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Chapter

Linked Open Data:  
State-of-the-Art Mechanisms and 
Conceptual Framework
Kingsley Okoye

Abstract

Today, one of the state-of-the-art technologies that have shown its importance 
towards data integration and analysis is the linked open data (LOD) systems 
or applications. LOD constitute of machine-readable resources or mechanisms 
that are useful in describing data properties. However, one of the issues with the 
existing systems or data models is the need for not just representing the derived 
information (data) in formats that can be easily understood by humans, but also 
creating systems that are able to process the information that they contain or 
support. Technically, the main mechanisms for developing the data or informa-
tion processing systems are the aspects of aggregating or computing the metadata 
descriptions for the various process elements. This is due to the fact that there 
has been more than ever an increasing need for a more generalized and standard 
definition of data (or information) to create systems capable of providing under-
standable formats for the different data types and sources. To this effect, this 
chapter proposes a semantic-based linked open data framework (SBLODF) that 
integrates the different elements (entities) within information systems or models 
with semantics (metadata descriptions) to produce explicit and implicit informa-
tion based on users’ search or queries. In essence, this work introduces a machine-
readable and machine-understandable system that proves to be useful for encoding 
knowledge about different process domains, as well as provides the discovered 
information (knowledge) at a more conceptual level.

Keywords: LOD, semantics, ontologies, metadata creation, data integration, process 
description, information retrieval, information extraction, information systems

1. Introduction

Linked Open Data (LOD) is a term used to refer to tools or platforms that support 
freely-connected (interlinked) resources or frameworks to allow for collection and 
integration of data (usually derived from various sources or formats) and provide 
useful information that can be accessed by machines or humans. Typically, LOD 
supported tools or platforms is expected to allow for both simple or complex ori-
ented lookup for information access through some form of predefined language or 
mechanisms (e.g. using scripts or query-based languages such SQL, HTML, SPARQL, 
Description Logics, RDF graphs of the Triples form, XML, etc.) [1–3]. Technically, 
LOD is semantically defined as a knowledge graph [3] that vents in the form of 
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semantical web or schema (e.g. using ontologies) [4–6] of interconnected data [7]. 
According to Snyder et al. [7], LOD has since been epitomized as a way of improving 
the process of discovering useful information or resources by creating a series of 
robust links between related concepts or items.

The work done in this chapter notes that one of the main challenges with LOD 
has been on how to create systems or methods that are capable of providing an 
understandable format (both machine-readable and machine-understandable) for 
the various datasets that may come from different sources, as well as, making the 
derived formats or standards explicable across the several platforms. To this end, 
the work proposes a semantic-based LOD framework (SBLODF) that provides 
an additional function to LOD that allows for formal integration of the process 
elements or concepts through metadata creation (process description) using the 
semantic technologies or schema. This is called Semantic-based Linked Open Data.

2. Preliminaries

2.1 Semantics? the missing link in LOD systems

Research on why “domain knowledge” is useful in bridging the semantic gap in 
existing systems or applications that aims to store and/or process data has long been 
discussed in existing works of literature [1, 6, 8–11]. Whereas, Declerck et al. [1] 
note that one of the main aims of LOD supported systems is to develop new ways or 
methods for construing data values (interlinks) that are applicable to a broad range 
of applications or platforms (based on language technologies or resource descrip-
tions) through semantic technologies. Wang [12] notes that contemporary studies 
on LOD methods and tools are mainly directed towards ascertaining different levels 
or types of process instances (entities), thereby resulting in the central task of 
finding relationships (schema-level) or links that exist amongst the LOD datasets or 
models in question being ignored.

According to Wang [12], ontological representations (mappings) are a very 
crucial way of solving the data heterogeneity or missing link. Moreover, ontologies 
can be described as an essential tool that proves useful towards establishing the 
semantic-level links in LOD [6, 13–18]. For example, Selvan et al. [19] proposed 
an ontology-based recommender system that is built on cloud services to store and 
retrieve data for further analysis using Type-2 fuzzy logic.

Studies have shown that there exists a (semantic) gap between different datasets 
and the various tools/algorithms that are applied to analyze or understand the data 
including results of the analysis in all stages of the data processing; ranging from 
the data pre-processing to implementation of the algorithms, and the interpretation 
of the results [6, 8, 11, 16]. For instance, data pre-processing usually involves the 
process of filtering and cleaning of data, standardization by defining formats for its 
integration, transformation and properties extraction and retrieval of the defined 
formats/structures, and then selected for the purpose of analysis. Nevertheless, in 
many settings, there exist the issue of semantic gaps in the several phases of the 
data pre-processing. For example, we note that in the absence of considering the 
formal structure (semantics) of the data models, most of the resulting systems have 
resort to empirical or ad-hoc methods to determine the quality of the underlying 
datasets or concepts. Whereas, it is certain that data semantics is necessary for 
understanding the relations that exist amongst the different process elements in the 
models, especially during the standardization and transformation step. Thus far, it is 
important to determine the correlation between the different data elements by tak-
ing into account the underlying properties/attributes of the data when performing 
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data standardization or processing at large. Apparently, tightly (closely) correlated 
attributes can be generalized into one combined attribute or classification for the 
purpose of tractability and conceptualized analysis.

Typically, in terms of the different application domains and rule-based informa-
tion extraction systems, Yankova [20] conducted a semantic-based identity resolu-
tion and experiment that aims to identify conceptual information expressed within 
a domain ontology. The experiment was based on a generic and adaptable human 
language technology. In the experimentation, they extracted company information 
from several sources and update the existing ontologies with the resolved entities. 
The method for information extraction is a rule-based system they referred to 
as Identity Resolution Framework (IdRF) built using Proton [20] that provides a 
general solution to identifying known and new facts in a certain domain, and can 
also be applied to other domains regardless of the type of entities that may need to 
be resolved. Moreover, input to the IdRF includes different entities together with 
their associated properties and values, and the expected output is an integrated 
representation of the entities that are consequently resolved to have new properties 
or values within the ontology.

On the one hand, ontologies have shown to be beneficial in such data processing 
or conceptualization scenarios [21–23]. Ontologies are formal structures that are 
used to capture knowledge about some specific domain processes of interest [24–25]. 
Technically, the “ontologies” or formal expressions (taxonomies) per se are used 
to describe concepts within process domains as well as the relationships that hold 
between those concepts. Ontologies range from the tools or mechanisms used to cre-
ate the taxonomies, to the population of the classified elements or database schemas 
to fully axiomatized theories [11]. Practically, ontologies are used by the domain 
experts to (manually, semi-automatic, or automatically) fill the semantic gaps that 
are allied to the data analysis procedures and models.

On the other hand, it is also noteworthy to mention that ontologies are now 
central to many applications; such as scientific knowledge portals, information 
management and integration systems, electronic commerce and web services, etc. 
which are all grounded or built on the LOD scheme.

2.2 State-of-the-art: semantic schema for data integration and processing

Indeed, several areas of application and definition of ontologies (schema) have 
been noted in the current works of literature especially as it concerns the varied 
domains of interest. For example, Hashim [26] notes that the term “ontology” is 
borrowed from the philosophy field that is concerned with being or existence, and 
further mention that in context of computer and information science, it symbol-
izes as an “artefact that is designed to model any domain knowledge of interest”. 
Ontology has also been broadly used in many sub-fields of the computer science 
and AI, particularly in data pre-processing, management, and LOD related areas 
such as intelligent information integration and analysis [27], cooperative informa-
tion management systems [28], knowledge engineering and representation [29], 
information retrieval [30], information extraction [31], ontology-based informa-
tion extraction systems [13, 15, 32–34], database management systems [35–37], and 
semantic-based process mining and analysis [10, 16, 18, 38–40].

Gruber [25] describes the ontological concept or notion as “a formal explicit 
specification of a conceptualization”. To date, the aforementioned breadth has been 
the most widely applied and cited definition of ontologies within the computer 
science field. The description means that ontologies are able to explicitly define 
(i.e. specify) concepts and relationships that are paramount for modeling any 
given process or domain of interest. Moreover, with such expressive application 
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or schema, it means that the processes can be represented in the form of classes, 
relations, individuals, and axioms (C,R,I,A). Thus, we note that the structural layer 
of ontologies can be defined as a quadruple which are construed on connected sets 
of taxonomies (RDF + Axioms) or yet formal structure (Triple + Facts). Whereby 
the subjects include the represented class(es), C, the objects include the individual 
process elements or instances, I, the predicates are used to express the relationships, 
R, that exist amongst the subjects and objects, and then sets of axioms that state 
facts, A, [11]. Thus;

 Ont = (C,R,I,A)  (1)

Following the aforementioned definition of the ontological concept or schema, 
this work note that ontologies serve and are built to perform the main functional 
mechanisms for the integration of data models for the various systems (e.g. LOD) as 
follows:

• Conceptualisation: method used to represent abstract models of a phenomenon 
in real-world settings. This is done by identifying suitable domain (semantic) 
relationships that exist amidst the process elements (concepts) through formal 
definitions in what can be called declarative axioms that allow for the resultant 
models to be represented (conceptualisation) declaratively.

• Explicitness: procedures that allow or support the different types of concepts 
and restrictions on their use (properties assertions) to be defined explicitly.

• Formality: expressions which are defined to prevent unexpected inter-
pretation of the C,R,I,A as quadruple (e.g. concepts and notations, 
relationships, properties restrictions, etc.). Thus, it enables the resultant 
systems or models to be machine-readable and machine-understandable, 
respectively.

3. Proposed semantic-based LOD framework (SBLODF)

The representation (modeling) of knowledge using ontologies (e.g. taxonomies) 
helps in organizing metadata for complex information or data structures. According 
to Sheth et al. [41], description of real-time processes through metadata creation 
provides a syntactic as well as semantic way of representing information about the 
resources that are encoded as instances (entities) in ontological form. Besides, the 
formal representation of ontologies and the underlying metadata created as a result 
of the representations allows for automatic reasoning of the processes by making 
references (inference) to the defined concepts [42]. Indeed, with such reasoning 
aptitude, the process analysts or owners are able to ensure specification of the 
process domains (knowledge) in view in an ontological form that can logically be 
interpreted in an apt way. Consequently, this permits for automatic reasoning of 
the different concepts to derive an explicit/implicit knowledge about the process 
domains in question [43].

Therefore, the main benefits of ontologies for formal integration of datasets 
and models in any shape or platform can be summarized in two forms: (i) encoding 
knowledge about the specific process domains, and (ii) conceptual analysis and 
reasoning of the processes at more abstraction levels as described in detail in the 
following section.
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3.1 Architecture of the SBLODF framework

Information retrieval and structuring of the different sets of data that are stored 
in several databases or knowledge-base are usually performed in alignment with the 
users’ query [38]. As gathered in Figure 1, the supported formats may be a list of 
document files or keywords issued to the system through the query module (func-
tional operators). In turn, the retrieval module references the properties descriptions 
(conceptual assertions) that underlie the (semantic) models to produce information 
that is relevant to the users’ query. For example, using the superClass-subClass 
hierarchies that are usually defined in a taxonomical form in ontologies. This is done 
through the classification process (e.g. classifying by using a reasoner) to compute 
the relevant information (e.g. individual entities or process instances) that fulfills 
the properties restriction by definition [44]. Technically, the most fitting (related) 
concepts are then presented to the user in a formal way, e.g. explicitly and implicitly.

Furthermore, we note that information retrieval and extraction systems such as 
the SBLODF framework (Figure 1) typically do not only support unstructured data 
or documents (e.g. textual data), but it also deals with semi-structured and struc-
tured data. This is where the semantic technologies and such type of systems (which 
combines the information retrieval (IR) with information extraction (IE) features) 
[38] becomes greatly beneficial. Functionally, the resulting system allows for 
merging and manipulation of structured, semi-structured, and unstructured data 
through the search (query) modules by enabling a conceptual intersection or reason-
ing between the different elements as contained in the system. Thus, the SBLODF 
is referred to as a conceptualization method or information processing system that 
combines the features of the machine-readable and machine-understandable systems 
or mechanisms.

For example, enterprise vendors such as FAST (a Microsoft subsidiary) incor-
porated analytical search functions to support data visualization and reporting into 

Figure 1. 
Semantic-based linked open data framework (SBLODF).
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their products [38, 45]. Moreover, Ingvaldsen [38] notes that the business process 
intelligence (BPI) solutions and offerings can also benefit from such a combination 
(IR and IE supported systems) by giving the users a search facilitated (data analysis) 
environment to harvest/harness data from both structured and unstructured data 
sources. Thus far, giving the users a more flexible environment for accessing relevant 
data items.

Interestingly, semantic-based information retrieval and extraction systems 
as illustrated in Figure 1, represents to be a step further in supporting the BPI’s 
by providing additional modules or components that allows for integrating 
metadata description (e.g. ontologies) to the system design or framework. The 
semantic-based components (see: Figure 1) aims to add a machine tractable 
and/or re-purposeable layer of annotations that are relative to ontologies in 
order to complement the existing web of information and data analysis pro-
cedures, or yet, the omnipresence of natural language hypertext [4, 46, 47]. 
Perhaps, this is fundamentally done through the creation of semantic annota-
tions [11, 23] and linking of the different concepts or modules to ontologies. 
In turn, the semantically motivated process or models turns out to become 
automatic or semi-automatic in nature and allows for ample integration of the 
LOD frameworks due to creation, interrelation, or application of the ontologies 
(semantic schema). Besides, this has led to the advancement of hybrid intelli-
gent systems such as the ontology-based information extraction systems (OBIE) 
[9, 13, 15]. Explaining why IE and semantic technologies can be used to bring 
together a common language or syntax upon which the LOD systems or web 
search are built specially given the ever-needed formal knowledge or tools for 
information (data) access and utilization.

Some examples of state-of-the-art tools or systems that trails to support the 
semantic-based LOD framework or search include; KIM (knowledge and infor-
mation management system) [31, 48] an extendable platform for information 
management that seemingly offers IE-based functions for metadata creation 
and search. Technically, KIM consists of a set of front-end (user-interface) for 
online information search by offering semantically-enhanced browsing features.

Another tool that tends to support the semantic-based LOD, such as the 
SBLODF framework described in this chapter, is Magpie [49]. Magpie is developed 
and implemented as an add-on to web browsers by using IE mechanisms to support 
collaborative information interpretation and modeling of the extracted knowl-
edge from the web. As illustrated in Figure 1, it annotates the different web pages 
with metadata descriptions in an automated manner by automatically populating 
ontologies from the relevant (web) sources. Thus, the application (Magpie) is 
interoperable with ontologies or semantic schema. Moreover, it is important to 
mention that one of the fundamental elements of the tool (Magpie) that is per-
tinent to this work is the fact that it makes use of ontologies to provide specific 
(tailored content) information to the users.

There are several other platforms that can be referred to also support the SBLODF 
framework. This includes the SemTag [50] which utilizes IE facilities or function to 
support large scale semantic annotations and process descriptions using TAP ontol-
ogy. As described in Figure 1, SemTag functions by performing annotation of all 
defined mentions (references) of any given process instance or entity in the ontology 
(TAP) through a lookup phase. This lookup process is then followed by the disam-
biguation phase during which it assigns the right classes (or establishes instances that 
do not correspond to a class in the TAP) using a vector-space model [50].
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4.  Implementation components of the semantic-based linked open data 
framework (SBLODF)

The work describes in this section (Figure 2) how the semantic schema is used 
to support the development of the LOD framework. Ontology-based information 
retrieval and extraction systems such as the SBLODF (Figure 1) are construed on 
the main building blocks [31]:

• Named Entity recognition (NE) which trails to find and classifies the different 
concepts that can be found within the model or knowledge-base.

• Co-reference resolution (CO) which identifies the relations or association that 
co-exist amongst the concepts or entities.

• Template Element construction (TE) that adds descriptive information (meta-
data) to the classified NE through the CO component.

• Template Relation construction (TR) that locates the links or references between 
the TE (entities), and

• Scenario Template production (ST) that matches (fits) the TE and TR compo-
nents into a specified scenario or process instance.

Figure 2. 
Implementing the semantics components in SBLODF using create-link-map-check-use (CLMCU)  
procedure [11].
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Interestingly, Dou et al. [8] note that a well-designed information retrieval or 
data/process mining system should present the outcomes or discovered informa-
tion in a formal and structured format qua being interpreted as domain knowledge, 
or yet, utilized to further augment the existing system. Besides, the work [8] states 
that ontological schema is one of the most effective ways to formally represent any 
given type of data or process models. This is due to the fact that concepts defined 
within ontologies can be expressed or represented as set(s) of annotated terms 
and/or relations that aims to support information extraction and association rule 
mining systems especially with those allied to the ontology-based information and 
extraction (OBIE) [9].

To this effect, this current study note that to implement the aforementioned func-
tionalities of the ontology-based systems in the SBLODF framework, the extracted 
information or models from the standard process mining (management) or analysis 
tools/sources needs to be represented as sets of annotated terms (that links or con-
nects the defined terms) in an ontological form using the create-link-map-check-use 
(CLMCU) incremental or semantic modeling procedure [6, 11].

As illustrated in Figure 2, the resultant class hierarchies or taxonomy (ontolo-
gies) tends to provide a way of formally representing the defined (annotated) terms 
or concepts in a structured format by ascertaining the relationships (association) 
that co-exist amongst the several entities within the process model. Henceforth, 
the process descriptions and assertions are realized by encoding the process model 
in the formal structure or taxonomy, thus far ontologies, for the information/
knowledge extraction to follow. In the end, the system is integrated or manipu-
lated with an inference engine (e.g. reasoner or classifier) that performs semantic 
reasoning by uncovering the different levels of the ontological classification and 
process elements to produce the (inferred) information (knowledge) based on the 
input queries or users search that displays to be closer to human understanding 
(machine-understandable).

5. Data analysis and implementation results

For the data analysis and implementation in this section of the chapter; the work 
uses dataset about a real-time business process provided by the IEEE CIS Task Force on 
Process Mining [51] to illustrate how the proposed method is capable of performing the 
information retrieval and extraction process by integrating the different components 
of the SBLODF framework, as described in Figure 1. Typically, this is done by enabling 
a conceptual intersection or reasoning between the different elements/components 
which are supported by the system. These functions ranges from the user input query 
or search module to the information retrieval module or input reader (machine-read-
able component), and then, the metadata descriptions/assertions, ontological model-
ing and class hierarchies (taxonomy) to the provision of formal knowledge (explicit 
and implicit information) that can be easily understood by humans in real-world 
settings. Fundamentally, the work note the key function of the SBLODF framework 
to be in its capability to utilize the semantic concepts to perform automatic (semantic) 
reasoning/inferences capable of discovering useful models and conceptual information 
from the dataset. Henceforth, the SBLODF implementation allows the meaning of the 
process elements to be enhanced through the use of property description languages 
and classification of the discoverable entities, for example, using the Web Ontology 
Language (OWL) [4], Semantic Web Rule Language (SWRL) [52], and Description 
Logic (DL) [2].

Practically, as shown earlier in Figure 2, the ontological schema or framework 
trails to connect the different sets of discoverable entities in the model with their 
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class membership, or yet with a fixed literal, and can also describe the sub assump-
tion hierarchies (taxonomies) that exists between the various classes including the 
relationships that they share within the underlying model. Moreover, the different 
class(es) are consequently instantiated with the set of individuals, I, and can also 
contain the various set of axioms, A, which states facts. For instance, the true posi-
tive elements, i.e., what is true and fitting within the model, and true negatives, i.e., 
what is true and not fitting in the model.

To illustrate this, the work analyzes the data provided in Ref. [51], by making  
use of the object properties (see: Figure 2) to describe the different classes that can 
be found within the semantic model developed with Protégé Editor for the purpose 
of this work. As shown in Figure 3, it used the “hasTraceFitness” object property 
to describe the classes or entities in the test data log that has a “TrueTrace_
Classification_(TP)” or “FalseTrace_Classification_(TN)”.

Moreover, as defined in Section 2.2 and Section 4 (Figure 2), if we Let A, be the 
set of all process executions or actions that can be performed within the semantic 
model. A process action a ∈ A is characterized by a set of input parameters Ina ∈ P 
which is required for the execution of a, and a set of output parameters Outa ⊆ P 
which is produced by a after the execution or search query. Thus, with such func-
tion, the extraction and automatic reasoning (e.g. classification) of the process 
parameters is enabled and/or supported by the model. Perhaps, the key purpose of 
implementing the framework is to match the questions one would like to answer 
about attributes/relationships the process instances share amongst themselves 
within the knowledge-base by linking to the concepts (inferred classes) described 
in the model.

As shown in Table 1, based on the features of the provided datasets [51], the 
work applies the cross-validation technique to analyze the training and test sets. 
The traces were computed and recorded according to the reasoner response, and 
the classifier (reasoner) was tested on the resulting individuals by assessing its 
performance with respect to the correctly classified traces. As an example, the fol-
lowing DL queries/syntax [2] represents as set of input parameters (search query) 
the work executed in order to output the set of traces that can be found within the 

Figure 3. 
Example of object property description and assertion for the true trace classification.
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Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10

Trace_1 TP * TN * TP * TN * TN * TN * TP * TP * TP * TP *

Trace_2 TN * TN * TP * TP * TP * TP * TP * TN * TP * TP *

Trace_3 TP * TP * TP * TN * TN * TN * TN * TP * TP * TN *

Trace_4 TP * TP * TN * TP * TN * TP * TN * TP * TP * TN *

Trace_5 TN * TN * TN * TP * TN * TP * TN * TP * TP * TN *

Trace_6 TP * TN * TN * TP * TN * TP * TP * TN * TN * TP *

Trace_7 TN * TP * TP * TN * TN * TP * TN * TP * TN * TN *

Trace_8 TN * TP * TP * TP * TN * TN * TP * TP * TP * TP *

Trace_9 TP * TN * TP * TN * TP * TN * TP * TP * TN * TP *

Trace_10 TP * TN * TP * TN * TN * TN * TP * TP * TP * TP *

Trace_11 TN * TP * TP * TP * TP * TN * TN * TN * TN * TP *

Trace_12 TP * TN * TN * TP * TP * TP * TP * TN * TP * TN *

Trace_13 TP * TP * TN * TN * TP * TN * TN * TN * TN * TP *

Trace_14 TN * TP * TN * TN * TN * TN * TN * TP * TN * TP *

Trace_15 TP * TN * TN * TN * TP * TP * TN * TN * TN * TN *

Trace_16 TN * TN * TN * TP * TP * TN * TN * TN * TP * TN *

Trace_17 TP * TP * TP * TP * TP * TP * TP * TN * TN * TP *

Trace_18 TN * TP * TN * TN * TP * TP * TP * TN * TN * TN *

Trace_19 TN * TP * TP * TP * TN * TP * TP * TP * TN * TN *

Trace_20 TN * TN * TN * TN * TP * TN * TN * TN * TP * TN *

True positives (TP): 10 10 10 10 10 10 10 10 10 10

False positives (FP): 0 0 0 0 0 0 0 0 0 0
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Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10

True negatives (TN): 10 10 10 10 10 10 10 10 10 10

False negatives (FN) 0 0 0 0 0 0 0 0 0 0

No. of traces correctly classified 20 20 20 20 20 20 20 20 20 20

Note: cells with gold sign (*) indicates traces that were correctly classified by the reasoner which equals to 200 traces out of 200.

Table 1. 
Classification results and performance of the discovered models.
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defined model that has “TrueTrace_Fitness_(TP)” and “FalseTrace_Fitness_(TN)” 
respectively.

 ( )
( )

“TestLog_ forSpecifiedClass  and hasTraceFitness some

 'TrueTrace_Fitness_ TP ”.
 

 
( )

( )
“TestLog_ forSpecifiedClass  and hasTraceFitness some 

'FalseTrace_Fitness_ TN ”.  

Thus, as reported in Table 1, each results of the classification process for the dis-
covered models, i.e., the true positives and true negatives traces, were determined.

From the results of the classification method (Table 1), we note for each run 
set of parameters retrieved from the model that the commission error, otherwise 
referred to as error-rate (false positives (FP) and false negatives (FN)) was null, 
thus, equal to 0. This means that the reasoner (classifier) did not make critical 
mistakes. For instance, a case whereby a trace could be considered to be an instance 
of a class while it is categorically an instance of another class. In the same vein, the 
work notes that the accuracy rate (i.e., true positives (TP) and true negatives (TN)) 
when determining the different traces and classifications was very high, thus, cor-
rect, and were consistently observed for all the test sets.

6. Discussion and conclusion

LOD systems or frameworks and algorithms are fundamentally aimed to provide 
a standard platform for integrating/analyzing different datasets or models to extract 
snippets of information that are relevant to the users, independent of the various 
formats or syntax. In other words, LOD stands as the bridge between the differ-
ent data formats/sources and knowledge acquisition or information retrieval. For 
example, Cunningham [31] notes that the process of extracting information from 
the several sources may simply imply taking text documents, speech, graphics, etc., 
as input and produces fixed-format unambiguous data (or information) as output. 
In turn, the discovered information or data may be directly displayed to the users, 
stored in a database or spreadsheet for later analysis, or may be used for indexing 
purposes in IR-supported applications such as the web search technologies, inter-
net, or search engines like Google, Bing, etc.

Studies have shown that IE technologies may be distinctive from the IR systems 
or functions. Whereas, Cunningham [31] notes that the IR systems aims to find 
relevant information (e.g. texts) and presents them to the users, an IE application 
analyses the texts and presents only the specific information from the text that the 
user is interested in. Apparently, this kind of tailored information analysis is where 
ontology-based information extraction systems such as the SBLODF framework 
described in this chapter construes its incentives.

For example, a user of an IR-supported system wanting information on higher 
educational institutions that offers a particular course would enter a list of relevant 
words or keywords in the search module and receive in return a set of documents 
(e.g. various university prospectus, course guidelines, etc.) that contain likely 
matches based on the keywords. In turn, the user would read through the matches 
or documents and extract the requisite information they need themselves, or yet 
store them on their computer storage for future reference. Nonetheless, unlike IR, 
an IE system would automatically populate a list of tables or spreadsheets directly 
with the names of relevant universities and their course offerings making it easier 
for the users to extract or learn the specific information they need or seek to 
acquire.
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However, there may also exist some limitations with IE supported LOD frame-
works or systems when compared to IR only. One of the limitations is that IE sys-
tems are more difficult and knowledge-intensive to build and are to a certain extent 
tied to particular domains or case scenarios. Also, IEs are more computationally 
intensive than IRs. Although, on the other hand, when compared to applications 
where there are large text or document volumes, IEs are potentially much more 
efficient than IRs due to the capacity of dramatically reducing the amount of time 
people may spend reading through text documents to find the relevant information. 
Perhaps, the aforementioned benefit of the IEs is only possible as a result of apply-
ing the ontological (semantics) schema to represent and manipulate the underlying 
information as described in Section 3 of this chapter.

Moreover, in settings where the results need to be presented, for example, 
in several languages; the fixed-format and unambiguous nature of IEs outputs 
make the information retrieval process relatively direct when compared to the full 
translation facilities that are consequently needed for interpretation of the mul-
tilingual texts found by IRs. Indeed, this means that IEs only present the specific 
information in a form that the user is interested in, and this feature is where the 
ontology-based IE systems are more powerful given that ontology is one of such 
tools that have the capability of providing information in a structured format. For 
instance, the automatic population of the different class hierarchies in ontologies 
within OBIE [9] applications is capable of formally identifying process instances 
or element within a text file that belongs to or references certain concepts in the 
pre-defined ontologies, and then trails to add those instances to the model in the 
right locations.

Having said that, we note that OBIE systems such as the SBLODF attempts to 
classify the several entities in a more scalar way; as there may be different categories 
to which an entity can belong to and cataloging the discrepancies between those 
classifications is more or less straightforward when using the OBIE framework [17].

Furthermore, to explain the application of the OBIE concept in the context of 
information retrieval and extraction or semantic-based knowledge representa-
tion, Yankova [20] refers to an identity resolution method of deciding whether an 
instance extracted from a text by an IE application refers to a known entity within 
a target domain ontology. Technically, the authors [20] developed a customizable 
rule-based framework for identity resolution and merging that uses ontologies 
for knowledge representation by using customizable identity criteria put in place 
to decide on the similarity between two process instances or entities. The criteria 
utilizes ontological operations and similarity computation between extracted and 
stored values that are weighted. Besides, the weighting criteria are routinely speci-
fied according to the type of entities and the application domain.

Accordingly, studies have also shown that aggregation of the extracted informa-
tion from the different data sources has greater advantages (e.g. complementing 
partial information from one source to another, increasing the confidence of the 
extracted information, and storage of updated information within the knowledge 
bases) [11, 14, 15, 17, 20, 23, 53]. Truly, the resultant methods prove to provide 
standard structures for resolving the identities or properties description of the 
different class(es) of entities (process instances) by using ontologies as the core 
(fundamental) knowledge representation tools that help to provide the formal 
descriptions that are complemented with semantics.

Interestingly, Yankova [20] reveals that one fundamental problem to be 
addressed when providing a structure for distribution of the conceptual knowl-
edge such as with OBIE systems; is that of identifying and merging the instances 
extracted from the multiple sources. Basically, the process should aim at identi-
fying newly extracted facts, e.g. from the derived models, and linking them to 
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their previous references or mentions. To this effect, we note that ontology-based 
systems, in general, poses two main challenges that are directed towards [31]:

• identification of the concepts (e.g., process instances or entities) within the 
ontologies, and

• automatic population of the ontologies with newly (inferred or classified) 
instances.

Perhaps, it is also important to mention that when the ontologies are populated 
with the process instances or concepts assertions; the ultimate function of the 
resultant (OBIE) systems would simply be to manipulate the process elements, for 
example, by uncovering the relationships that exist amongst the process instances 
and revealing those to the users or search initiators based on the query modules 
[6, 9, 16, 31, 44, 54]. Moreover, for rule-based systems like OBIE, such procedures 
are relatively unswerving. But for learning-based IE systems, it appears to be more 
problematic due to the fact that training data are most often required to train the 
models, and collecting the necessary training data is, on the other hand, likely to be 
cumbersome/bottleneck [31]. Although to resolve such issues, new training datasets 
may need to be created either manually or semi-automatically; which are a lot of the 
time is time-consuming and/or burdensome task.

However, new and emerging systems/methods are being developed with the 
aim to help address such metadata creation problems for knowledge management or 
data analysis to support the IE and LOD at large [1, 11–15, 23, 33, 55, 56]. Moreover, 
unlike the traditional IE systems where the extracted facts (or information) are 
only classified as belonging to pre-defined types, an ontology-based (semantic) IE 
system (such as the SBLODF) seeks to identify, analyze and represent information 
at the conceptual (abstraction) levels by establishing a link (references) between 
the entities residing in the underlying systems’ knowledge-bases and their mentions 
within the contextual domain. Henceforth, semantically-based LOD systems should 
not only support the formal representation of the different domains. But should 
also, on the other hand, provide information about the several known entities 
and their properties descriptions. Thus, ontology-based LOD systems such as the 
SBLODF introduced in this chapter must integrate well-defined entities with their 
semantic descriptions for an efficient explicit and implicit information extraction 
and/or analysis, i.e., machine-readable and machine-understandable system.
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