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Chapter

Is EEG a Useful Examination Tool 
for Diagnosis of Epilepsy and 
Comorbid Psychiatric Disorders?
Hideki Azuma

Abstract

Diagnosis of epilepsy usually involves interviewing the patients and the 
 individuals who witnessed the seizure. An electroencephalogram (EEG) adds useful 
information for the diagnosis of epilepsy when epileptic abnormalities emerge. EEG 
exhibits nonlinearity and weak stationarity. Thus, nonlinear EEG analysis may be 
useful for clinical application. We examined only about English language studies of 
nonlinear EEG analysis that compared normal EEG and interictal EEG and reported 
the accuracy. We identified 60 studies from the public data of Andrzejak 2001 and 
two studies that did not use the data of Andrzejak 2001. Comorbid psychiatric 
disorders in patients with epilepsy were not reported in nonlinear EEG analysis 
except for one case series of comorbid psychotic disorders. Using a variety of fea-
ture extraction methods and classifier methods, we concluded that the studies that 
used the data of Andrzejak 2001 played a valuable role in EEG diagnosis of epilepsy. 
In the future, according to the evolution of artificial intelligence, deep learning, 
new nonlinear analysis methods, and the EEG association with the rating scale of 
the quality of life and psychiatric symptoms, we anticipate that EEG diagnosis of 
epilepsy, seizures, and comorbid psychiatric disorders in patients with epilepsy will 
be possible.

Keywords: epilepsy, EEG, diagnosis, nonlinear analysis, comorbid psychiatric 
disorders

1. Introduction

1.1 EEG and epilepsy

Epileptic seizures usually do not emerge during the consultation. The diagnosis 
of epilepsy begins with a conversation with the individual and those who witnessed 
the seizures. [1] An electroencephalogram (EEG) is also used for the diagnosis of 
epilepsy. The gold standard for diagnosis of epilepsy is simultaneous ictal EEG 
recording with video, but this method is not applicable for many patients. The 
presence of epileptic paroxysmal abnormalities can help with the diagnosis. If a 
non-expert makes the diagnosis based on EEG findings alone rather than seizure 
symptoms, misinterpretation of the EEG findings may increase the false-positive 
diagnosis of epilepsy. Many physicians anticipate that EEG diagnosis for epilepsy 
will become possible with technological advances, even when no EEG abnormalities 
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are present. EEG is useful not only for diagnosis, but also for monitoring during the 
course of treatment. [2] Psychiatric disorders occur more frequently as comorbidi-
ties in patients with epilepsy [3], and they can affect quality of life. [4]

1.2 EEG and nonlinearity

EEG is characterized by its nonlinearity. [5] Nonlinear dynamics is a concept 
that includes chaos. Therefore, the adaptation of nonlinear EEG analysis is more 
useful than that of linear EEG analysis. [6] In nonlinear dynamics, the time series 
data of EEG can be transformed into a reconstructed state space, which is calcu-
lated according to the embedded theorem [7, 8], and the dynamic attractors can 
be reconstructed. The reconstruction enables us to estimate nonlinear statistics 
such as fractal dimension and bifurcation structure. The attractor here is a set of 
trajectories where all of the nearest trajectories converge. [9] CD [9–11], which is a 
kind of fractal dimension, is a dimension that is occupied by the attractor in phase 
space. The method of Grassberger et al. is often used. [10] The lyapunov exponent 
is the degree of exponential separation between orbits, and measures the extent by 
which nearby points on an attractor diverge or converge with respect to each other 
while moving along any trajectory of the attractor. [9, 12] If the largest lyapunov 
exponent is greater than zero, this shows the presence of deterministic chaos. If the 
lyapunov exponent is less than or equal to zero, this shows a periodic or quasiperi-
odic motion, respectively. Furthermore, to show the nonlinearity of EEG, genera-
tion of surrogate data with linear characteristics and demonstration of a significant 
difference between them are necessary. In addition, nonlinear analysis is possible 
with the assumption that EEG exhibits weak stationarity, that the mean and the 
variance are normally distributed in the evaluated interval, and that no noise is 
present. [13]

1.3 Epilepsy and nonlinear EEG analysis

Many studies on the nonlinear analysis of EEG and epilepsy have been reported, 
including reviews concerning ictal EEG detection and machine leaning approaches. 
[14–16] Ideally, interictal EEG with no paroxysmal abnormalities should be used 
to diagnose epilepsy and comorbid psychiatric disorders by using computerized 
analysis rather than expert observation and interpretation.

1.4 Objectives in this review

Therefore, in the present review, we investigated the reports on the nonlinear 
analysis of EEG between normal and epileptic groups, focusing on the diagnosis of 
epilepsy and comorbid psychiatric disorders.

2. Methods

2.1 Public data set in Andrzejak 2001

A literature search of Scopus and PubMed was performed. In addition, we iden-
tified other relevant literature. We selected only about English language reports that 
compared normal and epilepsy groups. Many reports used data from Andrzejak 
2001. [17] They prepared and used five different data sets, A-E, which each contain 
100 single channels from EEG segments of 23.6-sec duration. These segments were 
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selected and extracted from continuous multichannel EEG recordings after visual 
inspection for artifacts, e.g., due to muscle activity or eye movements. Set A and set 
B consisted of EEGs from five healthy volunteers with eyes open and closed, respec-
tively. Set C and set D consisted of EEGs from five patients in the epileptogenic 
zone (set D) and from the hippocampal formation of the opposite hemisphere of set 
D (set C). Set E contains ictal activity. Set A and set B were recorded extracranially, 
whereas set C, set D, and set E were recorded intracranially.

2.2 Nonlinearity of the data set

The objective of the study by Andrzejak 2001 was examination of nonlinearity. 
They generated 39 surrogate data points from all EEG segments for nonlinear pre-
diction error and CD according to the weak stationarity assumption. Nonlinearity 
was found except in set A for nonlinear prediction error, but only in set D and set E 
for CD. They discussed that they cannot rule out the possibility that the surrogate 
test compared to the surrogate data with linear properties including the weak 
stationarity may result in a false-positive rejection of nonstationarity, and that 
the surrogate test has neither high sensitivity nor specificity for nonstationarity 
in nonlinear dynamics systems. [17] Thuraisingham reexamined the data using 
MPR complexity and normalized shanon spectral entropy, taking into account the 
probability distribution function. [18] He carried out a surrogate test using the 
Amplitude Adjusted Fourier Transform method to generate 1000 surrogate data 
points for evaluation of entropy and complexity. The degree of nonlinearity was set 
E > set D > set C > set B > set A. However, when adjusted for the effect of noise, all 
data showed the same degree of nonlinearity by the above method. Set A showed 
more nonlinearity than set B, and Thuraisingham concluded that denoising with a 
wavelet was effective for nonlinearity. In light of these results, we considered all five 
EEG sets as nonlinear and examined the difference between the normal EEG and 
interictal EEG among the five EEG sets. There were many studies on the compari-
son between other sets vs. set E. However, an expert can easily interpret set E as 
ictal. The diagnosis of epilepsy from interictal EEG with no paroxysmal abnormali-
ties is meaningful for both specialists and non-specialists. Therefore, in this review, 
in the studies with explicit comparisons with the data set of Andrzejak 2001, A vs. 
C, A vs. D, AB vs. CD vs. E, A vs. B vs. C vs. D vs. E, B vs. C, B vs. D, A vs. D vs. E, 
A vs. C vs. E, and AB vs. CD, were examined.

3. Results

3.1 Normal vs. epilepsy

The development of feature extraction with nonlinear analysis methods and 
machine learning has been reported in studies of various combinations of classifica-
tions on EEG diagnosis of epilepsy. (Table 1). [19–79] Table 2 shows the details of 
the classification. Sixty studies using the Andrzejak 2001 data set were selected, 
and two studies between normal and epileptic groups were selected. Although set 
C (the opposite site of the epileptogenic zone) and set D (the site of the epilep-
togenic zone) were interictal and intracranial EEG, the results for B vs. C (99.3% 
accuracy) and B vs. D (99.5% accuracy) by Gupta 2018 [29] and the results for A 
vs. D (100% accuracy) by Kaya 2015 [45] and 2018 [30] and for A vs. C (99.7% and 
99.6% accuracy) by Raghu 2017 [36] and Liu 2020 [21] were reported. The feature 
extraction methods and the classifiers were different in each study. Nevertheless, 
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Author (year) 

[reference number]

Feature extraction Classifiers Comparisons [accuracy%]

Gao (2020) [19] ApEn, RQA CNN, BRBP AB vs. CDE [99.2]

Goshvarpour 
(2020) [20]

PP KNN, PNN A vs. D vs. E [98.3]

Liu (2020) [21] WPE, WEE, TEE, 
PSD, 1D-LBP, 
LNDP, 1D-LGP, 
LSP, SampEn, 
LSPA, NEO, HSFV*

AB*, NB, DA, 
KNN, SVM

A vs. D vs. E [99.0], AB vs. CD 
vs. E [98.1], AB vs. CD [99], A 
vs. D [99.5], A vs. C [98.6], B vs. 
C [99.6], B vs. D [99.6], A vs. CD 
[98.8], B vs. CD [99.1]

Abedin (2019) [22] Multilevel DWT Nonlinear ANN A vs. D vs. E [97.3]

Fasil (2019) [23] ExpEn SVM A vs. D vs. E [89], A vs. C vs. E 
[91.6]

Ghayab (2019) [24] TQWT KNN*, SVM, BT AB vs. CD vs. E [100], A vs. B vs. 
C vs. D vs. E [100]

Kaur (2019) [25] DWT BSVM A vs. C [76], B vs. C [81.6], A vs. 
D [72.8], B vs. D [71.1]

Sun (2019) [26] ESN, AR ELM A vs. D vs. E [98.3]

Torse (2019) [27] RP, RQA SVM*, ANN, 
PNN

AB vs. CD vs. E [91.2]

Tuncer (2019) [28] LSP LDA-SVM*, 
QDA, KNN

A vs. D vs. E [98.6], A vs. B vs. C 
vs. D vs. E [93], A vs. D [99.5]

Gupta (2018) [29] DCT, HE, ARMA SVM A vs. C [96.5], A vs. D [98.4], B 
vs. C [99.3], B vs. D [99.5], AB 
vs. CD [97.7]

Kaya (2018) [30] 1D-TP (1; lower 
features, 2; upper 
features)

ANN*, RF†, FT‡, 
SVM, BayesNet

1; A vs. D vs. E [95.7]†, A vs. D 
[99]*, 2; A vs. D vs. E [94] †, A 
vs. D [100]†,‡,

Sairamya (2018) [31] LNGP†, SWLNGP‡ ANN*, KNN, 
QLDA, SVM

A vs. D vs. E [99.7] † [99.6] ‡, AB 
vs. CD vs. E [99.5] † [99.3] ‡, A 
vs. D [99.9] †, [99.9] ‡

Zhang (2018) [32] fDistEn, WPD KNN*, 
Kruskal-Wallis, 
nonparametric 
ANOVA

A vs. D vs. E [99.3], A vs. B vs. C 
vs. D vs. E [76]

Abdulhay (2017) [33] ApEn, SampEn, 
PE, HE, HFD, HOS

KNN, SVM, NB A vs. D vs. E [98.5]

Jaiswal (2017) [34] 1D-LBP†, LNDP‡, 
1D-LGP

ANN*, NN, 
SVM, DT

A vs. D vs. E [97.0] † [98.2] ‡, A 
vs. D [99.3] †[99.9] ‡

Kalbkhani (2017) [35] ST, KPCA NN A vs. D vs. E [99.3], AB vs. CD 
vs. E [99.5], A vs. C vs. E [99.9]

Raghu (2017) [36] WPD, LEEn*, NE† REN A vs. C [99.7]*, [99.3] †

Tiwari (2017) [37] LBP SVM AB vs. CD vs. E [98.8]

Wang (2017) [38] LDWT NSVM A vs. D vs. E [98.4]

Wen (2017) [39] GAFDS, SampEn, 
HE, LE, MFDFA

KNN*, LDA, DT, 
AB, MLP, NB

A vs. D vs. E [97.3]

Zhang (2017) [40] LMD, RE, HE GASVM*, BPNN, 
KNN, LDA, SVM

AB s CD vs. E [98.4]

Hekim (2016) [41] DWT, EWD, EFD, 
SE

ANFIS AB vs. CD [96.5]



5

Is EEG a Useful Examination Tool for Diagnosis of Epilepsy and Comorbid Psychiatric Disorders?
DOI: http://dx.doi.org/10.5772/intechopen.94352

Author (year) 

[reference number]

Feature extraction Classifiers Comparisons [accuracy%]

Murugavel (2016) [42] LLE, ApEn, DWT H-MSVM*, ANN A vs. D vs. E [96], AB vs. CD 
vs. E [95], A vs. B vs. C vs. D vs. 
E [94]

Peker (2016) [43] DTCWT CVANN A vs. D vs. E [99.3], AB vs. CD 
vs. E [98.2]

Abalsaud (2015) [44] DCT, DWT NSC*, ANN, NB, 
KNN, SVM

A vs. C vs. E [90]

Kaya (2015) [45] 1D-LBP GRA A vs. D [100]

Martis (2015) [46] DWT, LLE, HFD, 
HE, SampEn

RBFSVM*, 
LSVM, PSVM, 
QSVM, DT, KNN

A vs. D vs. E [98]*

Riaz (2015) [47] EMD SVM*, DT, KNN, 
ANN

A vs. D vs. E [91], A vs. B vs. C 
vs. D vs. E [94]

Tawfik (2015) [48] WPE, DWT LSVM*, NSVM†, 
ANN

A vs. D vs. E [97.2]* [97.5] †, A vs. 
B vs. C vs. D vs. E [91.6]* [93.7] †

Kaya (2014) [49] LBP, 1DLBP BayesNet*, SVM, 
ANN, LR, FT

A vs. D vs. E [95.6], A vs. D 
[95.5]

Sivasankari 
(2014) [50]

ICA, STFT, CD, LE FFBPNN*, 
ANFIS

A vs. D vs. E [100], A vs. B vs. C 
vs. D vs. E [96.2]

Acharya (2013) [51] CWT, HOS, CM, 
RLM, LBP, LME

SVM*, ANOVA, 
DT, KNN, PNN

AB vs. CD vs. E [96]

Alam (2013) [52] EMD ANN A vs. D vs. E [100], AB vs. CD 
vs. E [80]

Fernández-Blanco 
(2013) [53]

GP A vs. D vs. E [98.5], AB vs. CD 
vs. E [97.8]

Hosseini (2013) [54] HE, LLE ANFIS AB vs. CD [97.4]

Niknazar (2013) [55] RQA, DWT ECOC AB vs. CD vs. E [98.6]

Peker (2013) [56] FCBFA CVANN A vs. D vs. E [97]

Seng (2013) [57] HE, FD, ApEn, 
LLE, CD

RBFSVM AB vs. CD vs. E [97.1]

Wang (2013) [58] BD, FI SVM A vs. D vs. E [97.1]

Zhu (2013) [59] SampEn MKM*, KMA, 
SVM

A vs. C [95], A vs. D [96]

Acharya (2012) [60] ApEn, SampEn, 
FD, HOS, HE

FSC*, DT, GMM, 
KNN, RBFSVM, 
PNN

A vs. D vs. E [99.7]

Acharya (2012–2) [61] DWT(23.6 sec), 
ICA

RBFSVM*, DT, 
KNN, PNN, FSC, 
GMM

A vs. D vs. E [96]

Martis (2012) [62] EMD DT*, ANOVA A vs. D vs. E [95.3]

Acharya (2011) [63] RP, RQA SVM*, GMM, 
FSC, KNN, NB, 
DT, PNN

A vs. D vs. E [94.4]

Guo (2011) [64] DWT, GP KNN A vs. D vs. E [93.5]

Mhandoost 
(2011) [65]

DWT GARCH*, MRF A vs. D vs. E [98.8], A vs. C vs. 
E [98]

Orhan (2011) [66] DWT MLP-NN*, KMC A vs. D vs. E [96.6]
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Author (year) 

[reference number]

Feature extraction Classifiers Comparisons [accuracy%]

Ballli (2010) [67] HOA, TRA, ApEn, 
LLE, CD, NPE, 
HE, AR

SFFS-LDA A vs. B vs. C vs. D vs. E [81.4]

Liang (2010) [68] ApEn, AR, GA, 
PCA

RBFSVM*, LLS, 
LDA, BPNN, 
LISVM

A vs. D vs. E [98.6], A vs. B vs. C 
vs. D vs. E [85.9]

Song (2010) [69] SmpEn ELM*, BPNN A vs. D vs. E [95.6]

Acharya (2009) [70] CD, HE, ApEn, 
LLE

GMM*, SVM AB vs. CD vs. E [95]

Übeyli (2009) [71] DWT MLP + LMA NN A vs. D vs. E [94.8]

Übeyli (2008) [72] DWT ME*, EMA, 
MLP-NN

A vs. D vs. E [93.1]

Gūler (2007) [73] DWT, LE RBFSVM*, 
MLP-NN, PNN, 
MSVM

A vs. B vs. C vs. D vs. E [99.2]

Tzallas (2007) [74] STFT, PSD FFANN A vs. D vs. E [100], A vs. B vs. C 
vs. D vs. E [89]

Tzallas (2007–2) [75] SPWVD FFANN, PCA A vs. D vs. E [99.2], AB vs. CD 
vs. E [97.7]

Übeyli (2007) [76] PM, MUSIC, MN, 
PSD

MME *, ME A vs. B vs. C vs. D vs. E [98.6]

Sadati (2006) [77] DWT ANFN*, ANFIS, 
RBFSVM, 
FFBPNN

A vs. D vs. E [85.9]

Gūler (2005) [78] LE, LMA RNN A vs. D vs. E [96.7]

Gūler (2005–2) [79] DWT ANFIS*, BP, 
GDM, LLS

A vs. B vs. C vs. D vs. E [98.6]

Accuracy = (TP+ TN)/(TP + FP+ TN+ FN); TP, TN, FP and FN mean true positive, true negative, false positive 
and false negative, respectively.
*, †, ‡The accuracy corresponds to each feature extraction and classifier with the symbol.

Table 1. 
Results for the data of Andrzejak 2001.

Comparisons Mean(SD) [range] Number of results

A vs. D vs. E 96.8(2.9) [85.9–100] 44 results in 40 studies

A vs. B vs. C vs. D vs. E 92.2(6.7) [76–100] 14 results in 13 studies

AB vs. CD vs. E 96.3(4.9) [80–100] 15 results in 14 studies

A vs. C vs. E 94.8(4.1) [90–99.9] 4 results in 4 studies

AB vs. CD 97.6(0.8) [96.5–99] 4 results in 4 studies

A vs. D 96.7(7.3) [72.8–100] 12 results in 10 studies

A vs. C 94.1(8.2) [76–99.7] 6 results in 5 studies

B vs. D 90.0(13.4) [71.1–99.6] 3 results in 3 studies

B vs. C 93.5(8.4) [81.6–99.6] 3 results in 3 studies

Table 2. 
The mean (standard deviation) and number of results for each comparison.
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these results were clinically interesting and reasonable. Gruszczyńska 2019 (86.8% 
accuracy) reported that interictal Fp1 EEG and normal Fp1 EEG using the feature 
extraction of RQA and RP were classified by SVM. [80] No detailed descriptions 
were provided for the focal side. Jacob 2016 (100% accuracy) reported the classifi-
cation of interictal EEG and normal EEG. [81] However, no detailed description was 
provided of EEGs that were artifact free or with no paroxysmal abnormalities.

3.2 Comorbid psychiatric disorders

No literature on nonlinear EEG analysis for the diagnosis of comorbid psychiat-
ric disorders with epilepsy has been published, and we only found a case series with 
nonlinear analysis of comorbid psychiatric symptoms with epilepsy. [82] Azuma 
reported that EEG was artifact free and had no paroxysmal abnormalities and that 
patients including controls had uncontrolled seizures before and after psychosis. 
SampEn may not only decrease in the right frontal and frontal-anterior temporal 
regions before psychosis, but it may also increase in the frontal and frontal-tempo-
ral regions during psychosis. Further reports about prodromal periods are needed. 
Several studies and reviews about forced normalization have been published 
[83, 84], but none have reported nonlinear analysis as well.

4. Discussion

4.1 Normal vs. epilepsy

In studies on Andrzejak 2001 data, comparisons of A or B vs. C and A or B vs. 
D have increased in recent years (Table 1). Set C and set D consist of intracranial 
EEG. Usually, intracranial EEG is less noisy, but it provides more localized EEG 
information. [85, 86] Thus, in the future, comparisons using interictal surface EEG 
data are needed. This review revealed that the studies in Table 1 using nonlinear 
feature extraction methods and classifier methods play a valuable role on EEG diag-
nosis for epilepsy (A or B vs. C (93.8% accuracy) and A or B vs. D (93.4% accuracy). 
These results can be further examined in future studies. Thus, consideration and 
examination with denoising with wavelets [18] and the date of EEG and seizures 
[87] in nonlinear EEG analysis may be needed in future studies.

4.2 Comorbid psychiatric disorders

In many studies on the diagnosis of depression and schizophrenia [88–97], 
the nonlinear EEG analysis have been reported, but no nonlinear EEG analysis 
with accuracy has been reported for comorbid psychotic disorders and depres-
sion in patients with epilepsy. Psychiatric comorbidities are common in patients 
with epilepsy [3], and associations for psychosis with the age at onset, duration of 
epilepsy, and seizure frequency have been reported. [98, 99] Prodromal symptoms 
should also be considered when evaluating the onset of psychiatric symptoms. 
[100] Nonlinear EEG analysis of patients with schizophrenia and depression have 
been reported, but no nonlinear EEG analysis with accuracy has been reported for 
comorbid psychotic disorders and depression in patients with epilepsy. No study on 
forced normalization has been reported using nonlinear EEG analysis. Because psy-
chiatric symptoms affect quality of life in patients with epilepsy [4], we expect that 
the studies of the association between nonlinear EEG analysis, cognitive  function 
[101–103] and the psychiatric rating scales [104, 105] in the future.
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5. Conclusion

EEG exhibits nonlinearity and weak stationarity. Thus, nonlinear EEG analysis 
is useful to investigate the clinical application for epilepsy, as shown in studies using 
the public record of Andrzejak 2001. We reviewed the studies using this data set. 
Using a variety of feature extraction methods and classifier methods, we conclude 
that these studies played a valuable role in EEG diagnosis for epilepsy. Comorbid 
psychiatric disorders in patients with epilepsy have not been reported in nonlinear 
EEG analysis except for one case series of comorbid psychotic disorders. In the 
future, according to the evolution of artificial intelligence, deep learning, new 
nonlinear analysis, and the association with the rating scale of the quality of life and 
psychiatric symptoms, we anticipate that EEG diagnosis for epilepsy, seizures, and 
comorbid psychiatric disorders in patients with epilepsy will become possible.
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R
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REN; Recurrent elman neural network, RF; Random trees, RLM; Run length 
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quantification analysis.
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