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The Key Role of the Phosphatase 
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Abstract

Acute myeloid leukemia (AML) is a heterogeneous malignant disorder of 
hematopoietic progenitor cells characterized by the accumulation of several genetic 
and epigenetic mutations. Despite the progressive understanding of the molecular 
heterogeneity of the disease, the survival rate of patients older than 60 years old 
remains poor. Therefore, it is necessary to develop an effective treatment strategy 
for those patients in order to beat the disease and improve life quality. Reversible 
phosphorylation has been widely studied over the last years, and the deregulation 
of kinases and phosphatase have been verified to have a huge impact in leukemo-
genesis. Inactivation of the tumor-suppressor protein phosphatase 2A (PP2A) 
is frequent in AML patients, constituting a promising target for cancer therapy. 
There are several PP2A inactivation mechanisms. However, overexpression of 
SET or cancerous inhibitors of PP2A, both endogenous inhibitors of PP2A, are 
recurrent events in AML patients, leading to the inactivation of the phosphatase 
PP2A. Preclinical studies show that PP2A reactivation using PP2A-activating 
drugs (PADs) manage to stop the development of the disease, and its combination 
with conventional chemotherapy and tyrosine kinase inhibitors have a synergistic 
cytotoxic effects. Recent studies have demonstrated that specifically activation of 
PP2A subunits, target crucial pathogenic drivers, increasing the efficacy of conven-
tional treatments and opening new possibilities for personalized treatment in AML 
patients, especially in cases of PP2A deregulation. Here, we review the role of PP2A 
in AML as well as its drugable options.
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1. Introduction

Acute myeloid leukemia (AML) is a heterogeneous clonal disorder characterized 
by the accumulation of poorly differentiated cells, derived from the differentiation 
blockage of myeloid hematopoietic progenitors in the bone marrow (BM) [1]. As 
consequence, immature cells called “blast” displace other cell populations invading 
the BM and other tissues [2, 3].

AML is a malignant disorder of the bone marrow characterized by the clonal 
expansion and differentiation arrest of myeloid progenitor cells. Incidence increases 
with age, with 68 years being the median age at diagnosis. AML is the most common 
form of acute leukemia in adults and has the shortest survival. Effective therapies, 
including intensive chemotherapy and allogeneic stem cell transplantation, are 
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generally applicable to young patients, while treatment options for older patients 
(≥65 years), which are the largest group, have historically been limited to DNA 
methyltransferase inhibitors (i.e. azacitidine and decitabine) and low doses of 
cytarabine, and have only provided a modest benefit [1, 4, 5]. Besides, treatment 
is often ineffective in both groups due to drug resistance and relapse, particularly 
in patients with FMS-like tyrosine kinase 3 (FLT3)-internal tandem duplication 
(ITD), that represent ~25% of all AML cases, and have poor outcome, with high 
risk of relapse and low cure rates [1–6]. The AML treatment landscape has changed 
substantially since 2017. New targeted drugs have emerged, including midostaurin 
and gilteritinib to target FLT3, and venetoclax to target BCL-2 [1]. This has cre-
ated novel treatment options, especially in older as well as in refractory/relapsed 
patients. The natural history of FLT3-mutated AML is changing after the approval 
of midostaurin for frontline therapy and gilteritinib for relapsed or refractory 
patients. Nevertheless, despite initial clinical responses to FLT3 kinase inhibitors 
(FKIs), patients eventually relapse. Mechanisms of resistance include the acquisi-
tion of secondary FLT3 mutations and protective stromal signaling within the bone 
marrow niche [2–4]. In the same way, venetoclax combined with hypomethylating 
agents or low-dose cytarabine is an effective therapy for older or unfit patients with 
AML, which represents most of the cases. However, it is now clear that multiple 
resistant sub-clones evolving contemporaneously during therapy can occur in AML 
and act as a barrier to the long-term success of targeted therapies. Studies about the 
molecular determinants of outcome with clinical relevance to patients with AML 
show that FLT3-ITD mutations or TP53 loss conferred cross-resistance to both vene-
toclax and cytotoxic-based therapies [5]. Besides, even with these and other potent 
targeted therapies, the disease persists within the bone marrow microenvironment, 
mainly due to activating parallel signaling pathways that maintain pro-survival fac-
tors. Therefore, acquired resistance to these targeted drugs remains a challenge and 
provides a rationale for combining either FLT3 inhibitors or venetoclax with other 
therapies, both conventional and investigational [6]. Reversible phosphorylation of 
proteins is a post-translational modification that regulates all aspect of life through 
the antagonistic action of kinases and phosphatases. Protein kinases are popular 
drug targets and are well characterized, but protein phosphatases have been rela-
tively neglected [7]. In this chapter, we will focus on the role of protein phosphatase 
2A (PP2A), inactivation of which is a recurrent event in AML, as a druggable tumor 
suppressor.

2. Protein phosphatase 2A

PP2A, a ubiquitously expressed protein serine/threonine phosphatase in 
mammalian cells, is a tumor suppressor that regulates essential cell processes and 
counteracts most of kinases-driven intracellular signaling pathways [7–11]. Recent 
evidences indicate that PP2A inactivation arises in several solid and hematological 
tumors causing the prolong activation of survival pathways or the inhibition of 
apoptotic pathways, pointing out its relevance in leukemogenesis [9, 12–14]. The 
use of okadaic acid (OA), a potent tumor promoter that inhibits PP2A activity, has 
greatly contributed to the understanding of the phosphatase functions [15].

PP2A appear in two different forms: a dimeric and a trimeric form [9, 16]. The 
dimer, known as the core enzyme, consists of a structural A subunit (PP2A-A) 
and a catalytic C subunit (PP2A-C), whereas the trimeric form, is comprised by a 
structural A subunit, a catalytic C subunit and a regulatory B subunit (PP2A-B). 
Interestingly, the function of the scaffold subunit varies depending on the PP2A 
complex. In the heterotrimeric form, PP2A-A mediates the interaction between the 
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catalytic subunit with the regulatory subunit, while in the dimeric form, it acquires 
a regulatory function changing the catalytic specificity. Furthermore, each subunit 
is encoded by different genes, which further generate distinct isoforms. PP2A-A 
(PPP2R1/Aα and PPPR1B/Aβ) and PP2A-C (PPP2CA/Cα and PPP2CB/Cβ) are 
more conserve, whereas in PP2A-B four families of genes (B/PR55/B55, B′/PR61/
B56, B″/PR72, B″’/The striatins, STRN) have been recognized including 23 different 
alternative transcript and spliced forms, which determine the substrate specificity 
and intracellular localization of PP2A (Figures 1 and 2) [12, 14, 17, 18]. Therefore, 
the actual challenge is not only to identify deregulation of PP2A functions in AML 
patients, but also to recognize the subunit affected with the goal to develop efficient 
target therapies [19].

The precise mechanism of PP2A active complex assembly remains obscure, but 
there are evidence that determine that post-translational modifications of PP2A-C 
residues, such as methylation and phosphorylation, plays an essential role in modulat-
ing the formation of active PP2A holoenzym. For instance, the methylation of PP2A-C 
subunit in leucine 309 (L09) by leucine carboxyl methyltransferase I is crucial for 
PR55/B55 binding, being not an essential requisite for other B families subunits 
[20–22]. However, post-translational modifications not only have an activating role, 
but also inhibitor since phosphorylation of tyrosine 307 (Y307) impairs the interaction 
of PP2A-C with the PR55/B55 and PR61/B56 subunits [20]. Interestingly, both cell 
lines and AML patient samples show an increase of Y307 phosphorylation [23]. On the 

Figure 1. 
Signaling pathways involving PP2A in AML. Scheme showing some of the molecular pathways regulated by 
PP2A complexes. Different isoforms of PP2A regulatory subunits are shown. The regulatory subunit B55α 
regulates the Akt pathway by dephosphorylating and inactivating Akt, which is the responsible of GSK3 
phosphorylation and inactivation. On the other hand, B56δ PP2A regulatory subunit dephosphorylates and 
activates GSK3. Active GSK3 can phosphorylate MCl-1 in S159 (previous phosphorylation in T163 by ERK), 
leading to MCL-1 proteasome degradation and contributing to apoptosis. Active GSK3 can also phosphorylate 
Myc in T58 (previous phosphorylation in S62 by ERK), leading to the binding of B56α PP2A regulatory 
subunit, which dephosphorylates Myc in S62, leaving T58 phosphorylation that generates Myc instability 
and proteasome degradation. B56α can also dephosphorylate and inactivate BCL-2, activating the caspase 
dependent apoptosis. B56γ and B56α PP2A regulatory subunits control the MEK/ERK pathway, which is 
responsible of MCL-1 and Myc stability. *B regulatory PP2A subunits are exemplified in representation of 
PP2A enzyme, which is represented in the legend. Red dots are symbolized as phosphate groups.
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other hand, post-translational modifications of PP2A-B can also affect the localization 
of the holoenzyme, complicating its targeting [24].

We and others have determined that PP2A deregulation is a common event in 
AML patients, and the restoration of PP2A activity with PP2A activating drugs 
(PADs), such as FTY720, has potent antileukemic effects in AML cells, preventing 
cell growth and inducing caspase-dependent apoptosis [12, 13, 23, 26–28]. However, 
FTY720 induces cardio-toxicity at the anti-neoplastic dose. Hence, we develop a 
novel non-phosphorylable FTY720 analogue called CM-1231, which has a great 
antileukemic potential without inducing secondary effects [28]. Furthermore, we 
have shown that PADs can be used in combination with kinase inhibitors or chemo-
therapy agents, suggesting that PP2A activity restoration could have a huge therapy 
potential in AML patients [23, 25, 27, 29–32].

2.1 Mechanism of PP2A inactivation in AML

Several somatic mutations have been described in PP2A subunits in different 
types of tumors such as melanoma, colon, lung and breast cancers [19, 33–39]. 
Mutations in PP2A-Aα or PP2A-Aβ subunits cause defective binding of B and C 
subunits, inhibiting PP2A active holoenzyme and favoring a malignant cell trans-
formation [36, 37]. However, the frequency of PP2A inactivation due to mutations is 
low, with PPP2R1A subunit owning the highest mutational percentage rate (1,17%), 
and it seems to be an uncommon mechanism in AML. Likewise, our analysis of the 
genome of 250 patients with leukemia from the Cancer Genome Atlas Research 
Network (https://tcga-data.nci.nih.gov/tcga), show that only one patient has 
somatic mutations in PPP2R2B, which encode for PR55β subunit [14, 40].

Thus, the main mechanism that employs cancer cells to evade PP2A-
mediated tumor suppression is through the overexpression of proteins that 

Figure 2. 
PP2A subunits. (A) Schematic representation of PP2A subunits and their functions. (B) all different isoforms 
of every subunit of PP2A.
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mediate PP2A post-translational modifications or molecules that inactivates the 
holoenzyme function [41–43].

2.2 SET/I2PP2A

The SET oncoprotein, also known as I2PP2A (Inhibitor 2 of PP2A), TAF-1β 
or PHAP1, is a potent endogenous PP2A inhibitor that plays an essential role in 
myeloid leukemias (Figure 3) [44]. Firstly, SET was identified as an oncogene fused 
with nucleoporin NUP214 (CAN) in undifferentiated leukemias [45], to later be 
considered as a PP2A inhibitor [46]. This protein is mostly located in the nucleus, 
and is implicated in a wide range of cell processes such as DNA replication, gene 
transcription, chromatin remodeling [47, 48], DNA repair [49], cell differentiation 
[50], migration [51] and cell-cycle regulation [52]. SET is up-regulated in hemato-
logical and solid tumors, including breast cancer [53] and colorectal cancer [54]. Its 
role has been studied in depth in chronic myeloid leukemia (CML). Interestingly, 
patients with BCR-ABL1 gene fusion, which constitutively activates tyrosine kinase 
activity, essential for CML emergence, maintenance and progression, have SET 
overexpression [55]. The expression of BCR-ABL1 allows recruitment and activa-
tion of JAK2, which enhance β-catenin activity and induce SET-mediated inactiva-
tion of PP2A [56].

Likewise, SET overexpression is also an important event in AML. We performed 
a quantification of SET expression in AML patients, observing that SET overex-
pression is a recurrent event (60/214, 28%) associated with poor survival in AML. 
Furthermore, the protein overexpression has a prognostic impact in patients with 

Figure 3. 
PP2A inactivation by SET in AML. PI3K and CK2 can phosphorylate SET at serine 9 (S9), located in the 
nuclear localization signal. This phosphorylation translocates SET to the cytosol and impairs its return to the 
nucleus, increasing its ability to bind to the catalytic subunit of PP2A (PP2A-C), and inactivating PP2A. 
Treatment with FTY720 disrupts SET–PP2A interaction, allowing PP2A activation [57].
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normal karyotype, defining a subgroup of patients with worse outcome. Additional 
observations reveals that SET overexpression is associated with other adverse 
prognostic markers such as monosomy 7, SET binding protein a (SETBP1) overex-
pression and EVI1 overexpression, suggesting that this oncoprotein could cooperate 
with other additional aberrations in leukemogenesis program. Our analysis by 
western blot confirmed that SET is overexpressed at protein levels in both AML cell 
lines and patients samples [29].58.

In addition, we observed that SET promote cell survival by inhibiting PP2A 
activity through its binding to PP2A-C, forming an inhibitory complex that prevent 
phosphatase activity (Figure 3) [30]. That is the main reason why the use of PADs 
such as FTY720, OP449 or its analogues, show potent antileukemic effects, since 
prevent the interaction between SET and PP2A, recovering the antitumoral activity 
of PP2A [27, 28, 30]. Nevertheless, despite the importance of SET overexpres-
sion and its prognostic impact in hematological tumors, little is known about the 
mechanism involved in SET regulation, constituting a barrier to the development of 
new PP2A activating drugs.

Recent studies have described mechanism of post-translational regulation of 
SET that modulate the inhibitory activity against PP2A [58, 57]. Using genetic and 
pharmacological approaches, we found that p38β has a dual role in SET regulation 
in AML. We found that p38β up-regulation, but not p38α, is a common event in 
AML that contributes to SET-mediated PP2A inactivation [57]. It has been reported 
that p38 form complexes with PP2A [59–66]. However, their connection can 
vary depending on the cellular context. Upon TNF-induced stress conditions in 
endothelium-derived cell lines, p38 positively regulates PP2A activity [63], whereas 
under hypoxia and survival conditions, PP2A negatively regulates p38 activity [65]. 
Nevertheless, the regulatory mechanism has not been discovered until now. We 
show for the first time that p38β contributes to PP2A inactivation via SET regula-
tion through two mechanisms: (i) p38β promotes the phosphorylation of the casein 
kinase 2 (CK2) which active form phosphorylates SET on Ser9, located in a nuclear 
localization signal, favoring the retention of SET into the cytoplasm and conse-
quence inhibition of PP2A. Thus, p38β is involved in SET trafficking to the cytosol 
and PP2A inactivation through a CK2-dependent manner. (ii) p38β also binds to 
SET stabilizing the oncoprotein and avoiding its degradation [57].

Similarly, it had previously described another mechanism in AML that impairs 
PP2A activity through the stabilization of SET in the cytoplasm. SETBP1 is a pro-
tein located in the cytoplasm that binds and stabilizes the 39 kDa full-length SET, 
protecting the oncoprotein from protease cleavage, and facilitating PP2A inactiva-
tion and cell proliferation. Interestingly, SETBP1 overexpression is a common event 
in AML, affecting the 28% of AML patients and diminishing the overall survival 
[29]. Later studies in other myeloid neoplasm have confirmed the crucial role of 
SETBP1 in leukemogenesis.

On the other hand, SET is also implicated in natural killer (NK) cell 
cytotoxicity. Upon cytokine stimulation (Interlukin-12, −18 and − 15), SET 
up-regulation impairs IFN-γ production in human NK via PP2A inactivation, 
limiting the anti-tumor and/or anti-inflammatory activity of the NK cells [67]. 
Trotta et al. described a model where SET/PP2A regulates granzyme B expres-
sion which leads to determine NK cytotoxicity. They observed that SET knock-
down inhibited the expression of granzyme B at mRNA and protein levels, 
limiting NK cytotoxicity [68].

Others have reported SET as an inhibitor of the DNAse activity of the tumor-
suppressor NM23-H1; a promoter of AP-1 activity; or an activator of MAPK signaling. 
These data suggest that SET not only induce the inactivation of PP2A but also pro-
motes other signaling pathways ensure tumor growth.
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2.3 Cancerous inhibitor of PP2A (CIP2A)

Another endogenous PP2A inhibitor is cancerous inhibitor of PP2A (CIP2A) 
[69], an oncoprotein that controls oncogenic cellular signals by inhibiting PP2A 
activity through the stabilization of c-MYC [21, 69–71], which play an important 
role in AML [72].

CIP2A is expressed in very few tissues in normal conditions but it is overex-
pressed in a wide variety of human cancers, where it is associated with an aggres-
sive clinical behavior [70, 71, 73–76]. However, few studies have focused on AML. 
Wang et al. using conventional PCR found that 77.4% of AML patients [55 of 84] 
overexpressed CIP2A, confirming their results at protein levels, however, they 
did not provide quantitative data to support that [77]. Recently, our group using 
quantitative real-time RT-PCR studied the prevalence of this oncoprotein in a series 
of 203 normal karyotype AML patients. We reported that CIP2A overexpression is a 
recurrent event in this subgroup of the disease (51/203, 25%), and is associated with 
a very poor prognostic impact in the overall survival of normal karyotype AML 
patients. Our results indicate that CIP2A knockout downregulates c-MYC, leading 
to a reduction of the cell proliferation, supporting the malignant role of CIP2A and 
c-MYC in leukemogenesis [31].

In addition, cancerous inhibitor of PP2A has been extensively studied in 
CML. Similarly, high levels of CIP2A were found in CML patients at diagnosis 
being significantly associated with risk of progression to blast crisis. Therefore, 
CIP2A protein levels have been postulated as a biomarker of disease progression 
in Imatinib-treated CML patients [78]. Furthermore, as indicated above with SET, 
high levels of CIP2A are associated with an up-regulation of c-MYC and BCR-ABL1 
tyrosine kinase activity [78]. However, second-generation tyrosine kinase inhibitors 
(TKI) manage the disruption of CIP2A/c-MYC/E2F1 loop, preventing the malig-
nant progression and constituting a promising therapeutic strategy [79]. These 
data support that CIP2A inhibits PP2A activity, stabilizing E2F1, and creating a 
CIP2A/c-MYC/E2F1 positive feedback loop, which imatinib cannot overcome [78]. 
However, greater efforts are need to elucidate the exact role of CIP2A in leukemias.

2.4 PP2A-activating drugs

The increased number of studies pointing to the crucial role of PP2A inactiva-
tion in cancer growth has led to the development of drugs that favors PP2A reac-
tivation [12, 80]. The most widely studied drugs are FTY720 and OP449, but its 
limitations have encouraged the search of new drugs that have greater efficacy and 
clinical applicability.

FTY720, an oral sphingosine analog derived from myriocin, is a metabolite 
isolated from fungus Isaria Sinclairii that has been approved for the treatment 
of patients with relapse multiple sclerosis, but recently it has been studied for its 
potential antitumoral properties [81]. FTY720 is administrated as a pro-drug, which 
needs an activation by phosphorylation through sphingosine kinase 2, binding the 
active form to one of the sphingosine-1-phosphate receptors (S1P1, S1P3, S1P4 or 
S1P5). The phosphorylated form does not prevent T-lymphocyte or B-lymphocyte 
activation, but does interfere with the immune cell trafficking from the lymphoid 
organs to the peripheral blood [82]. Likewise, FTY720 is a potent inhibitor of tumor 
growth and angiogenesis, being attractive its use in the treatment of both solid and 
hematological tumors. Interestingly, the anticancer activity of the drug depends on 
the ability to act as a PP2A activator [83], inducing apoptosis by interfering with 
Bcl-2, and suppressing mitogenic and survival signals, and inhibiting the ERK and 
PI3K/AKT pathways [13, 84].
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Mechanistically, FTY720 binds to globular amphipathic domain of the C-terminal 
hydrophobic pocket of SET [85], preventing the formation of the SET/PP2A-C 
inhibitory complex and reactivating PP2A functionality [12, 29–32]. Our group 
has confirmed these results in AML, showing that FTY720 binds to SET within the 
last 100 amino acids of the C-terminal fragment, producing a destabilization of the 
SET/PP2A-C inhibitory complex, which promote PP2A reactivation and a reduc-
tion of AML cell viability [30]. Several reports back it up pointing out the efficacy 
of FTY720 in vitro and in vivo models of AML, suggesting that PP2A restoration 
decreases clonogenicity and induces a suppression of the disease [12, 29–32]. 
Moreover, FTY720 perturbs the sphingolipid metabolism pathway, favoring the 
accumulation of ceramide, a pro-apoptotic second messenger, mostly in the mito-
chondria, leading to the death of AML cells [86]. In the same way as in AML, the 
effects induced by FTY720 are well characterized in Ph positive and negative leuke-
mias. In CML and Ph-positive B-ALL progenitors, the drug promotes the BCR-ABL1 
inactivation and degradation, leading to the inhibition of survival factors such as 
JAK2, AKT and ERK1/2, which results in apoptosis of CD34+ progenitors in patients 
with TKI sensitive and TKI-resistant CML [12, 55, 84]. In addition, a recent study 
provide new evidences for the use of FTY720 as an oral therapeutic agent in AML, 
highlighting that FTY720 lipid nanoparticles were more effective in vitro and in vivo 
models than FTY720 solutions because are able to increase the bioavailability of the 
free drug [32]. However, the main problem of the usage of FTY720 continues due 
to the induction of cardiotoxicity at the anti-neoplastic dose by the phosphorylated 
form. So, it has been proposed FTY720 analogues that are not targets for phosphory-
lation by SPHK2 [28].

Our group has recently revealed a novel non-phosphorylable FTY720 analogue 
called CM-1231, which reactivates PP2A activity by preventing the formation of 
the SET/PP2A-C inhibitory complex, inhibiting cell proliferation and promoting 
apoptosis in AML cell lines and primary patient samples. Importantly, CM-1231 
does not induce cardiotoxicity in zebrafish models, maintaining its anti-leukemic 
potential in zebrafish xenograft models [28].

Other molecules have been tested to activate PP2A in AML, such as OP449 [87]. 
OP449 is a small physiological stable and cell-penetrating peptide, which binds 
specifically to SET leading to PP2A reactivation. It has been shown that OP449 
treatment suppress tumor growth, enhance apoptosis and impairs clonogenicity of 
CML and AML cell lines and primary samples [87, 88]. Furthermore, the combina-
tion of OP449 with chemotherapy or specific TKI in AML and CML cell lines and 
primary patient samples have a synergistic effect [27]. However, OP449 like others 
PADs are unable to activate specific PP2A complexes against the exact pathogenic 
driver of the disease.

The ability of PP2A to dephosphorylate hundreds of proteins is mediated by over 
40 specificity-determining B subunit, which competes for the assembly and activa-
tion of PP2A heterogeneous complex [89–91]. Therefore, it is essential to identify 
which regulatory isoform is deregulated in order to selectively reactivate it and 
direct PP2A against pathogenic drivers [92–94]. DT-061, a SMAP (small molecules 
that activate the phosphatase PP2A), selectively binds and stabilizes a PP2A com-
plex containing a single B-subunit, B56α, which promote the dephosphorylation of 
selective PP2A substrates such as c-Myc. Stabilization of the PP2A-B56α complex 
by DT-061 has shown potent anti-leukemic effect, and their combination with TKI 
have improve anti-tumor effects while provide an opportunity to decrease kinase 
inhibitors related toxicities in some malignancies such as lung adenocarcinoma 
[95]. Interestingly, Kauko et al. determined that PP2A inactivation is a mechanism 
of kinase inhibitor resistance in cancer, thus the use of DT-061 could overcome 
the initial therapeutic resistance [96]. These observations raise the question on the 
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appropriate temporal application of the drug: before the appearance of the resis-
tance or upon its arrival. Whatever the answer, the important fact is that developing 
drugs against specific B regulatory subunits is a key event to face crucial pathogenic 
drivers [95].

Similarly, a class of small-molecules iHAPs (improved heterocyclic activators 
of PP2A) facilitate the assembly of the holoenzyme PP2R1A-B56ε-PPP2CA, which 
dephosphorylates MYBL2 transcription factor in Ser241, causing irreversible arrest 
of leukemic cells in the prometaphase [97]. Thus, the use of these molecules to 
target deregulated PP2A subunits; facilitate the activation/deactivation of specific 
molecular targets deregulated by PP2A inactivation in the tumoral scenario, 
reducing the toxicity induced by general activation of PP2A.

These findings open new possibilities to establish innovative therapeutic 
approach that targets PP2A in order to improve therapeutic options in AML 
patients.

3. Conclusion

Despite cytogenetic heterogeneity in AML was discovered 30 years ago, it was 
not until 15 years ago when the molecular heterogeneity of the disease began to be 
studied in depth. However, the general therapeutic strategy in AML patients has not 
changed substantially and high dose of chemotherapy continues to be the standard 
one. Consequently, the outcome for most patients, especially elder patients, remains 
poor. Thus, many new drugs targeting a variety of pathological cellular processes 
have been developed over the last years for the treatment of AML, although few 
have been translated into clinical practice. The reason is that they are used as single 
agents instead of following a combinatory therapy, decreasing its effectiveness. The 
Cancer Genome Atlas Research Network confirmed the molecular heterogeneity 
of the disease and organized important mutated genes in AML into a functional 
category, pointing out the importance of developing new compound against 
specific cancer pathways. In this regard, the tumor-suppressor PP2A has emerged as 
an important promising therapeutic target because its anti-proliferative function is 
inactivated in a large part of patients with AML.

PP2A inactivation is a recurrent event in AML patients. PP2A reactivation 
by PADs has shown important antileukemic effects in both KIT-positive and 
KIT-negative AML cells. Preclinical studies show that pharmacological restora-
tion of PP2A tumor-suppressor activity by PADs (FTY720, OP499 or CM-1231) 
prevents the growth of tumor cells, increasing the cell death ratio. Furthermore, 
the combination of these drugs with both conventional chemotherapy and tyrosine 
kinases has synergistic cytotoxic effects in AML cells, decreasing the appearance 
of side effects. However, recently, have been developed small molecules that are 
capable of activating specific PP2A complexes that target particular disease-causing 
pathogenic pathways. The importance on knowing which B subunit is deregulated 
to applied a specific compound that reactivates this subunit opens new possibilities 
for personalize medicine, or personalized treatment, which improve the overall 
survival of patients with hematopoietic and non-hematopoietic malignancies.
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