
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Chapter

Agent Based Load Balancing in
Grid Computing
Wided Ali and Fatima Bouakkaz

Abstract

Load-Balancing is an important problem in distributed heterogeneous systems.
In this paper, an Agent-based load-balancing model is developed for implementa-
tion in a grid environment. Load balancing is realized via migration of worker
agents from overloaded resources to underloaded ones. The proposed model pur-
poses to take benefit of the multi-agent system characteristics to create an autono-
mous system. The Agent-based load balancing model is implemented using JADE
(Java Agent Development Framework) and Alea 2 as a grid simulator. The use of
MAS is discussed, concerning the solutions adopted for gathering information pol-
icy, location policy, selection policy, worker agents migration, and load balancing.

Keywords: load balancing, grid computing, agent migration, resource utilization,
mobile agents

1. Introduction

Grid computing has appeared as an encouraging smart computing paradigm.
Grid computing purposes to collect the power of geographically distributed hetero-
geneous, multiple-domain computational resources to offer high performance. To
realize the encouraging potentials of grid computing, effective job scheduling, and
load balancing algorithms are important. Such algorithms should be very scalable
since these systems typically have thousands to millions of resources. They should
also be flexible and be adaptive to task requirements.

The load balancing prevents the state in which some resources become
overloaded while the others are underloaded or idle. Therefore, the use of a load
balancing mechanism is expected to enhance reliability. The problem that can
increase in this mechanism is related to the characteristics of the grid, which are
resource variations, resource heterogeneity, application variety, and the dynamicity
of grid environments. Multi-agent systems give encouraging features for resource
managers. The scalability, reactivity, cooperation, proactivity, flexibility, auton-
omy, and robustness that characterize multi-agents system can help in the complex
task of resource management in dynamic and changing environments.

Multi-agent distributed systems give an exciting solution to grid load balancing.
An agent-based structure is developed to offer services for high performance-
programming environments and applications that can be used on the grid comput-
ing environment. Software agents improve expandability, permitting the number of
resources involved to rise easily, by providing services that include job scheduling,
monitoring, and supervisory for the system.

1

Asynchronous communication, parallel actions, and autonomous operations of
agents allow MAS to adjust to dynamic modifications of the grid environment,
thereby enhancing the stability, fault tolerance, responsiveness, and reliability
of the grid. Identifying key reasons to prove the convergence of MAS and grid is
not an easy task. In this chapter, a new Agent-Based load balancing Model is
presented. A hierarchical architecture with coordination is designed to ensure
scalability and efficiency. Also, a multi-agent approach is applied to improve
adaptability. Multi-agent system is implemented with the JADE (Java Agent
Development) framework for grid load balancing. The chapter also discusses the
difficulties and advantages surrounding the task of integrating multi-agent systems
into grid computing.

The structure of the chapter is organized as follows: Section 2 describes Agent
based load balancing architecture and implementation, Section 3 shows
implemented algorithms. Finally, Sections 4 concludes the chapter with comments
and discussion about current and future works.

2. Proposed agent based load balancing model

The proposed model is an extension of our previous works related to load
balancing system [1, 2], which is integrated into our agent-based load balancing in a
grid computing project.

In this section, we will introduce an Agent-based load balancing Model
(ABLBM). We will mention the components of the system and the interaction
between agents briefly. We will describe the new features we added to Agent- based
load balancing Model in grid, UML Classes Diagram, UML Sequence Diagram,
algorithms, and load balancing mechanism in detail.

2.1 The ABLBM framework

The UML Classes Diagram of the proposed model comprises fourteen connected
classes as follows (Figures 1 and 2):

1.The Model class is linked by an aggregation relationship to the Level 2, Level 1,
and Level 0 classes

2.The Level 0 class contains one and only one Grid Agent

3.The Level 1 class contains one or more cluster Agents

4.The Level 2 class contains one or more clusters and the cluster class contains
one or more resources

5.A Resource can be associated with one or more users, and each user can submit
one or more tasks.

6.The Resource class is linked by an aggregation relation to the cluster class

7.Grid Agent class can create one or more Cluster Agents

8.Cluster Agent can create one Migration Agent, one or more Resource Agents,
LBC Agents, and Worker Agents.

2

Artificial Intelligence - Latest Advances, New Paradigms and Novel Applications

The proposed framework is intended to take advantage of the agent’s characteris-
tics to create a self-adaptive and self-sustaining load balancing system. The proposed
system consists of six types of agents, in unbalanced situations, and if the Cluster
Agent finds that there is a load imbalance between the resources under its control, it
uses the Knowledge Algorithm to receive the load information from each Resource
Agent. Based on this information and the estimated equilibrium threshold, it analyses
the current load of the cluster. Depending on the outcome of this analysis, it decides
whether to start a local balancing in case of an unbalanced state, or simply inform
other Cluster Agent of its current load. Resource Agent sends the updated local load
value to Cluster Agent, which updates its load information. Migration Agent is
responsible for migratingWorker Agents to the selected underloaded resource. There
is a Migration Agent in each Cluster, who expects acknowledgement of receipt from
the receiving resource once it receives the migrated Worker Agent. The last agent is
Grid Agent, it is the role of the distribution of jobs between clusters, and all Cluster
Agents are started by this type of agents.

Figure 1.
UML classes diagram of ABLBM framework.

3

Agent Based Load Balancing in Grid Computing
DOI: http://dx.doi.org/10.5772/intechopen.94219

2.2 Algorithms

We define two levels of load balancing algorithms: Intra-cluster load balancing
and intra-Grid load balancing algorithm.

2.2.1 Intra cluster load balancing algorithm

This load balancing algorithm makes the imbalance situations can be resolved
within a cluster. It is triggered when any Agent Cluster finds that there is a load
imbalance between the resources which are under its control. To do this, the Agent

Figure 2.
UML sequence diagram describes agent interactions in intra cluster load balancing process framework.

4

Artificial Intelligence - Latest Advances, New Paradigms and Novel Applications

Cluster receives load information from each Resource Agent. Based on this infor-
mation and the estimated balance threshold, it analyzes the current load of the
cluster. According to the consequence of this analysis, it chooses whether to start a
local balancing in the situation of imbalance state, or eventually just to notify other
Agent Clusters about its current load. To implement this local load balancing, we
propose the following three policies: load information gathering, agent selection
policy, location policy, and Worker Agent migration.

2.2.1.1 Load information gathering

In the proposed algorithm, Agent Cluster decides to start a local balancing in the
case of imbalance. There are some particular events that change the load configura-
tion in a grid environment. The events can be categorized as follows:

1.Arrival of any new resource

2.Withdrawal of any existing resource.

3.Local Agent Worker Termination: a local Agent Worker’s life cycle is ended

4.Local Agent Worker Start: a new local Agent Worker will be started

5.Incoming Migrating Agent: the local resource has been selected as a receiver
for the migrating agent.

6.A Mobile Agent Departure: the local resource has been selected as a sender for
the migrating agent.

7.Agent Worker ends the computation assigned to it, and becomes idle;

Whenever any of these activities happen the local load value is changed,
Resource Agent sends the updated local load value to Agent Cluster who updates its
Table of resources. Each Cluster Agent estimates its associated cluster capability by
performing the following actions:

1. it estimates the current load of the cluster based on load information received
from its Resource Agents;

2. it sends its load information to other Cluster Agents

The local host load is dependent on the Agent workers running on that host. A
load of an agent executing on a machine is defined as the sum of its computational
load and communication load in time unit [3].

A local host load can be defined as follows: The load Lk of a machine Mk is
defined as the sum of its entire agents load on the host. More specifically

Lk ¼
X

M aið Þ¼k

Wk þ Ukð Þ (1)

A load of an agent executing on a machine is defined as the sum of its computa-
tional load and communication load Loadij = Wij + Uij Where: Wij is Computational
Load and Uij is communication load.

5

Agent Based Load Balancing in Grid Computing
DOI: http://dx.doi.org/10.5772/intechopen.94219

2.2.1.2 Agent selection policy

The selection policy handles which Worker Agent is migrated whenever there is
a necessity. We assign a numerical value, called credit, to every Worker Agent. The
credit value designates the capacity of the agent to remain undisturbed in case of
migration. For a Worker Agent, the higher its credit value, the higher its opportu-
nity to stay at the same machine. In other words, its opportunity to be selected for
migration is lower. The LBC Agent assigns credit to eachWorker Agent and chooses
which agent requests to be migrated using the credit. Any Worker Agent with high
credit will be given more opportunity to preserve its current location (the resource
the agent resides in) with less opportunity to be selected for migration.

The credit value of a Worker Agent is assumed to depend on two types of
parameters, namely Worker Agent dependent parameters and System dependent
parameters [4]:

2.2.1.3 Worker agent dependent parameters

1.Its computational load, as it represents the main source of resource loading.

2. Its communication load, as it represents another source of resource loading.

3.Agent’s size, an agent migrates through the network to its new destination,
thus an agent with big size is predictable to take more time to reach its
destination resource.

4.Agent’s priority, the interruption of a high priority agent running to perform a
migration process should be prohibited.

2.2.1.4 System parameters

1.Reliability of the communication path between resources, the migrating agent
delivery is not assured when the physical path reliability is low.

2.Availability of required resource on the source host, this factor represents the
affinity between an agent and its running host.

3.Source Host’s loading, the host with high load will be more subject to let some
agents migrate.

The credit of a Worker Agent increases if the following situations [4]:

1.The Worker Agent’s load reduces.

2. It communicates frequently with other worker Agents in other resources.

3. It has a high familiarity with the local machine. For example, it needs a special
type of processors, I/O devices, or large volumes of data localized at the
machine.

4.The agent’s remaining execution time is short.

5.The agent’s size is large.

6

Artificial Intelligence - Latest Advances, New Paradigms and Novel Applications

6.The communication load is small.

7.The communication path between hosts is not reliable.

8.The needed Resource is available.

9.The agent has high priority.

In contrast, the credit value of Worker Agent reduces in the following situations:

1.The Worker Agent’s load Increases

2.The communication with Worker Agents in other resources is increased.

3.Strong mobility or instant exchanges of messages (frequent message
exchanges rises the Worker Agent’s load.)

Using a multiple linear regression operation, we will try to gather all the men-
tioned factors into one equation, In linear regression, the relationship between a
dependent variable, Y, and an independent variable X, is modeled by Y = a + βX.
This interpretation of coefficient, it is appropriate only when the independent
variable is continuous (quantitative). To incorporate qualitative independent vari-
ables into the regression model and formulate the model so the variables have
interpretable coefficients, There are two commonly used methods for coding qual-
itative variables so they can be used in regression models, dummy coding and effect
coding [4, 5]. To include the variables qualitative in the equation, we will use the
simplest way which is the dummy coding, which assigns values “1” and “0” to
reflect the presence and absence, For example, if we take a qualitative variable
Resource availability Ri, we assigned value 1 when the resource is available and 0 if
it is not available. The final equation can be written as:

Credit Ai ¼ b0 þ b1Wi þ b2Ui þ b3Ri þ b4Ldi1 þ b5Ldi2 þ b6Hi1 þ b7Hi2

þ b8Pi1 þ b9Pi2 þ b10Si
(2)

Having a big coefficient means that this variable will make the agent tends to
stay rather than being migrated.

b1: Computation load Coefficient: if b1 is a relatively large negative value then an
agent having a big computation load is more likely to be migrated as its credit value
will be reduced. If b1 is a positive value then the resource that has a big computa-
tional load value will be excepted from the list of receiver resources.

b2: Communication load Coefficient: if b2 has a negative value, then we can
assume that an agent has a big communication load, it is more matter to migration
as its credit value will be small. Since b2 has the smallest weight among the regres-
sion coefficients then it has the weakest effect on the credit value and therefore the
migrating agent selection. If b2 is a positive value, so when it is multiplied by the
communication load, a resource that has a big communication load value will be
excepted from the list of receiver resources.

b3: Resource Availability Coefficient: when Ri = 1, b3 has relatively large values,
that means that the agent finds the needed resource on the running host thus it is
less subject for migration.

b4, b5: Host Load Coefficient: b4 has a higher load than b5 because when the
running host is underloaded or balanced, it is less matter to select one of its agents
to be migrated.

7

Agent Based Load Balancing in Grid Computing
DOI: http://dx.doi.org/10.5772/intechopen.94219

b6, b7: Reliability’s Coefficient: if Hi1,Hi2 = 1,1 then b6, b7 have relatively large
values because that’s means that the agent may not reach the destination node
through the unreliable network, thus the migration frequency is less.

b8, b9: Priority’s Coefficient: the high or moderate priority mean b8 and b9 have
high weight because the high or moderate priority agent are less matter to be
migrated.

b10: Agent size Coefficient: a big size agent mean b10 has a positive sign which
means that a medium-size agent will be less matter for migration as they will
encounter more loads in the transmission.

2.2.1.5 Location policy

After a Worker Agent is determined to migrate, we have to select the receiving
resource. The location policy defines to which destination resource the selected
Worker Agent will be migrated to. The Cluster Agent selects the destination
resource. For this purpose, it executes the following actions:

When the Cluster Agent receives the load information from its resources, it
Partition cluster into an overloaded resources list (OLD), under-loaded resources
list (ULD), and balanced list (BLD) and it sorts OLD by descending order of their
load and ULD by ascending order of their load. The resource will be in an
overloaded list if its load is high. The resource will be in the underloaded list if its
load is low. The resource is not into the overloaded list or the underloaded, after
that the Cluster agent sorts the overloaded resources list by descending order
relative to their Load and sorts underloaded resources list by ascending order
relative to Their Load. In the next step, Cluster Agent determines the sender
resource and the receiver resource, where the sender resource is the first resource in
the overloaded resources list and the receiver is the first resource in the underloaded
resources list. Each Worker agent records the communication load between all the
resources. If the receiver resource has the highest communication load with the
migrated Agent then it is selected as the receiver resource else we must select
another receiver resource from the list of underloaded resources. This is because, if
a receiver resource is an external resource, the load of Worker Agent may not
reduce due to large external communication. Instead, the load may rise.

2.2.1.6 Worker agent migration

The Worker Agent selection is related to its credit value while the receiver
resource is the most under loaded resource. The migration decision is taken by a
Cluster Agent that sends it for Migration Agent associated. The proposed MAS
employs a mobile-agent system to support the migration of an agent. For migrating
the Worker Agents, the status of the system and the agents currently operate or
registered have to be considered. The receiver resource has to have more than one
running agent. The Migration Agent sends a request message to the AMS agent.
Then, the AMS sends an authentication message along with timestamp to it. The
Migration Agent sends a request message of migration along with the authentication
message to the DLA (Dynamic Library Agent) of the receiver resource. The DLA
then sends the Worker Agent code after verifying the authentication and validation
of the message. Finally, the Worker Agent migrates itself to the receiver resource or
migrates a clone agent, in calling the doMove () method by the migrating agent
with as parameter the receiver resource. The migrated agent is executed by the
Dynamic Library Agent, and if the migrated one is a clone agent, it records itself to
the platform by itself.

8

Artificial Intelligence - Latest Advances, New Paradigms and Novel Applications

LBC Agent: Gathering Information Algorithm

Input: Worker Agents info

Output: LoadR = resource load

{

Creates the list of Worker Agents;

Calculates the total local load host LoadR by using Eq. (1) and sends it for Resource Agent

Send LoadR to its Resource Agent associated

Loop wait for load change//depends on happening of any of defined events

{

if (events_happens () = 2 or events_happens () = 3) then

{

Calculates Credits of Worker Agents (by using Eq. (2);

Adds Worker Agents for the list of Worker Agents and adds their load

values for the load of resource.

Sends LoadR to its Resource Agent associated;

}

if (events_happens () = 1 or events_happens () = 4) then

{

Removes Worker Agents from the list of Worker Agents and subtract their

load from the load of resource

Sends LoadR to its Resource Agent associated;

}

End Loop

}

Function events_happens ()

output Type: integer

If (Worker Agent Termination) then events_happens () =1; End If

If (Worker Agent Start) then events_happens () =2; End If

If (Incoming Migrating Worker Agent) then events_happens () = 3; End If

If (Worker Agent Departure) then events_happens () = 4; End If

If (Arrival of any new resource) then events_happens () = 5; End If

If (Withdrawal of any existing resource in the local host) then events_happens () = 6;End If

If (Loadcluster > Sthreshold)then events_happens () = 7; End If//Sthreshold saturation threshold

If (Cluster.state = unbalanced) then events_happens () = 8; End If

Resource Agent: Workload Estimation

Input: receive LoadR from LBC Agent, Worker Agents info

Output:

{

Started up LBC Agent associated;

Started up Worker Agents associated;

Receives LoadR from LBC Agent associated;

Sends LoadR to its Cluster Agent associated;

Keeping track of the number of alive Worker Agents on the local host;

}

9

Agent Based Load Balancing in Grid Computing
DOI: http://dx.doi.org/10.5772/intechopen.94219

Cluster Agent: Knowledge Algorithm

Input: receives tasks from AgentGrille, LoadR, LoadC
Output: Cluster Load, table of resources information

{

sends tasks among Resource Agents;

create the table of resources information;

receive LoadR from the resource Agents under its control;

Updates the table of resources information;

if (events_happens () = 5) then

{

Create Resource Agent for the new resource;

Creates LBC Agent for the new resource;

Creates Worker Agents for new resource;

Sends tasks among Resource Agent of new resource

Adds information of the new resource for table of resources information

Updates the table of resources information;

}

if (events_happens () = 6) then

{

Kill Resource Agent of the destroyed resource;

Kills LBC Agent of the destroyed resource;

Kills Worker Agents for the destroyed resource;

Removes information of the destroyed resource from table of resources information

Updates the table of resources information;

}

Diffuses Cluster Load to other Cluster Agents;}

AgentLBC: Selection policy Algorithm

Input: AgentWorkers info

Output: AgentWorkers list are sorted by the ascending order of their credit value, selected

AgentWorker

{

Orders the list of Worker Agents by ascending order of their Credit values;

Selects the first Worker Agent from the list for migration;

Sends this information for Migration Agent;

}

Cluster Agent: location policy algorithm

Input: table of resources information, LoadR,Loadcluster
Output: Sender Resource, Receiver Resource

{

if (events_happens () = 7)//cluster is saturated

intra-grid load balancing algorithm

Else

If (events_happens () =8) then

{

Partitions Table of resources information into overloaded resources table (OLD), under-loaded

resources table (ULD) and balanced resources table (BLD)

OLD φ; ULD φ; BLD φ

10

Artificial Intelligence - Latest Advances, New Paradigms and Novel Applications

For every resourcei of cluster do

{

If (resourcei is saturated) then OLD OLD ∪ resourcei;
Else Switch

Case 1:

LoadR > Bthreshold: OLD OLD ∪ resourcei; /* Bthreshold is balanced threshold */

Case 2:

LoadR < Bthreshold: ULD ULD ∪ resourcei;

Case3:

LoadR = Bthreshold: BLD BLD∪ resourcei;

Sort OLD by descending order relative to their LoadR;

Sort ULD by ascending order relative to their LoadR;

Selects the first resource of OLD list as sender resource;

Selects the first resource of ULD list as receiver resource;

Sends this information for Migration Agent;

Migration Agent: Worker Agent Migration algorithm

Input: Sender Resource, Receiver Resource

Output: an Acknowledgment

Receives Sender Resource and Receiver Resource from its related Cluster Agent.

Sends migration request for AMS agent;

If receives an authentication message from AMS agent then

{

Sends a request message for Dynamic Library Agent of the receiver resource;

DL Agent sends code for the Worker Agent;

Worker Agent migrates itself to the receiver resource;

Waits for an Acknowledgment from the Dynamic Library Agent of receiver resource;

Sends an Acknowledgment for its related Cluster Agent;

}

2.2.2 Intra grid load balancing algorithm

Load balancing at this level is used if the Cluster Agent fails to balance its load
among its related resources. In this case, each overloaded cluster migrates Worker
Agents from its overloaded resources to underloaded clusters. In contrast to the
intra-cluster level, we should consider the communication cost among clusters.
Knowing the global state of each cluster, the overloaded cluster can send its Worker
Agents for under-loaded clusters. The selected under-loaded clusters are those that
require minimal communication cost for migrating agents from overloaded clusters.
The agent can be transferred only if the sum of its latency in the source cluster and
cost transfer is lower than its latency on the receiver cluster. This assumption will
avoid making useless agent migration.

We associate a period to each Cluster Agent, during which each Cluster Agent
sends its current load information to the other clusters. So, a Cluster Agent can
receive new load information about another one at any time. This updated infor-
mation will be considered in the next period.

Cluster Agent: intra-grid load balancing algorithm

Input: Loadcluster

11

Agent Based Load Balancing in Grid Computing
DOI: http://dx.doi.org/10.5772/intechopen.94219

Output: Sender Resource, Receiver Resource

{

If (events_happens () =7) then

{

Receives Loadcluster of other clusters of grid;

Collects Loadcluster in the table of clusters information

Sort table of clusters information by ascending order relative to their load

Select the first cluster as receiver cluster;

Sorts the resources of receiver cluster by ascending order of their load

Receiver Resource = the first resource of list of resources in receiver cluster

Sorts the resources of current cluster by descending order of their load

Sender Resource = the first resource of list of resources in sender cluster

Sorts Worker Agents of first resource of current cluster by selection policy and communication cost;

Sends this information for the Migration Agent

}

3. Implementation

We implemented a system prototype using JADE [6] (Java Agent Development
Framework) for agent implementation, and Alea 2 [7] (Job Scheduling Simulator
based on GridSim) as a simulator of the grid. Alea 2 is based on GridSim Toolkit [8]
and represents an extension that contains better tools for scheduling algorithm
implementation visualization competency and an upper speed of simulations.

To find the constant H for calculating the higher threshold, we execute our load
balancing method 10 times for the different values of H = 0.5, 0.6, 0.7, 0.8, 0.9, and
observed number of migration.

Figure 3 demonstrates the number of migration for the different values of H
threshold. The number of migration augments with H threshold values but when
the value of H threshold changes to 0.9 and 1, the number of migration is
augmenting intensely. So we set the value of H threshold at 0.9.

Figure 3.
Number of migration on different value of H.

Figure 4.
Number of migration on different value of L.

12

Artificial Intelligence - Latest Advances, New Paradigms and Novel Applications

In Figure 4, we are using the H threshold = 0.9. So, to find the best value of the
lower threshold we executed our load balancing algorithm 10 times for the different
values of the L threshold L = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and we observed the
number of migration. We found that number of migration augmented with the
value of L threshold. It offers the best result at L = 0.3.

3.1 Workload

We modeled the complex data set from the National Grid of Czech republic
MetaCentrum, these data permit us to implement very realistic simulations. Also, it
offers information about machine failures and specific job requirements and that
information influences the quality of solutions generated by the scheduling algo-
rithms. Job description includes (Job ID, user, queue, number processors used,
etc.). Also, the description of clusters includes complete information with RAM
size, CPU speed, CPU architecture, operating system, and the list of supported
properties (cluster location, allowed queue (s), and network interface, etc.). Addi-
tionally, information machines were in maintenance (failure/restart). Finally, the
list of queues containing their time limits and priorities is provided. More details on
the trace file used can be found at [9].

3.2 The simulation environment

A class library was developed that simulates the activities of an agent platform.
This library, called ABLBM (Agent-based load balancing), includes the classes: Grid
Agent, Cluster Agent, Migration Agent, LBC Agent, and Resource Agent. The
simulation is initialized by the Grid Agent class which makes instances of resources,
jobs, and other entities as required by the GridSim standard. Grid Agent reads
information describing the grid resources and jobs from a data file, reads the jobs
from the data_set file, and dynamically produces the job instances over time.
Figure 5 specifies the Grid Resource parameters such as resource ID, resource’s CPU
speed, and resource’s memory capacity. Next, Grid Agent lists all the available grid
resources within the grid environment. When the simulation time is equal to the job
submission time, the Grid Agent starts the Cluster Agent and dynamically sends the
jobs created for the Resource Agents over time.

Based on its own load and the estimated balance threshold, Cluster Agent ana-
lyzes the load state of the cluster. In the imbalance state, Cluster Agent defines the

Figure 5.
Grid agent interface.

13

Agent Based Load Balancing in Grid Computing
DOI: http://dx.doi.org/10.5772/intechopen.94219

overloaded resources (sources) and the underloaded ones (receivers), depending on
their load information by using the threshold values. Grid Agent and Cluster Agent
interfaces are shown in Figures 5 and 6.

3.3 Model comparison with some works

Model System

configuration

Load

information

gathering

policy

Selection

policy

Location

policy

Decision

making

Migration

condition

Implementation

ABLBM The system

contains a set

of computing

resources

hierarchy of

control, with

six types of

agents

Event-based

information

gathering

Credit -based

concept

receiver

resource is the

most under

loaded and it

has the highest

communication

load with the

migrated Agent

Migration

decision is

taken by

Cluster

Agent

Cluster

state is

unbalanced;

Jade [6] + Alea2

[7] simulator

VM, dynamic

balancing [10]

The system

contains

entity,

federate, VM,

and host with

migration

management

agent

periodic-

based

information

gathering

computation

and

communication

cost

receiver

resource is the

least loaded

host

Migration

decision is

taken by

migration

management

agent

host is over-

loaded,

AST-RTI [11]

version 2.0 + C+

+

LB in

distributed

MAS [4]

The system

contains a set

of nodes

decentralized

in control,

with seven

agents

Event-based

information

gathering

Credit -based

concept

The destination

node is the node

with the least

LC (Location

Credit) value

Migration

decision is

taken locally

by the LBC

Agent

Local load

value is

greater than

the load

threshold

value

Java + Jade

A2LB [12] The system

contains a set

of VMs

centralized in

control, with

three agents

periodic-

based

information

gathering

Not cited receiver VM

having desired

configuration

Migration

decision is

taken by

Load agent

fitness

value of a

VM

becomes

less than or

equal to

threshold

value

Java

N LB WITH

STRONG

MIGR ATION

IN AN

The system

contains a set

of machines

centralized in

periodic-

based

information

gathering

task cost receiver is

available

worker agent in

Migration

decision is

taken by

network

traffic

analysis

Jade

Figure 6.
Cluster agent interface.

14

Artificial Intelligence - Latest Advances, New Paradigms and Novel Applications

Model System

configuration

Load

information

gathering

policy

Selection

policy

Location

policy

Decision

making

Migration

condition

Implementation

AGENT

BASED GRID

SYSTEM

USING CSP

APPROACH

[13]

control, with

five agents

the desired

container

migration

manager

4. Conclusion

Recognizing key factors to prove the convergence of grid and MAS and models is
not a simple task. We note that the current state of GRID and MAS research
activities are necessarily developed to enable justifying the study of the path
towards an integration of the two fields.

We have presented a theoretical comparison between some related works and
the proposed model. The proposed model has some unique features. It is hierarchi-
cal, which facilitates the circulation of information through the tree and defines the
flow of messages between agents. Also, the proposed Agent-based load balancing
model uses an event-driven information gathering policy, the latter being especially
beneficial in terms of economy of usage of network resources. Furthermore, it can
achieve excellent performance with significantly less computational load and sys-
tem instability than a periodic information gathering policy. To select the migrating
agent, we use the credit-based concept, accordingly, some factors are considered to
calculate the credit value. Moreover, in the selection of receiver resources, we take
into consideration the resource loads and the communication between the receiver
resources and the migrating agent for avoiding the migration for external resources
and reducing the communication cost. The migration decision is taken locally by
Cluster Agent, where each cluster agent to balance its load among its associated
resources. If it fails, the Cluster Agent migrates worker agents to underloaded
clusters based on the load information received by other clusters. Finally, it sup-
ports flexibility and expandability, thus, various intelligent agents have been
deployed to decrease system complexity by modularization. Moreover, it is easy to
modify its components, and add more features and functions to it.

In theory, the multi-agent architecture of load balancing systems introduces
important improvements, such as better average performance when one computer
is not working and a lower system-error probability. In terms of the development
process, fault-tolerance, and scalability, the agent approach offered the expected
improvements, both in objective real-world measurements and in the subjective
observations of designers, developers, and users.

On another hand, we could not overcome several well-known problems when
designing distributed systems. For example, handling failed entities, synchroniza-
tion problems, and query-response-related issues turned out to be the same as in
any distributed programming. It is important to be aware of the advantages and
disadvantages of the agent and non-agent approaches, but the most important point
is whether the advantages prevail. For load balancing systems, our theoretical
analysis and practical experiences both indicate that the advantages of agent-based
load balancing systems clearly be more than the observed disadvantages.

The system performance was not studied yet. Thus, there is a need to analyze
execution efficiency and compare it to available Agent-based load balancing platform
evaluations. Further research is going to concentrate on execution performance.

15

Agent Based Load Balancing in Grid Computing
DOI: http://dx.doi.org/10.5772/intechopen.94219

Author details

Wided Ali* and Fatima Bouakkaz
Larbi Tebessi University, Tebessa, Algeria

*Address all correspondence to: wided.ali@univ-tebessa.dz

©2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

16

Artificial Intelligence - Latest Advances, New Paradigms and Novel Applications

References

[1] A. Wided, K. Okba, and B. Fatima.
Load balancing with Job Migration
Algorithm for improving performance
on grid computing: Experimental
Results. Advances in Distributed
Computing and Artificial Intelligence
Journal, 2019; 8(4): 5–18. DOI:10.14201/
ADCAIJ201984518

[2] A. Wided, K. Okba . A new agent
based load balancing model for
improving the grid performance.
Multiagent and Grid Systems Journal,
2020; 16(2):153–170. DOI: 10.3233/
MGS-200326.

[3] Chow K-P, Kwok Y-K. On load
balancing for distributed multiagent
computing. IEEE Trans Parallel Distrib
Syst ,2002;13(8):1153–61.

[4]A.M. Metawei, G. Salma,M.H. Sahar ,
M.N.Salwa .'Load balancing in
distributed multi-agent computing
systems', Ain Shams Engineering
Journal,2012, 3(3):237–249.

[5] R. Gupta . Coding categorical
variables in regression models: dummy
and effect coding.Cornell Statistical
Consulting Unit,2008,4(2):202–210.

[6] F.L. Bellifemine, G.Caire, and D.
Greenwood, Developing Multi-Agent
Systems with JADE. JohnWi-ley &
Sons,2007, NJ. ISBN: 978–0–470-05747-6

[7]D. Klusáček and H.Rudová. Alea 2 job
scheduling simulator. In Proceedings of
the 3rd International Conference on
Simulation Tools and Techniques
(SIMUTools 2010), Torremolinos,
MalaMA, Spain. DOI: 10.4108/ICST.
SIMUTOOLS2010.8722

[8] R.Buyya, and M.Murshed. Gridsim: a
toolkit for the modeling and simulation
of distributed resource management and
scheduling for grid computing, The
Journal of Concurrency and
Computation: Practice and Experience

(CCPE),2002, 14:13–15. DOI: 10.1002/
cpe.710

[9]N. Li, X.-Y. Peng, M.-H. Zhang, M.
Wang, and G.-H. Gong, Multimedia
communication over HLA/RTI,
SimulationModelling Practice and
Theory,2006,14(2): 161–176. https://doi.
org/10.1016/j.simpat.2005.03.003

[10] A.Singh,D. Juneja, M.Malhotra.
Autonomous agent based load balancing
algorithm in cloud computing.
International Conference on Advanced
Computing Technologies and
Applications, 2015. DOI: 10.1016/j.
procs.2015.03.168

[11] X. Song, Y. Ma, D.Teng. A load
balancing scheme using federate
migration based on virtual machines for
cloud simulations, Mathematical
Problems in Engineering, 2015,pp.1–11.
https://doi.org/10.1155/2015/506432

[12]Z. A .Sayar and N.Erdogan. Network
load balancing with strong migration in
an agent based grid using CSP
Approach. International Journal of Grid
Computing & Applications
(IJGCA),2012, 3(4),43–53. DOI:
10.5121/ijgca.2012.3404

[13] http://www.cs.huji.ac.il/labs/parallel/
workload/l_metacentrum

17

Agent Based Load Balancing in Grid Computing
DOI: http://dx.doi.org/10.5772/intechopen.94219

