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Chapter

Evaluation of
Liquetaction-Induced Settlement
Using Random Forest and REP
Tree Models: Taking Pohang
Earthquake as a Case of
[llustration

Mahmood Ahmad, Xiaowei Tang and Feezan Ahmad

Abstract

A liquefaction-induced settlement assessment is considered one of the major
challenges in geotechnical earthquake engineering. This paper presents random
forest (RF) and reduced error pruning tree (REP Tree) models for predicting
settlement caused by liquefaction. Standard penetration test (SPT) data were
obtained for five separate borehole sites near the Pohang Earthquake epicenter.
The data used in this study comprise of four features, namely depth, unit weight,
corrected SPT blow count and cyclic stress ratio. The available data is divided into
two parts: training set (80%) and test set (20%). The output of the RF and REP Tree
models is evaluated using statistical parameters including coefficient of correlation
(r), mean absolute error (MAE), and root mean squared error (RMSE). The appli-
cations for the aforementioned approach for predicting the liquefaction-induced
settlement are compared and discussed. The analysis of statistical metrics for the
evaluating liquefaction-induced settlement dataset demonstrates that the RF
achieved comparatively better and reliable results.

Keywords: liquefaction, random forest, REP tree, settlement

1. Introduction

The evaluation of liquefaction-induced settlements has become an extremely
significant issue about the foundations of different buildings, nuclear power plants,
and earth dams on sandy soil deposits. Saturated sand deposits when are endured
during an earthquake, pore water pressures are known to develop contributing to
liquefaction or loss of shear strength. The pore water pressure then begin to dissi-
pate primarily towards the ground surface, followed by a change in the volume of
soil deposits which is manifested on the ground surface as settlements. Settlements
caused by liquefaction are conventionally predicted using analytical or numerical
methods.
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Tokimatsu and Seed [1] developed a technique for predicting ground post lig-
uefaction settlements based on volumetric strain, SPT N-value and cyclic stress
ratio (CSR) relationships in the case of completely liquefied saturated sands
transformed from an experimental relationship between relative sand density, vol-
umetric strain, and maximum shear strain. Ishihara and Yoshimine [2] used an
alternative approach to estimate ground settlements based on the safety factor, by
means of the maximum shear strain which is an essential factor affecting the post-
liquefaction volumetric strain. The liquefaction-induced settlement during the
earthquake can be identified if the safety factor and relative density are established.
Furthermore, the simplified method was constructed only by a relation between
relative density, the factor of safety against liquefaction (FS) and volumetric strain
(&,) to quantify the settlement of a site where the safety factor of safety against
liquefaction was obtained By combining earthquake intensity and SPT N-value with
empirical equations to cause measurement error and lead to significant prediction
error [3].

Analytical method used to assess liquefaction-induced settlements is based on
the effective stress analysis of dynamic response which accounts for the generation
and dissipation of excess pore water pressures. When used to evaluate post-
liquidation settlements in saturated sand deposits, the volume compressibility coef-
ficient of the sand is required which is very difficult to determine for the liquefied
sand layer [4]. Shamoto et al., [4] suggested a simplified approach for estimating
liquefaction-induced settlements of saturated sand deposits, based on the experi-
mental evidence that there is an almost linear relationship between the function of
the void ratio and the logarithm of the maximum shear strain induced during cyclic
loading.

In numerical analysis, earthquake-induced liquefaction in the free-field may be
interpreted as a 1D phenomenon occurring along a vertical soil column in which
seismic-induced cyclic shear and compressive forces increase the pore pressure and
hence cause a reduction in the transient soil strength and stiffness. Reconsolidation
arises in the soil after liquefaction due to the dissipation of the excess pore pressure
(Au) by means of water flow, resulting in the vertical settlement of the ground
surface [5].

Park et al. [6] established a simple and sustainable method for predicting
liquefaction-induced settlement using ANN. Tang et al. [3] found that the ANN and
Bayesian Belief Networks (BBN) predictive outcomes are better than the Ishihara
and Yoshimine simplified approach.

Pohang earthquake (M,, = 5.4) that hit the Heunghae Basin around Pohang city
had a liquefaction-induced damages—settlement and lateral displacement. In this
study liquefaction-induced settlement is considered as a case of illustration. Several
efforts have been made since the event to evaluate the post-earthquake damages
[7-11]. Nevertheless, the liquefaction-induced settlement has received little atten-
tion. Settlement caused by liquefaction is commonly calculated by taking into
account various factors and following several sophisticated analytical and numerical
procedures. Nevertheless, in most cases it may not be possible to acquire such
parameters in the field, as some of the required data may not be obtainable. The
main purpose of this study is to evaluate liquefaction-induced settlement based on
the database of field observations. To achieve this purpose, the random forest and
REP tree techniques are used to develop two new models for evaluation of
liquefaction-induced settlement. Although these techniques have been successfully
applied in many domains, the application in geotechnical earthquake engineering is
limited based on the literature surveys.

The remainder of this chapter is organized as follows: Section 2 briefly provides
the description of data acquisition for liquefaction-induced settlement calculation.
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Section 3 presents the methodology used to evaluate settlement caused due to
earthquakes; an overview of the random forest and Rep tree techniques. Section 4
presents the development of the liquefaction-induced settlement models. Detailed
results of the proposed models are discussed by performance evaluation measures
are presented in Section 5, followed by conclusions in Section 6.

2. Data acquisition

In this study, Park et al. [6] collected database from the Integrated DB Centre of
National Geotechnical Information, Korea [12] and the UBCSAND constitutive
effective stress model [13] was used to develop predictive models. SPT data were
obtained for five different borehole sites near the epicenter of the earthquake at
Pohang. The input parameters for the RF and REP Tree models are depth (m), unit
weight (kN/m?), corrected SPT blow count (N1(60y) and cyclic stress ratio (CSR)
and the output is the observed settlement (mm). For details about the database,
readers can refer to Park et al. [6]. The summary of the data base comprised 100
data points (20 data for each borehole) along with the corresponding settlement
values is shown in Table 1.

Borehole Depth (m) Unit Weight (kN/m?3) Nis0) CSR Settlement (mm)

BH-A-1 1 20 11 0.33 0.5
2 20 11 0.31 0.5
3 20 14 0.29 0.8
4 20 16 0.28 1.4
5 20 5 0.27 3.3
6 20 10 0.26 3.4
7 20 5 0.27 3.4
8 20 6 0.29 2.5
9 20 9 0.3 1.6
10 20 9 0.31 1
11 18 25 0.31 0.4
12 18 25 0.31 0.3
13 18 25 0.32 0.2
14 18 25 0.32 0.3
15 18 25 0.32 0.3
16 18 25 0.32 0.3
17 18 25 0.32 0.3
18 18 25 0.32 0.2
19 18 25 0.31 0.3
20 18 25 0.31 0.3

BH-A-2 1 20 15 0.35 0.4
2 20 17 0.32 0.8
3 20 17 0.3 1.6
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Borehole Depth (m) Unit Weight (kN/m?) Ni60) CSR Settlement (mm)
4 20 7 0.29 31
5 20 6 0.27 2.8
6 21 13 0.31 1.4
7 21 18 0.34 0.8
8 21 13 0.36 0.9
9 21 11 0.37 1.1
10 21 13 0.36 0.8
11 16 2 0.36 0
12 16 1 0.37 0
13 16 1 0.38 0
14 16 1 0.39 0
15 16 1 0.39 0
16 16 1 0.39 0
17 16 1 0.39 0
18 16 1 0.39 0
19 16 1 0.38 0

20 16 1 0.37 0

BH-A-3 1 18 6 0.24 0.6
2 18 8 0.28 1.4
3 18 10 0.3 2
4 18 10 0.29 2.3
5 18 11 0.28 2
6 18 10 0.3 1.8
7 18 11 0.32 1.4
8 18 11 0.33 13
9 18 12 0.34 1.2
10 18 13 0.34 1
11 21 25 0.34 0.7
12 21 25 0.33 0.6
13 21 25 0.33 0.6
14 21 25 0.33 0.5
15 21 25 0.32 0.5
16 21 25 0.32 0.4
17 21 25 0.31 0.5
18 21 25 0.31 0.4
19 21 25 0.3 0.4
20 21 25 0.3 0.5

BH-A-4 1 20 5 0.23 1.1
2 20 7 0.27 1.9
3 20 18 0.27 1.6
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Borehole Depth (m) Unit Weight (kN/m?) Ni60) CSR Settlement (mm)
4 20 9 0.27 2.8
5 20 6 0.26 2.8
6 20 11 0.31 1.6
7 20 9 0.34 1.4
8 21 25 0.36 0.6
9 21 25 0.38 0.6
10 21 25 0.38 0.6
11 21 25 0.38 0.6
12 21 25 0.37 0.5
13 16 7 0.22 0
14 16 1 0.21 0
15 16 0 0.21 0
16 16 2 0.22 0
17 16 3 0.22 0
18 16 3 0.22 0
19 16 3 0.22 0

20 16 3 0.22 0

BH-A-5 1 20 11 0.32 0.5
2 20 10 0.31 1.6
3 20 9 0.29 2.6
4 20 11 0.3 1.9
5 20 11 0.32 1.5
6 20 10 0.33 1.4
7 20 15 0.34 0.9
8 20 15 0.35 0.8
9 21 25 0.34 0.6
10 21 25 0.34 0.6
11 21 25 0.34 0.6
12 21 25 0.33 0.6
13 21 25 0.33 0.7
14 21 25 0.33 0.7
15 18 15 0.33 1.1
16 18 11 0.33 1.4
17 18 12 0.32 1
18 16 14 0.32 0.1
19 16 10 0.32 0

20 16 7 0.32 0

Note: Borehole (BH-A-5) data comprised of 20 data points is used as testing dataset in this study.

Table 1.

Summary of liquefaction-induced settlement database.
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3. Methodology
3.1 Random forest

Random Forest (RF) is an ensemble machine learning technique driven by the
development of a large number of decision trees that is produced by Leo Breiman
[14]. Unlike DT, which uses all the features to construct a tree-like classification
graph, RF uses an “efficient bagging” learning algorithm which integrates random
selection of features with bagging. If one or a few features are very good predictors
for target performance, it will pick this subset of features to construct a tree-like
graph. This type of sample is known as the Bootstrap Sample. Using bagging
techniques, these models are fitted with the above bootstrap samples, and then
combined by voting. RF improves reliability and precision, reduces uncertainty and
helps avoid overfitting.

Bootstrap aggregation or bagging is used to determine an appropriate number of
trees with the size and nature of the training set. The RF prediction can be
expressed as: by averaging the predictions from the individual regression trees;

An optimal number of trees are calculated by bootstrap aggregation or bagging
with the size and nature of the training set. By averaging the predictions from the
individual regression trees; The RF prediction can be expressed as:

£ = 15>, ®

where g(x)represents the RF prediction from the total of N trees, and g, (x)
denotes the prediction of each individual tree with the input x. In addition, an
approximation of the uncertainty of the prediction can be made as the standard
deviation of the predictions from all the trees, which can be expressed as:

(,_ @ (g, () ()’ o

Figure 1 demonstrates the method of classifying RF with the N trees. Starting
from the root node (v,,), after comparison with certain parameters or threshold
values, samples are moved to the right node (vg) or the left node (7). Repeat this
partition until a terminal node is reached and get a classification tag (in this case,
classes A or B). For classification task, the ensemble prediction is achieved by
majority voting rule as a combination of the results of the individual trees [15].

3.2 REP tree

The reduced error pruning tree (REP Tree) is an ensemble model of decision tree
(DT) and The REP Tree (Reduced Error Pruning Tree) is an ensemble model of
decision tree (DT) and reduced error pruning (REP) algorithms, equally good for
classification and regression problems [16]. The REP Tree algorithm generates a
decision regression tree by dividing and pruning the regression tree based on the
importance of the highest knowledge benefit ratio (IGR) [17]; The IGR values were
determined via Eq. (3) based on the entropy (E) function.

E(S) _ Z:'l:l E(S‘g‘)‘\si\

IGR(x,S) =
o) —> i ‘fﬂl log, ‘fg\‘

(3)
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Figure 1.
Schematic representation of a RF classifier with N trees.

The IGR considers all the predictors of liquefaction-induced settlement with subset
Si from the training dataset (S): i = 1, 2,. .., # successive pruning steps. Since complex
decision trees can result in a model being overfitted and less interpretable, REP helps
to reduce complexity by removing the DT structure’s leaves and branches [16, 18-20].

4. Liquefaction-induced settlement model development
4.1 Preparing training and testing datasets

The manner in which data are divided into training and test data sets in data
mining procedures has a substantial effect on the results [21-23]. The statistical
parameters for the input variables include the minimum, maximum, mean and stan-
dard deviation of the training and test datasets, as shown in Table 2. Data set splitting
was done to assess the generalization efficiency and predictive ability of the devel-
oped models. The related performance of the training and testing datasets suggests
that the developed models can be applied to the trained ranges. In the testing the
ranges of input and output parameters often occur in the training datasets as shown in
Table 2. The training and testing datasets’statistical consistency enhances the perfor-
mance of the developed models and thus helps to properly assess them.

To ensure comparability, the RF and REP Tree models are proposed using the
same training and test datasets. Using these models, liquefaction-induced settle-
ments are predicted, and an analysis of the detailed performance of these models
will find the optimum model afterwards. If the performance of this model on the
training and test datasets is adequate then it can be adopted for development.

4.2 Evaluation measures

In this study, three evaluation measures, mean absolute error (MAE), root mean
square error (RMSE), and correlation coefficient (r) are used to evaluate and
compare the performance of the models. The MAE, RMSE and r are three useful
statistical measures which provide some useful insights into the prediction model,
of which the MAE is an average of the sum of the differences between the values
predicted by a model and the actual values, the RMSE is a standard deviation of the
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Dataset  Statistical parameter =~ Depth Unit Weight Njoy CSR  Settlement (mm)

(m) (kN/m?3)

Training Minimum 1 16 0 0.21 0
Maximum 20 21 25 0.39 3.4
Mean 10.50 18.85 13.14 0.31 0.89
Standard deviation 5.80 1.89 9.14 0.05 0.92

Testing Minimum 1 16 7 0.29 0
Maximum 20 21 25 0.35 2.6
Mean 10.5 19.4 1555  0.3255 0.93
Standard deviation 5.92 1.76 6.66 0.01 0.65

Table 2.
Statistical parameters of the training and testing datasets.

differences, and the correlation coefficient (r) is a statistical measure representing
the percentage of the variance for a model a dependent variable that’s described by
an independent variable, and their expressions are as follows [24]:

1 n
MAE:;;[)/i—xi} (4)
1< 2
RMSE = E; (v —x:) (5)

. Z?:l(xi _97)(3’1' _J_’)
Vb =2 0~ 9)

(6)

where y; and x; are the observed and predicted value of i sample of the data
respectively, X and y are the mean values of the observed and predicted values
respectively, and 7 is the total number of samples. MAE can be given as a more
natural and unambiguous index compared with RMSE to quantify errors between
the estimated and actual observed values [25, 26]. RMSE was used as a standard
statistical metric to assess output of a model [27]. The larger correlation coefficient
(r) and lower mean absolute error (MAE) values, and the root mean squared error
(RMSE) present a higher accuracy of predicted results.

5. Results and discussion

Theoretically, a specific model can be obtained when the model parameters are
correctly selected and updated. The optimum values are obtained by trial and error

Algorithm Parameters

RF Minimum total weight of instances in a leaf: 1; minimum portion of the variance of all the
data to be present in a node to be split in regression tress: 0.001; random number seed
used to pick attributes: 1; K value: 0

REP Tree ~ Maximum tree depth: —1; minimum total instance weight in the leaf: 2; minimum
likelihood of variance: 0.001; fold number: 3; seed number: 1

Table 3.
Model optimum modeling parameters.



Evaluation of Liquefaction-Induced Settlement Using Random Forest and REP Tree Models....
DOI: http://dx.doi.org/10.5772/intechopen.94274

using parameter setting. The optimum value for each machine learning parameter is
illustrated in Table 3. In the proposed RF and REP Tree models the most significant
parameters are the number of seeds and the minimum total weight of instances in a
leaf during the modeling process.

The RF and REP Tree predictive results were obtained from the datasets for
training and testing datasets. The MAE, RMSE and correlation coefficient (r) were
subsequently determined on the basis of the Egs. (4)-(6) shown in Figure 2 that
depicts RF and REP Tree models performance, respectively. For the RF model the

1.00 -
Training dataset
0.80 - B RF W REP Tree
E
S
~ 060 4
%
W
=
& 040 -
<
=
0.20 -
0.00 -
MAE RMSE r
(@)
1.00 -
Testing dataset
080 - B RF ®REP Tree
[}
=
S
< 0.60 -
Fg
w)
2
EE 0.40 -
=
0.20 -
0.00 -
MAE RMSE r
(b)
Figure 2.

Comparison of MAE, RMSE, and r values from the RF and REP tree models.
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training data prediction is higher than the test dataset prediction. The » values for
the training data and testing data are found 0.9935 and 0.8833, respectively. For the
REP Tree model, the training data  value (= 0.9405) indicates marginally better
results than that for the testing data (= 0.777). It is obvious to judge that the
performance of RF model in training and testing datasets is higher than that of REP
Tree model. Figure 2 presents bar graphs comparing the mean absolute error
(MAE), the root mean squared error (RMSE), and the correlation coefficient (r)

Random Forest - Training dataset
Reference line
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G o
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Predicted settlement (mm)
— —
o 1

=
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Random Forest - Testing dataset

Reference line

ra
8]

1
o

=
o

Predicted settlement (mm)
[
g1

ot
2

0.0 : : , . ' ,
0.0 0.5 1.0 1.5 20 2.5 3.0
Actual settlement (mum)
(b)

Figure 3.
Training and testing of the RF model.

10



Evaluation of Liquefaction-Induced Settlement Using Random Forest and REP Tree Models....
DOI: http://dx.doi.org/10.5772 /intechopen.94274

for both models’ training and test datasets. The MAE calculates the variance in the
error term by term and reduces the significance of large errors; the RMSE value is
more concentrated on large errors than on small ones. The RF model has lower MAE
and RMSE values while higher r value, showing that in both training and testing
datasets, the RF model provides adequate prediction of liquefaction-induced
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Reference line
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Figure 4.
Training and testing of the REP tree model.
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settlement. Additionally, the results of training and testing were shown in

Figures 3 and 4, showing the projected settlements are plotted with the actual
data. One can see that settlements were predicted more accurately by the RF model
than by the REP Tree model. While the REP Tree model few settlements cases are
relatively under predicted as compared to the RF model.

6. Conclusions

This paper explores the potential of RF and REP Tree models for predicting
liquefaction-induced settlement using field data. The models were trained and
tested based on the Pohang city liquefaction-induced settlement database. Both
models assess liquefaction-induced settlement with substantial contributing factors
such as depth, unit weight, corrected SPT blow count and cyclic stress ratio. The
performance of the models presented is measured using statistical parameters such
as the correlation coefficient (), MAE, and RMSE. The RF model indicates a better
performance with respect to the training and testing datasets. From this analysis it
can be inferred that the RF model works well in predicting liquefaction-induced
settlement as opposed to the REP Tree model. Since, artificial intelligence-based
approaches are data-dependent and their output can vary depending on the dataset,
the quality and number of training datasets and the size of the experiments. Finally,
it is obvious that the proposed models are open to develop and accumulation of
more data will provide much better evaluation of liquefaction-induced settlements.
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