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Abstract

Improved fiber yield is considered a constant goal of upland cotton (Gossypium 
hirsutum) breeding worldwide, but the understanding of the genetic basis controlling 
yield-related traits remains limited. Dissecting the genetic architecture of complex 
traits is an ongoing challenge for geneticists. Two complementary approaches for 
genetic mapping, linkage mapping and association mapping have led to successful 
dissection of complex traits in many crop species. Both of these methods detect quanti-
tative trait loci (QTL) by identifying marker–trait associations, and the only funda-
mental difference between them is that between mapping populations, which directly 
determine mapping resolution and power. Nowadays, the availability of genomic 
tools and resources is leading to a new revolution of plant breeding, as they facilitate 
the study of the genotype and its relationship with the phenotype, in particular for 
complex traits. Next Generation Sequencing (NGS) technologies are allowing the 
mass sequencing of genomes and transcriptomes, which is producing a vast array of 
genomic information with the development of high-throughput genotyping, pheno-
typing will be a major challenge for genetic mapping studies. We believe that high-
quality phenotyping and appropriate experimental design coupled with new statistical 
models will accelerate progress in dissecting the genetic architecture of complex traits.

Keywords: fiber quality, MAS, GBS, SNPs, association mapping

1. Introduction

Cotton is a crop of immense importance as being a dominant source of fiber 
and oil from cottonseed all over the world [1]. The improvement of cotton fiber 
quality has become more important because of changes in spinning technology and 
ever-increasing demands of fiber. Cotton is grown in more than 80 countries, and 
contributes to the world economy as a raw material for textile industry [2].

Gossypium” genus is made up of about 52 species of which 47 are diploid and 
7 are as allotetraploids [3–7]. Of all the species of the genus, two most common 
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diploids are G. arboreum L., G. herbaceum L., while G. hirsutum L., and G. bar-
badense L. are considered as the most commercially valuable tetraploids. G. hirsu-
tum, is characterized by high yield, moderate fiber quality and wide adaptability 
contributes for 95% of overall cotton production [8]; while G. barbadense (Pima, 
and Egyptian) increases superior fiber quality [9, 10].

Efforts for broadening the genetic base of Gossypium genus have not generated 
successful outcomes due to the complex and large genetic architecture of its genome. 
Moreover, owing to its developmental barriers, genetic studies have not yet been 
able to produce the required traits in cotton [11]. Association among markers and 
characters can be used for fastening the breeding program. The hereditary variation 
present among the gene pool land races can be exploited by applying the mapping 
based on linkage disequilibrium. It will speed up the cotton breeding through iden-
tification of markers among trait of interest and ensure molecular breeding. Single 
reproducibility of genetic marker which govern a specific appearance on sequence 
of nucleotides can be analyzed with genome wide association [12, 13]. Association 
mapping relies upon the magnitude of different pair of genes for population analysis. 
Moreover, this mapping shows powerful connection between required character and 
a genetic marker while nonrandom combination between two quantitative trait loci 
or markers manifests linkage disequilibrium [8]. The valuable information about 
the origin of an individual is determined with the degree and the size of the popula-
tion [13, 14]. Many loci relating to polygenic characters have been determined via 
genetic maps and linkage disequilibrium (LD) was measured in humans through 
diverse analysis methods [15, 16]. Population based polygenic characters mapping 
for desired traits became a widely used technique thanks to the innovations in omics 
and availability of advanced bioinformatic tools for analyzing genetic variations 
[17]. The ultimate benefits of this technique includes the ability to work with a large 
number of loci, producibilty of highly saturated maps, its speed and its low cost [18].

2. Fiber quality

Single cell elongation of ovule in cottonseed outer layer forms a natural fiber 
known as “trichome” which contains about 89–100% cellulose. [19–22]. As little as, 
30% of lint primordia have the ability to be differentiated as mature fibers forming 
about 20,000 of it within a single ovule [23, 24]. The ideal cotton fiber should be 
white like frozen vapor, durable like iron, attractive like silk and stretched as a wool 
[25]. Nonetheless it is hard to include all these qualities within a breeding program 
for cotton production, but efforts have been made to obtain the most desired ones. 
Fiber quality is an array of quantitative traits (length, fineness, strength, uniformity 
and elongation) that enhance yarn value during spinning [26–28]. Fiber quality is a 
difficult association of physiology and genetic make-up of plant within a growing 
season of cotton [29, 30].

Fiber quality enhancement through genetics is the ultimate objective of breeding 
strategy in cotton. Cotton scientists have been involved in fiber quality improve-
ment for a long time due to the increase in demand for multiple products from 
cotton. The critical goals of all cotton related techniques are fiber yield and quality, 
and the precise parameters which contribute its economic value on global level. 
Spinning automation renders fiber improvement according to interests of textile 
sector, as a result fiber quality measurements for breeders are considered. As an 
instance, prevailing spinning automation highly signify strength instead of fiber 
length and fineness [31]. Moreover, fiber quality improvement is a demanding task 
as it is determined after harvesting of crop.
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The main goal of all genetic improvement is to increase yield. The intensity 
of improvement for lint production has deteriorated since the 1980s [32–34]. 
Nonetheless, genetic diversity has increased at the start of 21st century [35, 36].

3. Marker assisted selection

Due to the inverse relationship between seedcotton yield and fiber quality, and 
the complicated involvement of multiple genes in traits demand breeders to evolve 
varieties through more useful methods. In the past textile industry flourished prin-
cipally via selection of new recombinants among germplasm entries with traditional 
breeding approaches [37, 38]. Elite grown cotton genotypes have narrow genetic 
base, therefore it has been thought that germplasm should be used for improvement 
of traits. Some of popular characters such as disease and insect resistance have 
been enhanced by introgression [39]. The advent of DNA markers paved the way 
for plant breeders to fasten breeding process through fast, authentic and substitu-
tive techniques instead of the traditional methods for the selection to develop both 
agronomic and economic characters of plants [40].

Molecular marker is a specific DNA portion with a known position on the 
chromosome [41], or a gene whose phenotypic expression is frequently easily 
distinguished and used to detect an individual [42, 43]. DNA markers are having the 
property of polymorphism which can be used for the differentiation of homozygotes 
and heterozygotes [44]. Marker assisted selection has a great amount of advantages 
over conventional breeding, reviewed by many researchers [45–47]. Plant breeders 
utilize DNA markers for selection of desirable traits on molecular basis in spite of 
observing them phenotypically [48], furnishing the basis for using the molecular 
assisted selection [49–51]. Molecular markers are desired for improving traits in 
many essential crops; rice [52], wheat [53], maize [54, 55] and barley [56, 57]. 
Cotton is an important cash crop at global level and marker assisted selection has not 
got desired goals because of compatibility barriers through historic domestication 
and insufficient polymorphism [58–60].

Molecular characterization is the way to transfer required traits into modern 
genotypes [45, 61–64]. Quantitative trait loci (QTLs) allow gene pyramiding for 
yield and fiber quality through evolution of linkage maps. Association mapping 
using linkage disequilibrium on genome wide level is the most valuable strategy 
among scientists for searching QTLs in crop sciences. The association among 
trait of interest and germplasm entries is observed using population construction 
information and linkage disequilibrium (LD) with association mapping [65]. LD 
mapping is highly popular thanks to the sophistication of mathematical methods 
and accessibility of large number of DNA markers.

The traits controlled by multiple genes such as fiber quality can be studied more 
precisely with linkage maps after the availability of new genomic data of Gossypium 
spp. like Gossypium raimondii Ulbrich [66, 67], Gossypium arboreum L. [68] and 
Gossypium hirsutum L. [69, 70]. [71] revealed that tetraploid species derived from 
crossing of two diploid species Gossypium arboreum L. (A genome) and Gossypium 
raimondii Ulbrich (D genome) about 1–2 million years ago. Moreover, it may pave 
the way for fiber improvements as higher number of QTLs assigned to the Dt sub-
genome compared to At sub-genome in hawian cotton [72–74].

Many researchers have observed QTLs for seedcotton yield and its components 
[9, 70, 75–79]. But, mostly filial generations were used for QTLs. Quantitative trait 
loci are highly effected by low heritability and more experimental error which are 
high in such plant materials, hence it is need of the day that a useful way should be 
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employed for the development of stable populations for overcoming these obstacles. 
The accuracy of QTL determination relies upon allelic frequency among QTL of the 
desired character and related marker [80]. Molecular breeding methods designed 
with the information obtained through quantitative trait loci analysis in association 
mapping creates valuable genetic variation from stable populations [81].

4.  Association mapping of fiber traits using genotyping by  
sequencing (GBS)

Molecular markers are highly favored for linkage map development because 
they are polymorphic, easily transferred to next generation with Mendelian ratio 
and do not show epistasis. Molecular breeding with highly saturated maps having 
QTLs connected with economic traits through impactful genetic markers provides 
a good source for cotton improvement [64]. Genomic analysis in many crop species 
including cotton has been done using populations derived from hybridization of 
only two ancestors; which is major drawback for omics information. Therefore, 
there has been hindrance in applying QTL information gained from such popula-
tions to accomplishing breeding objectives, as, in these populations, the genetic 
aspects are the same owing to the share of genetically similar backgrounds.

The foundation of association mapping is on hypothesis about occurrence of 
markers as a panel in which the alleles are found almost adjacent to the required 
traits with co-segregation and thought to be in linkage disequilibrium. Germplasm 
entries are used for determining QTLs of interest using genome wide associa-
tion mapping [82]. There are many agents including type of copulation, gene 
flow frequency and population structure can affect such mapping approach [18]. 
Association mapping allows to overcome drawbacks found in bi-parental mapping 
from traditional methods which include using populations which are found as 
well-established genotypes, detects only the required gene and identify high poly-
morphism [83–85]. This methodology also urges to use knowledge based on linkage 
disequilibrium instead of linkage mapping.

Marker assisted breeding involves recent approaches of genomics combined 
with traditional breeding procedures for improving traits in crop sciences. For 
this reproducibility is essential among genetic markers. Morphological characters 
grading and genotyping with molecular markers is accomplished [86]. Molecular 
markers are very effective for identifying and overcoming problems for transfer of 
traits from other species such as segregation distortion [87]. Genetic markers are 
effective for determining genetic variation in Gossypium gene pool. [88] classified 
DNA markers into groups: 1) non-hybridization based; which include Amplified 
Fragment Length Polymorphism (AFLP), Simple Sequence Repeats (SSR), 
Sequence Repeat Amplified polymorphism (SRAP), İnter-Simple Sequence Repeats 
(ISSR), Expressed Sequence Tag (EST-SSR), Single Nucleotide Polymorphism 
(SNPs) etc. Numerous linkage maps have been developed in allotetraploid cotton 
employing diverse mapping populations and different DNA markers techniques 
[76, 89–94]. Numerous SSRs and SNPs have been evolved in cotton [95–99]. 
Saturated genetic maps development through loci information of SSR and SNPs in 
cotton paves the way for ascertaining quantitative traits related to breeder objec-
tives [100–104] Nonetheless, association analysis and very fine mapping is not 
possible owing to less information from these maps. It is need of the day that highly 
saturated mapping should be devised in cotton for overcoming the sequencing 
drawbacks and fastening the variety development.

Availability of microsatellites (SSR) and single-nucleotide polymorphisms 
(SNPs) have fastened genome mapping owing to their wider applicability in diverse 
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populations derived from discrete genetic backgrounds [93, 95, 99, 105–107]. 
Thanks to advances in genotyping and SNPs calling tools; broadening of genetic 
base is being explored excessively in plants owing to availability of valuable loci 
information [108–114].

Single nucleotide polymorphisms are distinct points of nucleotides on chromo-
somes between two genotypes differentiated by a single base [64]. [115] speculated 
that each SNP is found after 100-300 bp in any genome while revealed that such 
genetic markers are highest in occurrence than any other marker and manifest 
higher degree compared to microsatellites. SNPs can be formed rapidly with 
economical cost owing to availability of high-throughput tools for genotyping 
[116]. Assessment of gene expression [117, 118], genome wide association [68, 119] 
and SNPs detection has been carried among the individuals having different sizes 
of genomes and also polyploid species having limited genetic variation like cotton 
[10, 120] and wheat [121] through low-cost high-throughput genotyping tools. 
SNPs have been explored and genotyped among different species via diverse ways 
[10, 120–122].

Genotyping-by-sequencing (GBS) is powerful and easy approach which paves 
the way for the discovery of numerous SNPs concurrently among large number of 
genotypes [123]. Restriction enzymes with methyl sensitivity are used to mark the 
flanking restriction sites in the genome for the development of reduced representa-
tion of the genome via GBS [121, 122]. GBS method is much easier, requires lower 
amount of DNA and library preparation is achieved in just two steps on plates, cir-
cumvents DNA fragment analysis preceded by PCR amplification of pooled library 
in contrast to reduced representation libraries (RRL) and restriction site associated 
DNA (RAD) [122]. The discovery and verification of reproducibility is not required 
in this procedure and can be applied in any species having polymorphism or map-
ping population with diverse size [124]. A number of SNPs has been discovered in 
many species using GBS like maize [122], wheat, barley [121], sorghum [125], rice 
[126], soybean [127], oat [128] and cotton [10, 79, 129, 130].

Association mapping furnishes saturated map of desired trait in contrast to 
pair of genes harboring a required character [131]. Therefore, verification of 
QTLs is compulsory for mapping. Association mapping is the way to examine 
genetic variation of required characters; integrates the variation of the desired 
characters through reproducibility of the alleles and genetic markers are selected 
connected to economic traits using linkage disequilibrium extent [132]. Moreover, 
LD elaborates the ancestral pattern through information among populations and 
ecology [133, 134].

LD based association mapping has been applied by using different strate-
gies for determining genetic diversity contributing source pattern and design of 
population [135, 136]. Grouping of population individuals with combined genetic 
distance among the entries established via LD [137–139]. LD extent among natural 
population is not contributed by linked loci but non-homologous chromosomes are 
also involved, accountable to selection, behavior of population and hybridization. 
Owing to which immense care should be considered for analyzing such relations. 
Reproducibility in a sequence controlling a specific character is the property of this 
mapping [140]. Moreover, considerable concern is prevailed among association 
studies and linkage mapping relating to depth and precision of QTLs, the magni-
tude of knowledge and evaluating procedures [132].

In spite of the fact, statistical analysis is not appropriate with LD derived tools. 
Natural population partitioned into distinct categories with model-based proce-
dures [141]. Bayesian modeling is used widely for assessing the probability of a 
genotype related to a specific population category through allele repetition. With 
this technique the genotypes are allotted to particular population which can be 
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interspersed into statistical methods for association mapping with population orga-
nization. The population framework is analyzed by using STRUCTURE software 
[135] which has been used for association studies in many plants. Various studies 
have been conducted in cotton for different aspects in cotton through association 
mapping like seedcotton yield and components [142–144], salt tolerance [145], 
architecture of plant, earliness [146] and protein and oil contents [147] and fiber 
quality [8, 60, 132, 148–150].

In-contrast to genetic mapping in populations developed from hybridization 
of parents using conventional ways are not saturated, labor intensive, always in 
danger, high investment for development and more work after evaluating numerous 
genotypes of gene pool [84]. Nonetheless, association mapping use LD and over-
comes the requirement of bi-parental populations by utilizing the extent of genetic 
variation present within the available stable populations like cultivars, accessions 
developed with the time and maintained as gene pool. Association mapping on 
whole genome has been studied in Arabidopsis [151], rice [152] for observing loci 
connected to economical characters. Association studies allow the development of 
highly saturated maps via determination of QTLs related to economic characters at 
whole genome level in permanent mapping populations.

Abdurakhmonov et al. [60] used association analysis for observing association 
among fiber traits in cotton among germplasm entries for utilizing the genetic 
variation in marker-based breeding. Linkage disequilibrium based association 
mapping determined in the germplasm having diverse genotypes from all over the 
world. 95 SSR were screened among all germplasm entries for ascertaining QTLs at 
whole genome level associated with fiber properties. They found about 11–12% LD 
among all SSRs. They also observed significant population orientation among all 
entries. They employed mixed linear model and general linear model using kin-
ship and population structure and as a whole determined 6 & 13% pair of primers 
related to fiber quality. They concluded that the markers selected in this study can 
be used for refinement of fiber using hidden sources of genetic variability.

Genetic variation, population behavior and LD based association analysis 
for fiber conducted in germplasm under two different climatic zones [85]. The 
upland gene pool containing 335 elite entries screened with 202 SSRs. Mean of LD 
prolonged to 25 cM at whole genome level among all genotypes at 0.01 probability. 
They found that LD dropped to about 5 cM at (r2 > 0.2) showing potential for 
association among genotypes for yield contributing characters. They performed 
mixed linear model and population analysis for observing association contributing 
to permutation significance and population pattern. As a whole developed many 
common markers for fiber traits among genotypes in both locations. They revealed 
that mixed linear model associations ranged from 7 to 43% having strong to very 
strong relation to fiber properties as confirmed by Bayes factor which will be a very 
effective source for association analysis of yield improvement in marker based 
breeding techniques.

Wang et al. [153] found association among yield and fiber characters in using 
mixed linear model in pima cotton germplasm entries. They observed 72 loci, out 
of which 46 were connected to fiber while 26 related to cotton. They concluded 
that marker-associations among fiber characters are of vital value for enhancing 
quality.

Fang et al. [154] used multi-parents population for observing association among 
yield and fiber quality traits. They revealed that common and new QTLs deducted 
in this study can be used for overcoming problems in fiber quality enhancement. 
They screened 1582 polymorphic microsatellites among 275 RILs in first set devel-
oped from diverse parents for screening QTLs connected to fiber. 131 QTLs found 
for fiber quality sharing characters via association analysis with TASSEL while same 
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QTLs verified in second set of 275 RILs with 270 SSR. The distinction showed that 
54 new QTLs and 77 QTLs are in accordance to previous studies.

Genetic map constructed using RIL developed from transference of superior 
fiber quality from G. barbadense (TM-1) to G. hirsutum cv. NM24016 and relation-
ship determined among yield components and fiber. 429 SSR and 412 GBS-based 
single nucleotides were involved in the development of map which spanned to 
about half length of upland cotton genome [10]. They revealed that all makers are 
distributed randomly among all loci of the genome. The yield components and fiber 
characters showed extreme phenotypic expression under multiple locations. They 
found 28 QTLs which are useful from breeding perspectives for agronomic and 
fiber properties.

Cai et al. [8] used 99 upland cotton genotypes to ascertain the association for 
fiber traits. The relationship among fiber components determined with 97 polymor-
phic microsatellites. The genomic regions associated with fiber were 107 including 
70 in 2 or more than 2 zones and 37 found in just one. It was revealed that most of 
the associations were reliable as verified from earlier findings for fiber quality. They 
also observed genomic regions related with 2 or more characters and assumed that 
such regions derived from the genotypes which are having minor allele frequency 
less than five, from local sources or acclimatized in china. They concluded that fiber 
traits can be renovated by using such loci from diverse resources.

Islam et al. [123] carried GBS for observing SNPs which can be used for 
improving economic traits in cotton gene pool. RILs and 11 contrasting parents 
were used in the study with two separate methods were applied for determining 
SNPs with variant allele frequency of >0.1. SNPs quality control performed and 
calling done with available G. raimondii Ulbrich genome. As a whole 1071 and 1223 
SNPs observed among At and Dt genomes respective. Moreover these SNPs were 
found in coding region usually in higher frequency. GBS was conducted in germ-
plasm consisting of 154 accessions for the verification of 111 of total SNPs and the 
SNPs verified in all parents and none of the genotype was found with same SNP. 
They revealed that SNPs can be determined in G. hirsutum with ease and genetic 
improvement can be done after getting true SNPs.

Association among fiber traits conducted in germplasm collection of Hawaiian 
cotton consisting of 503 genotypes [132]. They used 494 microsatellites at whole 
genome and as a whole 179 replicable SSRs were screened among genotypes under 
diverse climatic conditions. Population pattern and LD used for observing associa-
tion among various fiber traits with mixed linear model via TASSEL program. The 
QTLs were selected among markers and phenological characters with association 
values. 426 alleles were evolved and germplasm was differentiated into seven 
subgroups upon the basis of hybridization, climate and topographical pattern. 216 
polymorphic loci were associated with fiber contributing characters having mean 
of 2.7% and showed phenotypic variation from 0.58–5.12%. LD decreased signifi-
cantly to 0-5 cM and observed 13 QTLs which are same to earlier findings and 3 
connected to similar character while 7 QTLs were corresponded to fiber formation. 
They concluded that novel alleles identified based association mapping based LD 
for fiber quality can be applied in breeding cultivars for tagging genes of interest.

GBS carried in a population evolved using various parents for overcoming the 
inverse relation among yield and fiber traits [155]. They assumed that GBS will 
serve as a valuable source for the development of high saturated map with the 
development of large frequency of SNPs. Association analysis via mixed linear 
model in TASSEL observed among fiber traits in four separate climates with 5071 
SNPs developed from GBS and 223 SSRs from 547 RILs. One QTL cluster related 
to fiber traits including length, short fiber content, strength and uniformity found 
and verified on locus A07. They also studied the ultimate genes connected to fiber 
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traits and revealed that SNP (CFBid0004) formed from deletion of 10 bp GhRBB1_
A07 is directly associated with fiber traits among RIL and 104 approved American 
varieties. Moreover, GhRBB1_A07 can be used in MAS for the improvement of fiber 
traits among germplasm entries.

Sun et al. [150] studied the genetic architecture of major fiber traits in cotton 
germplasm using association mapping under different climatic zones. The mixed 
linear model association analysis showed that fiber length, strength and unifor-
mity had 16, 10 and 7 SNPs respectively while G. raimondii 7th chromosome had 
two main genomic locations and fiber length contributing four genes were also 
observed. Moreover population structure showed that populations from low peaks 
were having less genetic variation among accessions compared to high peaks. The 
valuable allelic frequency was more in genotypes from less elevation in-contrast to 
high. They concluded that the desired allelic number among genotypes can be used 
for enhancement of fiber.

Association was observed for plant ideotype, heat tolerance, yield contributing 
traits and fiber quality among germplasm collection under different climatic condi-
tions for consecutive three years at whole genome [156]. The genetic stock associa-
tions were observed using SNPs. Fiber characters were found to be low to highly 
heritable as value ranged from 0.26–0.89 for boradsense heritability as compared to 
yield components having 0.14–0.43. Phylogenetic analysis showed that the genotypes 
were developed from diverse parents having multiple characters from breeding 
perspectives. They pointed that less number of informative markers can be used for 
association mapping studies as LD value found upto 5Mbp which decreased to 2Mbp 
at r2 ≥ 0.2. 17 significant SNPs connected fiber length while 50 SNPs for fineness were 
observed using mixed linear model. The results revealed that associations among 
most of the characters at whole genome were non-significant as numerous SNPs 
impact on phenotype was found lower than 5% and assumed this to be due to low 
reproducibility of markers among cotton or SNP Chip less coverage in the germplasm.

Sun et al. [150] used association analysis in germplasm containing wide varia-
tion among genotypes at multiple locations for fiber quality traits. Illumnia SNP 
array was used for genome-wide study for quality analysis. They found 10,511 SNPs 
which were distributed over all loci and 46 SNPs associated with fiber quality with 
significance. They observed two QTLs for strength and length on At07 and Dt11.

5. Conclusion

Fiber quality enhancement through genetics is the ultimate objective of breeding 
strategy in cotton. Cotton scientists have been involved in fiber quality improve-
ment for a long time due to the increase in demand for multiple products from 
cotton. Furthermore, conventional ways would be tiresome and stagnant. Hence, 
the modern plant improvement methods should be integrated. Molecular charac-
terization is the way to transfer required traits into modern genotypes. Genotyping-
by-sequencing (GBS) is powerful and easy approach which paves the way for the 
discovery of numerous SNPs concurrently among large number of genotypes. 
Quantitative trait loci (QTLs) allow gene pyramiding for yield and fiber quality 
through evolution of linkage maps. Molecular breeding with highly saturated maps 
having QTLs connected with economic traits through impactful genetic markers 
provides a good source for cotton improvement. Association mapping using linkage 
disequilibrium on genome wide level is the most valuable strategy among scientists 
for searching QTLs in crop sciences. It is need of the day that highly saturated 
mapping should be devised in cotton for overcoming the sequencing drawbacks and 
fastening the variety development.
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