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Chapter

The Application of Solid State 
Fermentation for Obtaining 
Substances Useful in Healthcare
Łukasz Wajda and Magdalena Januszek

Abstract

In the current review we summarised the research involving solid state 
fermentation (SSF) for the production of compounds that could be used in 
healthcare (terpenoids, polyphenols, fibrinolytic enzymes, mycophenolic acid and 
others). We described several groups of obtained agents which hold various activity: 
antimicrobial, anti-inflammatory, immunosuppressive, anticoagulant and others 
(e.g. anticancer or anti-diabetic). It seems that especially terpenoids and polyphenols 
could be useful in that field, however, other substances such as enzymes and fatty 
acids play important role as well. We described main groups of microorganisms that 
are applied in SSF of those compounds, particularly Bacillus genus and fungi, and 
where possible provided information regarding genes involved in those processes. 
We also compared various approaches toward optimisation of SSF.

Keywords: solid state fermentation, healthcare, agricultural waste, Bacillus, fungi

1. Introduction

Solid state fermentation (SSF) is a process during which microorganisms (in the 
presence of small amounts of water) transform agro-industrial waste into valuable 
compounds [1]. Based on the literature research, wheat bran was commonly used 
for those processes (Table 1). It is composed of about 53% of dietary fibre (xylans, 
lignin, cellulose, and galactan, fructans) and contains variety of phenolic acids e.g. 
ferulic acid, vanillic acid, coumaric acid, caffeic acid, and chlorogenic acid [71]. 
Researchers also applied other materials rich in polysaccharides (e.g. rice, whole 
grain wheat, millet, barley) or simple sugars (e.g. fruit pomace) (Table 1). Other 
substrates which were utilised for SSF are not only sources of carbohydrates, but 
also protein e.g. soybeans, lentil flour, silkworm larvae, fish meal, cuttle fish waste 
and king oyster mushroom (Table 1). The selection of waste products used in 
SSF should ensure the proper balance of nutrients to allow microbial growth and 
production of terpenoids, polyphenols, enzymes, biosurfactants, short chain fatty 
acids or others. Therefore, industrial waste with a high content of carbohydrates, 
protein, pectin or lipids is a suitable substrate.

There were various review papers regarding SSF but in the current chapter we 
focused only on selected substances which could be used in healthcare and dem-
onstrate antimicrobial, anti-inflammatory properties or/and are immunosuppres-
sants, anticoagulants and anticancer agents, e.g. enzymes, surfactants, terpenoids, 
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Name of the substance Microorganism Agricultural waste Reference

Antimicrobial properties

Nonactin, monactin, dynactin, 
trinactin

Streptomyces cavourensis 
TN638

Immobilised bacterial 
spores (XAD-16) on 
potato dextrose agar

[2]

Surfactin homologues Bacillus natto NT-6 Potato dextrose 
medium

[3]

Biosurfactant Bacillus subtilis SPB1 Millet [4]

Surfactin Bacillus pumilus UFPEDA 
448

Okara and sugarcane 
bagasse

[5]

Biosurfactant Tremetes versicolor TV-6 Two-phase olive mill 
waste, wheat bran 
and olive stone

[6]

Biosurfactant Aspergillus niger Wheat bran and 
corncob

[7]

Not specified Pediococcus acidilactici 
KTU-05-7

Milk thistle seeds [8]

Not specified Bacillus licheniformis Wheat bran, soybean 
meal, yeast, fish meal

[9]

Sambacide Fusarium sambucinum B10.2 Potato [10]

γ-Decalactone Yarrowia lipolytica W29 
(ATCC 20460)

Luffa sponge, 
cellulose sponge, 
corncob, castor seed

[11]

Phenolic acids Pleurotus sapidus Sunflower seed hulls, 
golden rice straw and 
husks

[12]

Curcumin Trichoderma strains Turmeric [13]

Coumarins and oxylipins Aspergillus oryzae KCCM 
12698

Malt extract agar [14]

Phenolic compounds Lentinus edodes Cranberry pomace [15]

Phenolic compounds Trichoderma strains Commercial turmeric

Phenolic compounds Trichoderma strains Ginger powder [16]

Phenolic compounds Trichoderma reesei Garden cress seeds [17]

Phenolic compounds Aspergillus oryzae NCH 42 Chinese cucumber, 
Chinese sage, houpu 
magnolia, liquorice 
root

[18]

Phenolic compounds Bacillus clausii Spent coffee grounds 
(Arabica)

[19]

Anti-inflammatory agents

Phenolic compounds Trametes versicolor TV-6 Grape pomace [20]

Not specified Taiwanofungus camphoratus obtained by SSF [21]

Rutin Rhizopus oligosporus NRRL 
2710

Buckwheat groats [22]

Betulinic acid Inonotus obliquus The spent substrate 
of king oyster 
mushroom, grain 
including corn, rice 
grain, white birch and 
mulberry powder

[23]
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Phenolic compounds Xylaria nigripes Wheat bran [24]

limonene-1,2-diol, α-terpineol, 
(−)-carvone, α-tocopherol, 
dihydrocarveol and valencene

Diaporthe sp. (Phomopsis 

sp.)

Orange peel and 
bagasse

[25]

Phenolic compounds, lignans Pediococcus acidilactici 
LUHS29

Grounded barley 
by‐products

[26]

α-Pinene Saccharomyces cerevisiae 
AXAZ-1 and Kluyveromyces 

marxianus IMB3

Mixed solid and 
liquid food industry 
wastes

[27]

δ-Octalactone
γ-Undecalactone
γ-Dodecalactone
δ-Dodecalactone

Trichoderma viride 
EMCC-107

Dried and grounded 
sugarcane bagasse

[28]

cis-Linaloloxide,
Phenanthrene

Trichoderma viride Pers.

ex Fr.; Aspergillus niger van 

Tieghem

Pu-erh tea [29]

Various terpenes Antrodia camphorata Millet [30]

Neochlorogenic acid), 
chlorogenic acid, rutin, 
6″acetyl-glucoside

Aspergillus niger  
ATCC-6275
Rhizopus oligosporus 
ATCC-22959

Stones and pomace 
from fully ripened 
apricot

[31]

Quercetin and phenolic 
acids: gallic, vanillic, 
p-hydroxybenzoic, ferulic

Lactobacillus plantarum 
CECT 748 ATCC 14917

Cowpeas [32]

Phenolic compounds B. subtilis BCRC 14715 Black soybeans [33]

Daidzin, daidzein, genistin and 
genistein

Eurotium cristatum YL-1 Soybeans seeds [34]

Gallic acid Rhizopus oryzae (RO IIT 
RB-13, NRRL 21498)
Aspergillus foetidus 
(GMRB013 MTCC 3557)

Powdered fruits of 
Myrobalan and Teri 
pod

[35]

4-hydroxybenzoic acid, 
4-hydroxy-3-methoxybenzoic 
acid and unidentified 
compounds

Rhizopus oryzae RCK2012 Whole grain wheat [36]

3,4-di-hydroxybenzoic acid, 
ferulic acid, vanillic acid, 
quercetin

Aspergillus oryzae LBA01, 
A. niger LBA02

Lentil flour [37]

Immunosupresants

Mycophenolic acid Penicillium brevicompactum 
DSM 2215

Rice bran-potato peel 
mixture

[38]

Mycophenolic acid Penicillium brevicompactum 
ATCC 16024 (AFI 668)

Pearl barley [39]

Mycophenolic acid Penicillium brevicompactum 
ATCC 16024

Wheat bran [40]

Mycophenolic acid Penicillium brevicompactum 
MTCC 8010

Rice bran [41]

Mycophenolic acid Penicillium brevicompactum 
(various strains)

Various agricultural 
waste

[42]

Mycophenolic acid Penicillium roqueforti 
(AG101 and LG109)

Sugarcane bagasse [43]
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Name of the substance Microorganism Agricultural waste Reference

Cyclosporin A Tolypocladium inflatum 
MTCC 557

Hydrolysed wheat 
bran flour and 
coconut oil cake

[44]

Cyclosporin A Tolypocladium inflatum 
MTCC 557

Wheat bran flour and 
coconut oil cake

[45]

Cyclosporin A Tolypocladium inflatum 
ATCC 34921

Wheat bran [46]

Cyclosporin A Tolypocladium inflatum 
DRCC 106 (mutated srain)

Wheat bran [47]

Cyclosporin A Tolypocladium sp. Wheat bran [48]

Tacrolimus Streptomyces hygroscopicus Various agricultural 
waste

[49]

Anticoagulant agents

Halotolerant chitinase Citrobacter freundii str. nov. 
haritD11

Wheat bran with fish 
scale

[50]

Halotolerant Chitinase Citrobacter freundii str. nov. 

haritD11

Wheat bran with 
shrimp shellfish

[51]

Fibrynolytic enzyme Bacillus amyloliquefaciens 
LSSE-62

Chickpeas [52]

Fibrinolytic enzyme Bacillus sp. IND6 Wheat bran [53]

Fibrinolytic enzyme Bacillus sp. IND12 Cow dung [54]

Nattokinase Bacillus subtilis natto Soybean [55]

Fibrinolytic enzyme Bacillus subtilis XZI125 Soybean meal [56]

Fibrinolytic enzyme Bacillus subtilis WR350 Corn steep [57]

Fibrinolytic enzyme Bacillus halodurans IND18 Wheat bran [58]

Fibrinolytic enzyme Bacillus cereus GD55 Apple pomace [59]

Fibrinolytic enzyme Bacillus cereus IND5 Cuttle fish waste and 
cow dung

[60]

Fibrinolytic enzyme Paenibacillus sp. IND8 Wheat bran [61]

Fibrinolytic enzyme Pseudoalteromonas sp. 
IND11

Sun-dried cow dung [62]

Fibrinolytic enzyme Xanthomonas oryzae IND3 Cow dung [63]

Fibrinolytic enzyme Bacillus firmus NA-1 Soybean grits [64]

Fibrinolytic enzyme Mucor subtillissimus UCP 
1262

Wheat bran [65]

Fibrinolytic enzyme Fusarium oxysporum Rice chaff [66]

Fibrinolytic enzyme Fusarium oxysporum Rice chaff [67]

Anticancer agents

Short chain fatty acids Aspergillus kawachii KCCM 
32819

Silkworm larvae 
powder

[68]

Putative phytoestrogen Aspergillus fumigatus F-993 
or A. awamori FB-133

Defatted soybean [69]

Andrastin A and C Penicillium expansum 
KACC 40815

Malt extract agar [70]

Table 1. 
Examples of substances produced by solid state fermentation that could be used in healthcare.
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polyphenols and short chain fatty acids. We also described main groups of micro-
organisms that were involved in cited studies and compared various approaches for 
optimising SSF.

2. Main properties of substances obtained from SSF

2.1 Antimicrobial properties

In the majority of cited studies (Table 1) authors did not verify which par-
ticular compound contributed to antimicrobial properties. In most of cases they 
concluded that polyphenols contributed to that phenomenon [13, 15–19] because in 
comparison to control groups, extracts obtained after SSF demonstrated stronger 
antimicrobial effects containing more phenolic compounds (PC) at the same time. 
In the paper written by Mohamed et al. [13, 72] authors did not carry out detailed 
qualitative and quantitative analysis of fungal metabolites – they assumed that only 
curcumin would be the substance demonstrating antibacterial properties.

Some studies involved detailed analysis of polyphenol profiles and authors 
assigned antibacterial and antifungal properties to phenolic acids which concentra-
tion was increased by Pleurotus sapidus [12]. Others indicated that antimicrobial 
activity was achieved due to the occurrence of coumarins and oxylipins detected 
in post-fermentation extracts when Aspergillus oryzae KCCM 12698 was used for 
SSF [14]. Kaaniche et al. [2] additionally analysed structures of obtained bioactive 
compounds and they proved that four most potent antimicrobials produced by 
Streptomyces cavourensis TN638 were macrotetrolides. Similar approach was applied 
to identify antimicrobial compounds produced by Fusarium sambucinum B10.2 and 
proved it was sambacide [10]. When surfactants produced by various Bacillus strains 
were tested for antimicrobial properties, researchers additionally tested their prop-
erties like emulsification activities [4] or tensioactive activity [5]. Except for latest 
reports regarding surfactin, we did not include antibiotics in our chapter because 
currently there are various resistant strains so some alternatives are required.

The majority of identified antimicrobial compounds demonstrated activity 
equal to [2, 13, 17] or greater [10, 13, 15, 16] than well-known antibiotics. In some 
cases authors did not provide results for control samples so it was not possible to 
assess how those substances were effective, however, inhibition zones in diffusion 
disk method were very prominent [4, 9, 14, 15]. In other studies MIC (Minimum 
Inhibitory Concentration) of extracted substances were not higher than for antibi-
otics, however, since those substances were obtained from agricultural waste which 
is a cost effective substrate, they still could be considered as potential antimicrobi-
als [2, 12, 18, 19]. Only metabolites produced by Pediococcus acidilactici KT-05-7 
demonstrated very weak antimicrobial properties [8].

2.2 Anti-inflammatory agents

Anti-inflammatory properties of terpenoids were already described in vari-
ous reviews [73, 74] but they were not investigated in cited papers so we did not 
discuss obtained results. It is worth mentioning that each extract obtained after SSF 
contained at least one compound that could demonstrate such activity: lactones 
which were produced by Trichoderma viride EMCC-107 [28]; limonene-1,2-diol, 
α-terpineol, (−)-carvone, α-tocopherol produced by Diaporthe sp. KY113119 [25]; 
1-terpineol, L-linalool produced by Antrodia camphorata [30]; betulinic acid – 
Inonotus obliquus and [23]; α-pinene produced by Saccharomyces cerevisiae AXAZ-1 
and Kluyveromyces marxianus IMB3 [27].
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In the case of polyphenols we took the same approach – we only summarised the 
research that investigated anti-inflammatory properties of extracts obtained after 
SSF. When grape pomace was treated with Trametes versicolor TV-6 the concentra-
tion of phenolic acids, flavan-3-ols and rutin increased while the concentration of 
anthocyanins decreased. Those changes resulted in enhanced anti-inflammatory 
activity of obtained extracts which was measured by the inhibition of 5-lipoxy-
genase and hyaluronidase [20]. Also polyphenols produced by Xylaria nigripes 
demonstrated enhanced anti-inflammatory properties which were verified by the 
inhibition of cyclooxygenase-2 [24]. Additionally, in both cases, obtained extracts 
demonstrated neuroprotective properties. Studies carried out by Yin et al. [75] dem-
onstrated that A. niger was able to release ferulic acid bound to various polysaccha-
rides in the wheat bran. Obtained substances exhibited stronger anti-inflammatory 
activity than that of free ferulic acid which probably took place due to the presence 
of accompanying compounds in obtained extracts. Moreover, those released 
compounds could significantly inhibit intracellular malondialdehyde formation and 
the LPS-induced inflammation. It is difficult to assess which extracts demonstrated 
greater activity because authors of all abovementioned studies used different way to 
express results – the provided IC50 values or % of inhibition.

In the majority of cited papers anti-inflammatory properties of extracts contain-
ing polyphenols were not verified despite the fact that there were some compounds 
among them which demonstrate such activity [76, 77]. Research mainly focused 
on antioxidant properties [20, 22, 23, 31]. This applies to various studies involving 
organisms providing increase of particular phenolic compounds: Rhizopus oli-
gosporus NRRL 2710 – rutin [22], Prunus armeniaca L – cinnamic acids and selected 
flavonols [31]; Lactobacillus plantarum CECT 748 – hydroxybenzoic acids and 
flavonols [78]; Eurotium cristatum YL-1 – isoflavones (daidzin, daidzein, genistin 
and genistein) [34]; Rhizopus oryzae and Aspergillus foetidus – tannins [35]; Rhizopus 
oryzae RCK2012 – phenolic acids [36]; Aspergillus oryzae LBA01 – 3,4-di- hydroxy- 
benzoic acid, ferulic acid, vanillic acid and quercetin [37].

2.3 Immunosuppressants

Immunosuppressants could be obtained by SSF as well. It seems that one of 
the most common substance which was detected in studies involving SSF is myco-
phenolic acid (MA, Table 1). It works as a blocker in producing precursors for the 
synthesis of RNA and DNA, so as the result it blocks proliferative response of T 
and B lymphocytes [79]. In the research that involved SSF, authors did not verify 
properties of the obtained MA.

Another substance belonging to that group, classified as calcineurin inhibitor 
[80], is cyclosporin A (CA). This substance is used not only in transplant patients 
but also in treatment of glomerular disease. CA prevents calcineurin-dependent 
transcription in activated T cells. Based on studies that were aiming to produce 
CA we concluded that authors did not verify properties or safety of obtained 
substances but they focused on various methods for its extraction and purification. 
They mostly used butyl acetate [44, 48] or ethyl acetate [47]. Tacrolimus could be 
also produced by SSF by Streptococcus hygroscopicus. The whole process of bacterial 
cultivation and the extraction of that compounds was covered by the patent [49].

2.4 Anticoagulants

Another group of substances that could be produced by SSF is anticoagulants. 
Blood coagulation is a physiological process, which consists of a series of coagula-
tion factors and proteolytic activation steps, which lead to the production of 
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thrombin – the main coagulation enzyme. The majority of research was focused on 
fibrinolytic enzymes (FE, Table 1) – subtilisin, however, in one case it was nattoki-
nase [55]. In the majority of cited papers authors verified anticoagulant properties 
of obtained enzymes and they used different methods – some of them applied spec-
trophotometric method which measured the increase of turbidity at 275 nm caused 
by added enzyme [53, 54, 58, 60, 62, 65] and others measured zones of clearance in 
solid media containing fibrinogen [64, 66, 67].

Another compound which could be considered as a putative anticoagulant is 
halotolerant chitinase. Its properties were confirmed [50, 51] by testing how this 
enzyme could dissolve fibrin in time. Moreover, Meruvu et al. [51] showed that it 
held antifungal activity.

2.5 Anticancer agents

Terpenoids are well-known for their cytotoxic activity and there were various 
studies investigating such activity against cancer cells. Anticancer mechanism of 
terpene or essential oils that contain them was described in various review papers 
[81–83]. Several compounds belonging to that class could be obtained by SSF 
(Table 1): limonene from orange waste [25]; linalool, geraniol and β-caryophyllene 
from millet [28, 30]; andrastin A and C on malt extract agar [70]. Properties of 
extracts that contained those and other terpenoids were not investigated in cited 
papers so we decided not to discuss that aspect in the current chapter.

Another group of bioactive compounds which was shown to hold anticancer 
activity is polyphenols [84, 85]. The following substances occurred in cited reviews 
and studies that we summarised in Table 1: cinnamic acids [22], daidzein and 
genistein [86], quercetin [35, 87], and tannins [34]. Since authors of cited research 
papers (Table 1) did not test obtained extracts against those properties, we did not 
discuss that phenomenon.

In the study of Cho et al. (2019) authors demonstrated that fatty acids detected 
in extracts obtained from silkworm larvae powder fermented by Aspergillus kawachii 
demonstrated such activity against human hepatocellular carcinoma [68]. It was 
shown that fermentation increased concentration of those compounds, especially 
oleic and linoleic acids. This phenomenon took place due to the enhancement of cell 
apoptosis and suppression of protein responsible for preventing the apoptosis. The 
value of that research is particularly significant because so far, polyunsaturated fatty 
acids (PUFAs) attracted most attention in the context of colorectal cancer [87].

3.  Groups of microorganisms demonstrating greatest potential for the 
production of health-promoting properties in SSF

3.1 Bacillus genus

It was demonstrated that the representatives of the Bacillus genus were able to 
produce fibrinolytic enzymes by SSF [52–58, 60]. That ability is mostly assigned 
to the expression of fibE gene which encodes enzyme called subtilisin [88] which 
solubilises blood clots. Gene expression was not investigated in cited papers so the 
ability to produce those enzymes by tested strains could be the result of other genes 
expression.

Bacillus genus is successfully used in solid-state fermentation to improve antimi-
crobial activity of fermented food. Rochín-Medina et al. [19] who tried to determine 
optimal bioprocessing conditions for SSF of spent coffee grounds by Bacillus 
clausii achieved increase of flavonoid and total phenolic contents by 13 and 36%, 
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respectively. SSF also enhanced antibacterial activity of obtained extracts. That 
phenomenon could be explained by the fact that Bacillus sp. strains could metabo-
lise fibre which releases phenolic compounds as a result of lignocellulolytic activity, 
and demonstrate strong correlation between the increase of phenolic compounds 
and the synthesis of cellulases and pectinases [19]. Those enzymes can break down 
plant cell wall components which leads to the hydrolysis of ester bonds that bind 
phenolic compounds [19].

The representatives of the Bacillus genus are able to produce surfactants as well 
(Table 1). There are various enzymes involved in the production of surfactin which 
form multienzyme peptide synthetase complex. One of those proteins is Srf (which 
consists of three units A, B and C). There are also two other genes involved in that 
process – sfp and comX. However, the role and interactions of protein and genes was 
described in more details in other review papers [89], therefore, we did not discuss 
that phenomenon in details.

3.2 Other bacteria

There are also other bacteria that were tested against the production of sub-
stances holding the potential for application in healthcare. For instance, there are 
several species that are able to produce fibrinolytic enzymes which could serve 
as potential anticoagulants: Paenibacillus sp. IND8 [61], Pseudoalteromonas sp. 
IND11 [62], Xanthomonas oryzae IND3 [63] or Citrobacter freundii nov. haritD11 
[50, 51]. In the case of Paenibacillus its ability for producing such enzymes could 
be assigned to the expression of PPFE-I gene [90]. It seems that the synthesis of 
protein encoded by that gene could be stimulated by Zn2+, Mg2+ and Fe+ so the 
concentration of these ions could be considered in future studies focusing on 
optimisation of enzyme production. In the case of Citrobacter freundii, molecular 
mechanism seems much simpler because so far, only chiX gene was assigned to its 
ability for chitinase production [91]. It is still unclear which genes are involved 
in the production of anticoagulant agent by Pseudoalteromonas or Xanthomonas 
oryzae so it is an aspect that could be investigated in the future, since the quantity 
of the enzyme was very prominent – up to 1,388 U/ml.

It was also demonstrated that Streptococcus hygroscopicus is able to produce 
immunosuppressant in SSF based on agricultural waste with added supplements 
[49] and it seems that aroA, fkbN, and luxR genes are mostly responsible for that 
phenomenon [92]. On the other hand, molecular mechanisms standing behind the 
ability of Yarrowia lipolytica W29 (ATCC 20460) to produce γ-decalactone [11] which 
analogues demonstrate antiviral and antifungal properties [93] is simpler because it 
involves only POX2 overexpression [94]. Similarly, in the case of Lactobacillus planta-
rum CECT 748 [95] which increased the concentration of particular phenolic com-
pounds, probably only est_1092 gene was involved – it encodes phenolic esterase [96].

None of the cited paper evaluated molecular mechanisms involved in processes 
carried out by tested strains.

3.3 Fungi

The majority of research involving SSF is carried out with various fungi 
(Table 1). Many of analysed examples focused on the increase of phenolic com-
pounds. One of the genera which were involved in that process was Trichoderma 
[13, 16, 17]. Those fungi are known to produce cellulolytic, ligninolytic and xyl-
anolytic enzymes [97] and it has been demonstrated in other studies that cellulase 
could significantly increase concentrations of various polyphenols e.g. caffeic 
acid, vanillin, p-coumaric acid, and ferulic acid [98]. In fact, similar strategies 
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might apply to Aspergillus spp. [22, 37, 99] because representatives of that genus 
could produce enzymes demonstrating such activities [98] as well. Rhizopus 
oryzae [36, 100] synthesises cellulase, xylanase and pectinase [101]. Other fungi 
applied in other cited studies could produce the following enzymes that partici-
pate in polyphenol increase: Lentinus edodes [15] – xylanase and cellulase [102], 
Pleurotus sapidus – ligninolytic enzymes [12], Trametes versicolor  
TV-6 – β-glucosidase [20].

Genetic background of the synthesis of abovementioned enzymes by 
Trichoderma spp. and Aspergillus spp. was revised by Amore et al. [103] while 
in the case of R. oryzae and P. chrysopsorium it was described by Battaglia et al. 
[104] so we did not provide details of those processes, especially that many 
genes are involved.

There are also some fungi which could be natural sources of polyphenols: 
Taiwanofungus camphoratus [21], Inonotus obliquus [23], and Xylaria nigripes [24]. In 
all cases SSF increased their anti-inflammatory properties by increasing concentra-
tion of particular phenolic compounds which could also originate from substrates 
that were used for their cultivation and those were: spent substrate of Pleurotus 
eryngii, sunflower seed hulls, corn and rice grain, white birch and mulberry in the 
case of I. obliqus; wheat bran in the case of X. nigripes.

Another significant group of bioactive compounds which concentration was 
increased by SSF was terpenes (Table 1) and those processes were carried out by 
various fungi: Fusarium sambucinum B10 [10], Penicillium expansum KACC 40815 
[70], Diaporthe sp. KY113119 [25], Antrodia camphorata [30], Saccharomyces 
cerevisiae AXAZ-1 and Kluveromyces marxianus IMB3 [27], Trichoderma viride 
EMCC-107 [28], and Aspergillus niger van Tieghem [29]. A. camphorate is the 
natural source of terpenes and their concentration was increased by selecting 
millet as the main substrate for SSF. K. marxianus and S. cerevisiae could prob-
ably increase the concentration of tested compounds by releasing terpenes from 
their glycosidic forms by β-glucosidases. In the case of Fusarium spp., Aspergillus 
spp. and Penicillium spp. it was demonstrated that those genera could produce 
several sesquiterpene synthases [105]. As in the case of polyphenols, molecular 
background of terpene transformations are very complex so we decided not to 
describe it in the current chapter, but refer to the review of Quin et al. [105] 
instead. It must be highlighted that except for the study regarding P. expansum 
KACC 40815 demonstrating that terpenoid cyclase was mostly involved in 
described processes [70], none of the authors investigated enzymatic activity 
during terpene transformation nor determined gene expression.

Based on cited papers it might be stated that Penicillium brevicopactum is most 
common in the research regarding production of mycophenolic acid in SSF [38–43]. 
Those fungi produce polyketide synthase encoded by mpaC gene along with other 
enzymes such us: protein transacylase, β- ketoacylsynthase, acyltransferase, acyl 
carrier protein, and methyltransferase (MT) domains [106]. There is another taxon 
which is able to produce immunosuppressants, namely cyclosporin A, and it is 
Tolypocladium inflatum [44–48] which has got nonribosomal peptide synthetase 
that encodes for cyclosporin synthetase (simA gene) [107].

Mucor subtilissimus UCP 1262 [65] and Fusarium oxysporum [66, 67] were shown 
to produce fibrinolytic enzymes. It has been already demonstrated that FP gene is 
responsible for encoding fibrinolytic protease in Fusarium sp. [108] but in the case 
of Mucor sp. it remains unknown. Molecular background of A. kawachii KCCM 
32819 production of short chain fatty acids could be the same as for A. nidulans and 
other filamentous ascomycetes – farB gene is mostly responsible for that ability, 
however, farA participates as well [109]. Genetic background of biosurfactant 
production in moulds is still unknown.
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3.4 Modified strains

It has been demonstrated that in some cases the yield of microbial metabolites 
significantly increased when the strain was subjected to gamma ray – it increased 
the quantity of obtained mycophenolic acid produced by two strains of Penicillium 
requeforti [43] in comparison of other cited studies which involved unmodified 
Penicillium brevicompactum [39, 41]. On the other hand, UV radiation was used for 
the modification of Tolypocladium inflatum which was used for the production of 
Cyclosporin A [47], however, in the case of that substance there were other studies 
which resulted in much higher yields [44, 45].

4. Optimisation of SSF conditions

One of the approaches that were applied for the optimisation of the concentra-
tion of bioactive substances by SSF is to provide pre-treatment to the main sub-
strate. Heat-treatment was one of the main methods e.g. autoclaving, moistening 
in boiling water, cooking with deionised water, drying, freezing, freeze-drying, 
vacuum-drying and roasting. It inactivates native microorganisms and enzymes.

Once the main substrate is prepared, there are other experimental conditions 
that need to be optimised. In cited papers the major factor contributing to obtained 
results was moisture which was at least 50% [69, 110]. The next crucial factor 
was medium composition. In few cases authors used solid media commonly used 
for the cultivation of microorganisms [2, 70]. However, in the majority of cases 
authors added some nutrients to agricultural waste to provide better results of 
releasing bioactive compounds. In the case of mycophenolic acid produced P. brevi-
compactum MTCC 8010 from rice bran those supplements were: peptone, KH2PO4, 
glycine and methionine [41]. On the other hand, in the case of P. brevicompactum 
ATCC 16024, the addition of mannitol or (NH4)2HPO4 to pearl barley did not 
enhance the MA synthesis [39]. Surprisingly, the quantity of MA was higher in the 
latter case – 5.47 g/kg of the substrate in comparison to 4.5 g/kg under optimised 
conditions. It seems that pearl barley has got chemical composition which is more 
preferable for obtaining MA.

On the other hand, Plackett-Burman design was applied for the optimisation of 
cyclosporin A production by Tolypocladium inflatum MTCC 557 which resulted in 
8,166 mg/kg [45] which is 1.26-fold higher than in studies carried out by Survase 
et al. [44, 45] who applied the same fungal strain or even 45.62-fold higher than 
reported by Nisha and Ramasamy [46] who used T. inflatum ATTC 34921 strain. 
In the last study authors firstly used Plackett-Burman design for the selection of 
nutrients and later on, they used half-factorial central composite rotatable design 
(CCRD) of response surface methodology (RSM) to select optimum concentra-
tions of those substances which resulted in more than 10-fold increase of tested 
compound [47].

When the production of fibrinolytic enzyme was optimised with RSM, its 
activity increased 3 times in the case of Pseudoalteromonas sp. IND11 [62]; 4 times in 
the case of Xanthomonas oryzae sp. IND3 [63]; while when central composite design 
(CCD) was used, 4.5-fold increase was noted when Paenibacillus sp. IND8 was used 
[61]. In the case of Xanthomonas oryzae sp. IND3, CCD was additionally used for 
estimating optimal values of the following variables: sucrose, yeast extract, and pH 
of the medium [63]. Among all mentioned microorganisms Paenibacillus sp. IND8 
produced greatest quantities of the enzyme – 4,418 U/ml.

Various Bacillus strains were used for the production of fibrinolytic 
enzyme (Table 1) and those proved to be more efficient enzyme producer 
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that abovementioned bacteria. When authors used two-level factorial design 
in the case of Bacillus sp. IND12 examining the impact of moisture, sucrose, 
and MgSO4 levels added to the cow dung, maximum enzyme activity reached 
4,143 U/g [54]. Further, orthogonal design (corn steep powder, sucrose and 
MgSO4 · 7H2O) provided even greater enzyme activity (5,865 U/ml) in 100 l 
fermenter when applying Bacillus subtilis WR350 [57]. However, the greatest 
activity was achieved when Bacillus halodurans IND18 was used. It produced 
6,851 U/g when two-level full factorial design was applied and the optimum 
conditions were as follows: 1% peptone, 80% moisture and pH 8.32, using wheat 
bran as the main substrate [58].

Ghribi et al. [4] took a different approach for the optimisation of surfactin 
production – firstly, authors applied Plackett-Burman design to assess which of the 
five variables were the most important and then they optimised the process with 
CCD involving three selected variables. They found parameters (temperature – 
37°C, inoculum age – 14 h, and moisture – 88%) that were the most favourable for 
the production of surfactin and increased its yield by 2-fold (up to 2 g/l). Sun et al. 
[3, 111] carried out step-by-step optimisation and found out that the addition of 
attapulgite by 1.96-fold (4.3782 g/kg). This would suggest that B. natto NT-6 was the 
most suitable for that application among all tested strains.

Optimization of halotolerant chitinase was carried out using RSM –Box Behnken 
method which involved Citrobacter freundii and that process slightly improved 
enzyme production in comparison to initial optimisation experiments from 
112.43 U/g dry substance to 124.73 U/g dry substance [51]. That optimisation was 
mainly focused on the ratio of main substrates (wheat bran and shrimp shellfish), 
temperature and moisture content. Similarly, minor changes were observed when 
wheat bran and powdered fish scales were used for the statistical optimisation of 
chitinase production [50].

5. Conclusions

Solid-state fermentation could provide various substances useful in health-
care: antimicrobials, immunosuppressants, anticoagulants, substances holding 
anti-inflammatory properties and anticancer agents. It seems that polyphenols 
and terpenes are especially versatile in their applications. The majority of studies 
involved various fungi mainly due to their enzymatic activity which supports the 
release of bioactive compounds from agricultural waste. Molecular mechanisms 
of those processes are usually very complex; however, they remain unknown for 
some fungi. Further studies are necessary to assess which genes could be expressed 
during those processes because those could be used for modification of microorgan-
isms to increase their yield. It is also important to bear in mind that SSF requires the 
presence of various supplements and fermentation could be optimised by statistical 
tools, especially Response Surface Methodology and Central Composite Design. In 
some cases step-by-step optimisation could be sufficient.
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