-year Landsat NDVI was used as input data for
the change detection analysis. In the period 2012 to 2017, the multi-year Landsat
NDVI cloud-free yearly composites through Google Earth Engine did not show the
statistically significant trends in vegetation. But WofE analysis found that the NDVI
range with the highest association to the landslide inventory was between 0.40 and
0.72. Figure 7 shows that only the years 2012, 2014 and 2016 covers, without
clouds, the landslide inventory distribution with median values of NDVI.

4.5 Model to the detection of landslides

All of the variables generated (25) in this research by remote sensing techniques
were overlapped and cut into a common sub-zone and then combined into a
multidimensional image. Here are found the classification variables. Then the effect
of classification variables (derived from remote sensing techniques) over a target
variable (landslide inventory) was measured by the algorithm of supervised pixel-
based classification called Random Forest. Test data in a proportion of 30% of the
entire data set allowed to obtain an independent validation. Table 9 show the
Random Forest classification with an overall accuracy of 70.8%. The user’s accuracy
refers to the correct classification of the type of movement in relation to the
referenced one, and the producer’s accuracy refers to the commission or inclusion
error. Due to the high frequency of rotational and translational slide, the method
was successful, which did not happen with other less frequent types.

Figure 8 shows the results of the Random Forest classification for the landslides
types: debris fall, flow, planar translational, rotational and translational. Rotational
and translational slides had a producer’s accuracy of 80% and 91% respectively

10
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Figure 7.
7-year LANDSAT NDVI composites (2010 to 2017).
Random Forest classification Topic Sw
Overall accuracy 70.8%
Training model Rotational slide 66.7%
Translational slide 96.2%
User’s accuracy Rotational slide 66.7%
Translational slide 714 ¢
Producer’s accuracy Rotational slide 80%
Translational slide 90.9%

Table 9.
Random Forest classification.

resulting in omissions errors of 20% and 9% for each one. User’s accuracy for the
same type of landslides was of 67% and 71% indicating commission errors of 33%
and 29%. The overall accuracy was 70.8%.
Figure 9 shows the Mean Decrease Accuracy implemented in Random Forest.
The variables which contributed more to the study were PolSAR, the displacement
InSAR, the NDVI and the morphometric variable slope.

11
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Figure 8.
Detection model of landslides by the Random Forest method.
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Figure 9.
Importance of the variables in decreasing orvder.

5. Discussion
This study confirmed that the slope angle is a key classification factor in land-

slide detection in a similar way reported by Donnarumffia et al. [23]. So as land use
is the most influencing factor to the occurrence of landslides [24].

12



The Potential of Remote Sensing to Assess Conditioning Factors for Landslide Detection...
DOI: http://dx.doi.org/10.5772/intechopen.94251

An analysis of the effect of DEM on InSAR processing to estimate terrain defor-
mations showed that DEM only had a significant impact on InSAR displacement but
not on InSAR coherence, such as also is highlighted in Bayer et al. [25].

Dual polarimetric SAR analysis found that VV-polarisation radar backscatter
produces stronger scattering than cross-polarisation (VH) on landslide inventory in
the same way as is reported by Ningthoujam et al. [26].

C/band Sentinel-1 data allowed to measure very slow ground surface displace-
ments with mm precision by PSInSAR method. However, as is indicated in
Colesanti et al. [27], it is necessary to combine data from different sources, i.e.
GNSS data, to avoid misinterpretations.

Time series analysis of Landsat NDVI composites with Google Earth Engine
[28], allowed to compare measurements of inter-annual NDVI. However, this
research only analysed the period 2012-2016. Thus, the lacking of long-term time
series of optical satellites data did not detect trends in vegetation cover changes
related to landslides. For this reason, inter-annual NDVI in the period 2012-2016
only was taken as conditioning factor to develop of detection model.

Random Forest (RF) algorithm was applied to classify landslides. Conditioning
factors provided by remote sensing techniques were stored as grid cells at 30 m of
spatial resolution. RF model for landslide classification needed data to train the
model and validate its results. The total training dataset was split with a proportion
of 70% of samples used to train models and 30% for validation.

Using the test dataset, we found that the overall classification accuracy of the
model was 70.8%. This meant that over 70.8% of the test dataset was correctly
identified as either a landslide event or non-landslide event in the same sense as is
reported in Taalab et al. [29]. The rank of variables importance, based on the
relative contribution to the classification accuracy of the model, in order of impor-
tance, were: PolSAR, InSAR displacement, NDVI, backslope landform and InSAR
coherence.

6. Conclusions

By using Remote Sensing techniques at the visible and microwave frequencies of
EM waves this research did relate EO measurements with ground physical parame-
ters such as scattering mechanisms, topography, land cover type and surface defor-
mation patterns. All of the above in relationship with landslides inventory of the
study area.

This research did implement unsupervised and supervised classification
methods. The first to understand the pattern of LSI clustering and the second to
classify the LSI with multidimensional variables derived from EO data and RS
techniques.

All of the EO data collected and generated by RS techniques during this research
was stored in appropriate containers of data.

This research used errors’ theory, ANOVA, TUKEY and cross-validation tech-
niques to determine the internal and external precision of the method generated for
landslides detection.
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