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Abstract

Topical photodynamic therapy (PDT) has been applied to treat premalignant 
and malignant lesions such as actinic keratosis and non-melanoma skin cancer. A 
limiting factor of the technique is cream permeation and studies using chemical 
and physical approaches to overcome it have increased over the years. This chapter 
is going to explore the main techniques described in the literature used to improve 
the cream permeation or the photosensitizer (PS) distribution concerning homo-
geneity. Outcomes-based on animal studies and clinical trials comparing different 
delivery techniques are going to be presented, highlighting the aspects of invasive-
ness, costs, harmfulness, and effectiveness of those methods.

Keywords: topical photodynamic therapy, drug delivery, skin cancer,  
protoporphyrin IX, precursors

1. Introduction

Yet topical photodynamic therapy (PDT) principle is simple and the technique 
is full of potential to provide an effective treatment for very common malignant 
and pre-malignant diseases, achieving satisfactory outcomes for a varied number of 
lesion types with a single approach is not feasible.

Light delivery is successful depending essentially on the ability to provide the 
best combination of the most suitable wavelength for the drug of choice and the 
optical properties of the tissue, which determine if light reaches the extension of 
tissue necessary and if undesired side effects will show up.

Conversely, characteristics on the photosensitizer (PS) accumulation in target 
tissues are less dependent on direct control of the therapist than light delivery. 
Further, PS accumulation also defines the light dose (fluency). Therefore, PS 
accumulation must be properly dealt with in order to provide enhancement of the 
efficacy of PDT, and presenting the most relevant aspects reported in the literature 
concerning the strategies to do so is the scope of this chapter.

Topical PDT has been widely applied as a treatment option for pre-malignant 
lesions such as actinic keratosis (AK) and also for non-melanoma skin cancer 
(NMSC) lesions [1] such as basal cell carcinoma (BCC) and Bowen disease (BD). The 
treatment involves the topical application of a PS precursor, followed by the waiting 
for the drug light interval (DLI) to promote the PS accumulation into the lesion, 
after which the localized irradiation takes place. Depending on the protocol, this 
sequence can be repeated with intervals of one week [2–5] or on the same day [6].
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The molecules more commonly used worldwide are the aminolevulinic acid 
(ALA) and its derivative, methyl aminolevulinate (MAL). Both of them can 
promote protoporphyrin IX (PpIX) endogenous accumulation in cells. The DLI for 
these drugs can vary from 1 to 4 hours [7], depending on the protocol treatment 
chosen for the lesion type.

Being clinical PDT still a very empirical field, and since the protocols choices are 
decisive in determining the therapy outcome, several strategies, both physical and 
chemical, have been developed aiming to increase the availability of PS in loco to 
increase topical PDT outcome.

2. Drug delivery strategies

Considering the light attenuation by tissue due to the presence of chromophores 
and to scattering, the wavelength range preferable for PDT is about 650–850 nm, 
which is known as the ‘optical window’ for PDT [8]. Once the light penetration can 
be handled to reach the whole lesion, the remaining concern is to optimize the drug 
permeation to improve treatment rate success, especially obtaining the improve-
ment of the response of thicker lesions, which shall increase the possibility to make 
PDT the treatment of choice for those lesions.

Human skin is a complex organ structured to protect the body. The skin layers 
organization and constitution, as represented in Figure 1 (stratum corneum (SC), 
epidermis, dermis, and hypodermis) confer its properties of tensile strength and 
mechanical resistance [9]. For this reason, skin becomes a barrier for the perme-
ation of precursors, which implies an important limitation of topical PDT, with a 
direct influence on the incubation time and treatment success. The SC is the skin’s 
outermost layer, and it is considered the main barrier to percutaneous absorption.

Although PpIX precursors have a low molecular weight, the PpIX accumulation 
after as much as three hours of incubation using exclusively topical application of 
the cream achieves depths up to 1–2 mm. However, the tissue heterogeneities imply 
in a non-uniform distribution of the produced PpIX, and portions of the lesion do 
not produce sufficient PS, impairing the treatment effectiveness [10, 11].

Figure 1. 
Representation of human skin layers. Both physical and chemical methods can be explored to overcome the skin 
barriers and improve topical drug delivery.
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Several techniques have been developed to overcome skin barriers and provide 
penetration enhancement. There are physical and chemical pretreatment strate-
gies to improve drug delivery that can facilitate precursor permeation through skin 
and into the lesions, allowing PpIX to be produced in deeper layers and also to be 
distributed more homogeneously.

3. Physical methods

This section presents physical methods based either on creating holes into the 
skin or on removing the SC to improve drug delivery in topical PDT.

3.1 Tape stripping

This technique consists in applying a tape onto the skin lesions and then to pull it 
off. By repeating this procedure a number times, which can be repeated using the same 
piece of tape, part of the SC is removed, reducing it uniformly by about 30%. This pro-
cedure is safe, since it is minimally invasive, and involves a low cost to be implemented; 
as a further advantage, it does not interfere with the intercellular lipids [12–14].

Tape stripping is one of the methods indicated to be applied before PDT; it can 
be used on patient’s lips and also for the preparation of large areas. The recommen-
dation is to choose tapes with strong adhesive properties. According to Christensen 
et al., each area can be stripped 2–4 times [15]. Some studies reported that remov-
ing SC by tape stripping significantly increases the PpIX fluorescence in the tissue 
but does not change the incubation time required for an effective photosensitizer 
production [16–18].

3.2 Curettage

The curettage can be performed using a sharp ring curette or a scalpel blade. 
The purpose is to remove keratotic tissue by surface scraping the lesion. The scrape 
might be performed in a checkered pattern, performing parallel horizontal followed 
by perpendicular movements. Due to the possibility of subclinical lesion extensions, 
it is recommended that the curettage is performed using at least 5-mm margins 
surrounding the lesion to minimize the possibility of the recurrence. The curettage 
is also indicated to be applied before PDT [13, 15].

This technique is effective, quite inexpensive, and although it can offer light 
discomfort during the procedure, it is commonly acceptable both by health profes-
sionals and patients [19]. However, it is important to mention that there is a risk 
of bleeding, and when bleeding takes place, it may displace the cream and lead to 
a decreased PpIX formation, and thus lower treatment efficacy [20]. Despite this, 
studies reported that curettage associated with PDT increases the cure rate of treat-
ment compared with no-curettage topical PDT. The combination may be repeated 
successfully for non-cure or recurrence cases without compromising the cosmetic 
effect or deteriorating skin structures. The treatment has shown a clearance rate 
of 91% for superficial BCC (131 lesions treated), 93% for thin nodular BCC (82 
lesions), and 86% for thick nodular BCC (86 lesions) [21, 22].

3.3 Debulking

Debulking (or deep curettage) is considered a surgical procedure and it is often 
used in thicker lesions, reducing as much as possible the total volume. This proce-
dure is usually performed either immediately or a few weeks before PDT [15, 23]. 
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Even though it is considered a more invasive procedure compared with the simple 
curettage, it can be applied without anesthesia. The cosmetic outcome is considered 
favorable [23] and allows a significant reduction of the BCC thickness, which makes 
nodular lesions more responsive to the treatment [24, 25].

Whereas the topical PDT efficiency is about 72% when a previous debulking 
lesion is not applied, for debulked lesions this efficiency can increase up to 92% [23, 
26]. Therefore, the debulking associated with PDT is a relevant option for multiple, 
pigmented, and nodular lesions, improving clinical response [27].

3.4 Ablative fractional laser

This technique consists of using a laser source to create ablated channels on 
the lesion surface, vaporizing a small portion of the tissue [28]. Usually, lasers 
with excitation wavelengths in far-infrared spectrum are used, due to the high 
absorption by the water in the tissue [29, 30]. The main types used are CO2-laser 
(10,600 nm), Er:YAG-laser (Erbium yttrium aluminum garnet, 2940 nm), and 
Er:YSSG-laser (Yttrium scandium gallium garnet, 2790 nm) [13].

The depth of the microchannels created varies according to the laser energy. The 
energies between 32 mJ and 380 mJ generate microchannels with a depth between 
300 μm and 2100 μm [31]. Due to the increased skin penetration, this procedure 
makes PpIX fluorescence both more intense and homogeneous in deeper skin regions, 
and this can be controlled by adequately adjusting laser energy density [32, 33].

Studies using CO2 laser associated with PDT for lesions treatments showed an 
increase of about 20% in the clearance of different protocols comparing the treat-
ment without and with the use of laser, respectively [34–36]. Although it is a reli-
able and effective method, it is also a more invasive procedure with a high potential 
for skin damage with scarring, discoloration, and even infection. Besides that, 
the costs of the devices are considered high compared with the abovementioned 
techniques [37].

3.5 Microneedles

Needles and especially microneedles (MNs) have been used as a method to 
enhance drug permeation through SC [38]. MNs have the advantages of being 
minimally invasive, its application is simple, well accepted by the patients, and it is 
cost-effective [39]. MNs have been developed with lengths up to 900 μm to avoid 
penetrating in vascular and nervous regions. Therefore, MNs can penetrate the SC 
without stimulating pain receptors, which is another advantage [40].

The MNs size cannot be seen by patients, thus reducing possible needle phobia. 
MNs have strong mechanical properties to enable disruption and penetration 
through the SC, reaching successfully the deeper skin layers without causing any 
bleeding due to the small length of needles [13].

There are MNs with different shapes (tetrahedron, pyramidal, conical, beveled 
tip, or tapered cone) that promote different insertion pathways and permeation 
into the skin. They also can be divided according to the material, such as solid 
(metallic) or polymeric (hydrogel or dissolving) types, and can be assembled 
either as a roller or as low-cost patches. The MNs can also be produced with a drug 
coating on their surface, to facilitate delivery, or hollow, to promote the delivery 
through channels [13]. The use of MNs rollers for enhancing penetration of topical 
cosmeceuticals has been well described and transdermal patches can be used easily 
by anyone [13, 39].

Some studies described a higher formation of PpIX in deeper skin regions when 
MNs are used and compared with topical application in animal models [41, 42]. A 
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recent paper by Requena et al. explored dissolving MNs containing ALA. The PpIX 
fluorescence intensity showed to be 5-times higher at 0.5 mm on average compared 
with cream in in vivo tumor mice model [43].

Solid MNs have been commonly used for skin pretreatment before conventional 
PDT, promoting a good PDT response for actinic keratosis [39]. However, their use 
for the treatment of BCC or squamous cell carcinoma SCC has not been investigated 
yet [13].

3.6 Dermograph

The use of dermographs has also been investigated to improve drug delivery. 
A dermograph is a device currently used in esthetic procedures, which works 
similarly to a tattoo machine, with simpler handling [44]. The device is composed 
of a handpiece that couples to different types of needles which oscillate vertically. 
Usually, both frequency and depth can be adjusted in those devices, according to the 
application. The holes performed into the skin allow for greater skin penetration of 
liquids by capillarity [45, 46].

A more homogeneous PpIX distribution and a greater penetration in the tissue 
were observed for animal model using dermographs compared to the topical appli-
cation of the cream only [46]. A pilot clinical trial was also performed in nodular 
BCC lesions using a dermograph for intradermal delivery in PDT, and no recurrence 
was observed after 28 months of follow-up [46].

3.7 Temperature

Temperature is a parameter with a strong influence on PpIX formation. The 
increase of the skin temperature (especially in areas that naturally present lower 
temperatures such as the extremities of the body) during the DLI can improve PDT 
effectiveness. There are four hypotheses regarding the PpIX formation with the 
increase of local temperature: increase of ALA penetration in the skin; increase 
of the conversion rate of ALA to PpIX; increased ALA uptake in the cells due to 
disruption of the cell membrane, and increase of the amount of skin oxygen due to 
vasodilation [13, 47].

However, the temperature must be well controlled in order to obtain the 
desired effect and prevent damage to surrounding tissues [48]. Stringasci et al. 
demonstrated that the most efficient way to increase the production of PpIX and 
its penetration in the tissue by temperature is to increase the local temperature 
before applying the cream. This same study reported that the prolonged increase 
of temperature (during 3 hours) promoted a smaller amount of PpIX accumulation 
in the skin, unlike other abovementioned hypotheses. That happens because, after 
increasing the temperature for longer times, cellular metabolism is accelerated 
which promotes faster elimination of PpIX within the cells [47]. In a clinical study, 
Willey et al. reported the results after PDT treatment of AK on the extremities 
(head, fingers, and toes) in 18 patients. Skin warming was performed during DLI 
and was well tolerated, did not promote side effects, and improved PDT efficacy 
with a clearance rate of 90% after a 1-year follow-up [49].

3.8 Iontophoresis

Iontophoresis is a method based on the use of a voltage gradient applied to an 
electrolytic formulation, using both a positive (anode) and negative (cathode) 
electrodes on skin to improve transdermal drug delivery [50]. The advantages of 
iontophoresis are that it is a non-invasive technique that preserves the skin intact, 
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providing controlled and targeted delivery of the drug. However, regarding PDT, 
special attention should be taken to ensure that the photosensitizing drug does not 
enter the systemic circulation, which can cause unexpected side effects [51].

This technique has a potential to decrease the DLI since ex vivo experiments 
demonstrated PpIX accumulation in human SC were achieved faster compared with 
topical application only [51]. In addition, studies with patients proved that the use 
of iontophoresis in clinical protocols is an effective method and reduces the incuba-
tion time by 1 h [52].

4. Chemical methods

Currently, only three commercial pro-drugs are licensed for topical PDT 
use: 5-aminolevulinic acid (ALA, Levulan®), methyl aminolevulinate (MAL, 
Metvix®), and the nanoemulsion containing ALA (nc-ALA, Ameluz®) [53]. 
Besides the physical methods to improve the delivery of these drugs, there are 
chemical approaches that have been explored for drug formulation modifications, 
and the use of agents that modify the heme cycle or enhance PpIX formation. Thus, 
the chemical methods to improve PpIX availability mostly treat on the effects over 
these substances.

4.1 Prodrugs

To enhance ALA penetration through the SC, other prodrugs with longer, more 
lipophilic carbon chains have been explored [54]. In this context, MAL – which has 
a methyl group associated with the ALA molecule – already presented more lipophi-
licity properties and increased selectivity.

The use of even more carbon chains has been tested, such as ethyl-ALA, propyl-
ALA, butyl-ALA. The main concern about their use is related to the numerous 
chemical steps necessary to perform the esterification processes for those molecules 
[55]. The pro-drug hexyl-ALA has been tested in pre-clinical studies [18, 56]. A 
pilot clinical trial reported that these molecules presented a greater penetration 
with lower concentrations compared with ALA or MAL which could reduce adverse 
reactions and decreases the PDT costs [57]. Despite that, ALA and its ester MAL 
are still the most commonly chosen and investigated molecules to be used as PpIX 
pro-drugs for PDT.

One aspect explored in literature for the enhancement of the PpIX prodrugs in 
cells is the addition of iron chelators. Iron has a crucial role in cells within the heme 
synthetic route, bound to PpIX molecules to form hemoglobin, thus hindering this 
process preserves the number of available PpIX molecules within cells. Different 
chelators have been investigated so far as and, such as desferrioxamine, thiosemicar-
bazones, pyridoxalisonicotinoyl hydrazone, and di-2-pyridyl-derived iron chelators, 
among others [58–60]. However, yet thiosemicarbazones have been approved for 
phase II tests [61], the use of these chelators is still under discussion, due to toxicity 
versus efficacy issues.

4.2 Differentiation-promoting agents

In addition to the drug choice, different vehicles such as creams, gels, patch 
systems, lotions, liposomes, nanoparticles, powders, and microemulsions have been 
developed to overcome the penetration issue [13].

The commercial creams Levulan® and Metvix® are prepared with 20% w/w 
and 16% w/w concentration of prodrug, respectively. Both of them have been 
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widely used with acceptable clearance rates and cosmetic outcomes. Aiming to 
increase the stability of the cream, the molecule of ALA at 7.8% concentration in 
a nanoemulsion-based gel has been used to produce the Ameluz® formulation. A 
multicentric study compared this gel formulation with the Metvix® cream in the 
treatment of AK, demonstrating similar response and tolerance [62].

A patch is an adhesive system used for topical or systemic drug delivery. For 
PDT, there is a commercial patch (Alacare®) containing 2 mg of ALA per cm2. A 
clinical trial using Alacare® for the PDT treatment of actinic cheilitis (AC) dem-
onstrated high clinical efficacy, good tolerability, and favorable cosmetic effects 
[63]. However, in the case of thick skin lesions without physical pretreatment, this 
protocol might be less efficient.

4.3 Nanoformulations

Nanotechnology has an important role in the pharmaceutical industry for the 
development of new formulations. Studies are concentrated on obtaining drugs 
with more solubility, biodistribution, bioavailability, uptake, and excretion, 
decreasing drugs’ toxicity, [64] and there are different vehicles to promote drug 
delivery by nanostructures.

Nanoparticles (NP) used to be defined as a particle with a size up to 100 nm in any 
direction [65]. Lucky et al. described the nanoparticles used in PDT based on their 
performed functions or tasks as PSs, PS carriers, and PS energy transducers [66].

Among the several NP possibilities, liposomes are one of the most used for topi-
cal PDT applications. Liposomes are vesicles made up of one or more phospholipid 
bilayers oriented concentrically around an aqueous compartment to act as drug 
carriers. This nanostructure has been explored for topical PDT to enhance the PS 
penetration into the skin while decreasing its absorption into systemic circulation. 
Examples of PSs currently encapsulated in liposomes for topical PDT are ALA, 
temoporfin (mTHPC, commercially available as Foscan®), and methylene blue. In 
most studies, liposomal ALA induced a higher PpIX synthesis than free ALA non-
encapsulated delivery [67].

Other structures are more commonly used for systemic applications of PDT, 
such as nanofibers and nanomicelles [68, 69] but they are off the scope of this 
chapter, yet their results are also promising for PDT application.

4.4 Thermogenic and vasodilating substances

Thermogenic and vasodilating substances have been reported as promising 
to favor the permeation of drugs on the skin [70, 71]. In PDT, vasodilation also 
increases the oxygen supply in the tissue, which can further optimize the effective-
ness of the treatment.

A study was carried out investigating the association of the substances: menthol, 
methyl nicotinate, and ginger associated with ALA and MAL. The association of 
methyl nicotinate with MAL demonstrated 50% higher PpIX production after 
three hours of incubation compared with the cream containing only MAL. These 
preclinical results are promising as a possible strategy for decreasing the DLI and 
increase the PpIX production in skin lesions [72].

5. Conclusion

This chapter presented several approaches reported in the literature for the 
improvement of topical PDT outcome. Some of the techniques here presented to 
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address the task of increasing the availability of PS are increasingly being incor-
porated to PDT protocols, whereas others are very incipient. Yet, the challenge of 
making PS available is still an open field, plenty of room for further investigation.
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