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Chapter

The Neurofunctional Model of 
Consciousness: The Physiological 
Interconnectivity of Brain 
Networks
Umberto León-Domínguez

Abstract

The present chapter integrates neural networks’ connectivity into a model that 
explores consciousness and volitional behavior from a neurofunctional perspective. 
The model poses a theoretical evidenced-based framework that organizes the brain 
journey of neural information flow from the ascending reticular activating system 
and non-specific thalamic nuclei, to cortical networks, such as the default mode 
network and the fronto-parietal network. These inter-connected brain networks 
can be divided within three hierarchical and inter-connected “functional neural 
loops”: (1) the “brainstem-thalamic neural loop” for arousal, (2) the “thalamo-
cortical neural loop” for neural information distribution throughout the brain, 
and (3) the “cortico-cortical neural loop” for transforming neural information 
into the contents of consciousness that the individual can perceive and manipulate 
voluntarily. These three neural loops act as a global functional neural system, and 
its disruption due to brain damage can cause a person to experience catastrophic 
outcomes, such as a coma, a vegetative state, a minimal conscious state, or other 
cognitive and behavioral impairments.

Keywords: consciousness, cortico-cortical system, thalamo-cortical system, 
brainstem, fronto-parietal network, default mode network

1. Introduction

Consciousness is a complex term to tackle objectively due to its broad epistemo-
logical spectrum. From a clinical view, consciousness has been neurophysiologically 
and behaviorally parameterized for its assessment [1, 2]. It is a central nervous 
process (reduccionism) that multiple neural long-range connections control 
(conexionism) and that is teleonomically goal directed. This neurofunctional point 
of view converges with theories about the emergence of new features in complex 
systems [3]. Various authors propose that high brain connectivity between distinct 
and distant neural groups is an elemental characteristic for the emergence of con-
sciousness [3–5]. In this respect, consciousness is a neurophysiological phenomenon 
regulated by different brain networks that create qualia, the subjective experience 
of consciousness [6–11].
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Consciousness should be interpreted as a physiological state of the central nervous 
system that changes over time and space. This functional mutability allows high-
order cognitive functions to take place [6, 12, 13] to produce an overt and/or covert 
behavior that can be measured via direct observation or neuroimage [14–16]. All of 
these intermingled processes are supported via various brain networks that integrate 
endogenous and exogenous information with the intention of responding effectively 
to organic and psychological demands [6, 8, 11, 17, 18]. In this regard, acquired brain 
damage can impair the regular activity of brain networks, disorganizing cognition 
and behavior (mild, moderate, or severe brain damage), or even inhibiting the expe-
rience of consciousness (disorder of consciousness) [14, 19–21]. Therefore, from a 
clinical view, the structural and neurophysiological integrity of the neural substrate 
that underlies consciousness will determine the functional behavior of individuals 
[6, 22, 23]. Thus, consciousness can be described as a basal, dynamic, and transi-
tive brain state that supports the high-order cognitive processing of information to 
produce suitable behaviors for environmental demands [24].

2. The neurofunctional model of consciousness

A huge number of theories seem to agree on many assumptions about con-
sciousness, although they diverge regarding the descriptive approach. Some of 
them, such as the Global Neural Workspace Theory, focus on its neurophysiological 
components [11]. Meanwhile, others, such as the Global Workspace Theory, focus 
on its cognitive components [25]. In addition, the Integrated Information Theory 
focuses on its computational components [8, 26, 27]; the Temporo-Spatial Theory 
of Consciousness focuses on its inner space and time characteristics [6]; and the 
PFC-feedback System [28] focuses on its feedforward and feedback components. 
Crick and Koch introduced one of the first approaches to the study of conscious-
ness [9]. Their approach posits that the experience of consciousness will be deter-
mined based on the long-range connectivity between the front and back parts of 
the brain. All of these authors and theories have shed light on the phenomena of 
consciousness and have probably contributed to the very first theoretical founda-
tions for the study of consciousness objectively:

• Consciousness depends on bioelectrical and biochemical brain activity.

• Some neurophysiological processes are required to experience conscious-
ness as awareness (i.e., the object or event has to trigger a P300 wave on the 
cortex).

• These neurophysiological processes are regulated via various neural groups 
that process information in a rapid, automatic, and stereotypical manner (back 
brain), as well as via other neural groups that process information in a slow and 
voluntary manner (front brain).

• Consciousness needs long-range connectivity between distinct and distant 
brain areas.

• These long-range connections (probably in beta bands) assemble distinct and 
distant neural groups into extended neural networks that regulate various 
physiological and phenomenological dimensions that are necessary for the 
experience of consciousness.
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One of the main neural models that are emerging currently about neural 
processing is the “predictive coding model” [29, 30]. This model posits that neural 
processing occurs within feedforward and feedback loops between upper and 
lower brain structures and slices. Lower structures/slices send predictions to upper 
structures and these structures send back error predictions to adjust neural pro-
cesses to make the ongoing behavior efficient [29–33]. Llinás has already suggested 
that consciousness could be more related to a close-loop neural network than to 
the emergent consequence of a sensory input [34]. In this sense, a functional and 
preserved consciousness could depend on the predictive codification between 
inferior (brainstem and thalamus) and superior brain structures (cortex), where 
the prefrontal cortex (PFC) receives “end-of-the-line” bottom-up predictions and 
sends top-down error predictions to the thalamus to adjust new top-down projec-
tions [24, 35–40].

Despite all of the theories and experimental evidence about the neural 
networks involved in consciousness, no global theoretical framework exists to 
describe how these neural networks operate to produce and maintain conscious-
ness. The present chapter will introduce a neurofunctional model that organizes 
the interaction and functioning of the neural networks into three neurofunctional 
loops: (1) the Brainstem-Thalamic neural loop (B-T neural loop), (2) the Thalamo-
Cortical neural loop (T-C neural loop), and (3) the Cortico-Cortical neural loop 
(C-C Neural Loop). Each of these loops are formed via differentiated and semi-
independent neural structures that are involved in specific aspects of the phenom-
enological consciousness.

2.1 B-T neural loop

The brainstem plays a key role in the regulation of consciousness due to the 
control that it exerts to the Ascending Reticular Activating System (ARAS) and 
therefore to wakefulness (wakefulness and awareness are the two clinical dimen-
sions typically related to consciousness) [41, 42]. The ARAS is composed of myriad 
brainstem nuclei (dorsal raphe locus coeruleus, median raphe, pedunculopontine, 
and parabrachial nuclei), with connections to the thalamus, hypothalamus, and 
basal forebrain [42–48], and even with the prefrontal areas [49] and the precuneus 
(Pcu) [50]. The lower dorsal ARAS connects the pontine reticular formation to the 
intralaminar thalamic nuclei (ILN), the lower ventral ARAS connects the pontine 
reticular formation to the hypothalamus, and the upper ARAS connects the intrala-
minar thalamic nuclei to the cerebral cortex [51–54]. Whereas hypothalamic-basal 
forebrain pathways regulate sleep-wakefulness cycles [48, 55, 56], the ILN, as 
part of the non-specific thalamic nuclei, can block thalamocortical rhythms and 
therefore the emergence of arousal and awareness [22, 57–60]. Baars [18] called this 
circuit the Extended Reticular-Thalamic Activating System, which he considered to 
be the principal neural assembly in the experience of consciousness.

2.2 T-C neural loop

A significant amount of evidence points out that reciprocal interactions between 
the thalamus and cortex are a fundamental component of the proper functioning 
of the thalamo-cortical system [61], which is related to consciousness [62]. This 
thalamo-cortico-thalamic connectivity starts to develop in the late prenatal and 
early postnatal stages [61, 63, 64], and the efficient deployment of these develop-
mental processes will determine the functional state of the thalamo-cortical system 
in the adult stage [65]. The thalamus has been proposed as the main neural structure 
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of the thalamo-cortical system, as it operates as a regulator of cortical functional 
connectivity, whereby it is involved in the ongoing cognitive processes [66–70]. The 
thalamus can be divided into three nuclear groups: first-order thalamic relay nuclei, 
higher-order thalamic relay nuclei, or non-specific thalamic nuclei. First-order 
thalamic nuclei send afferent projections to the primary sensory cortical areas, 
whereas higher-order nuclei receive projections from the primary sensory cortical 
areas and send these projections back to the higher visual cortical areas forming 
the cortico-thalamo-cortico circuits. Finally, nonspecific thalamic nuclei are those 
that receive projections from the ARAS and send diffuse projections throughout the 
brain [71–73]. The nonspecific thalamic nuclei are composed of three main nuclear 
groups: the thalamic reticular nucleus (TRN), the ILN, and the midline thalamic 
nuclei (MTN). The TRN-ILN-MTN thalamic axis has been related to conscious-
ness [22, 62, 74] with strong implications in the distribution of neural information 
throughout the brain [24].

The functional extent of each nonspecific thalamic nuclei is related to the control 
and regulation of a specific cognitive domain [24] . The TRN is one of the main 
neural nodes that regulates the activity of the thalamus and therefore the activity of 
the entire thalamo-cortical system [75–77]. The TRN receives afferent glutamatergic 
projections from the entire brain, and in turn, it sends only efferent GABAergic 
projections to the thalamus, thus regulating thalamo-cortical and cortico-cortical 
activity [28, 78, 79]. On a morphological level, the TRN is divided into sensory and 
motor regions [80]. Whereas the sensory region modulates attentional processes via 
connections with the prefrontal cortex [38], the motor region is involved in limbic 
and motor processes due to high connectivity with the ILN-NMT, the ventrolateral, 
and the anterior thalamic nuclei [81–85]. Various authors have referred to the 
involvement of the TRN in the attentional processes as the “attention spotlight” and 
“attentional door” that regulate the flow of information between the thalamus and 
the cortex [35, 86, 87]. The capacity to control neural information throughout the 
brain is due to the inhibition that it exerts to the thalamic nuclei [37, 76, 86]. This 
inhibition mechanism underlying the “attention spotlight” selects the information 
needed to face psychological and physiological demands while suppressing those 
that are not relevant. Some authors suggest that the TRN is involved in the content 
of consciousness by controlling selective attentional processes and the thalamus 
activity [28, 86]. According to Crick [35], the short-term synaptic plasticity of the 
TRN could influence first-order thalamic relay nuclei in the formation of temporal 
connections between brain areas related to the content of consciousness [35]. Hence, 
this capacity to modulate the content of consciousness could be mediated by the 
control of attentional processes [88–90].

On the other hand, the functions of the ILN and the MTN are functionally dif-
ferentiated, but their activity are highly dependent [91–95]. Regarding consciousness, 
both nuclei (due to its multiple connections with the ARAS) activate the excitability of 
the cerebral cortex to maintain vigilance and arousal [42, 58–60, 76, 91]. For instance, 
the ILN send and receive projections from the prefrontal, motor, and parietal 
cortices. Meanwhile, the MTN is connected to the medial prefrontal cortex (mPFC) 
and the hippocampus (HPC). These diffuse connections spread to the cortex, thus 
allowing the synchronization of brain activity through the adjustment of the brain 
waves’ phases. Thus, distinct and distant neural groups assemble into cortico-cortical 
networks to facilitate the flow of neural information [91]. In addition, The ILN and 
MTN are also involved in the regulation of the striatal-thalamocortical circuits [96] 
due to the multiple efferent inhibitory connections that receive from the TRN, the 
basal ganglia, and the reticular formation of the ARAS [97–99]. These connections 
with the striatum, the brainstem, and the cortex highlight the relevance of the ILN 
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and the MTN in the motor, somatic, and visceral functions, which are essential for 
controlling arousal, perception, and even emotion expression [100].

Specifically, the ILN have been associated with the regulation of cortical activity 
and the restoration of consciousness [22, 68, 101, 102]. The anterior region of the 
ILN react to motor inputs [103, 104], whereas the posterior region organizes motor, 
limbic, and associative information [60, 97, 105, 106]. Projections to limbic struc-
tures and sensori-motor areas suggest the relevance of the integration of the affec-
tive and motor functions that underly propositional behaviors [107]. In addition, 
they are involved in tasks that require the focalization of attention and the selection 
of actions for unexpected events [108, 109]. Kinomura and colleagues pointed 
out that arousal and attention require the simultaneous activation of the reticular 
formation of the midbrain and the ILN [110]. This evidence places the ILN as the 
basic neural nodes for the integration of brain functions, such as arousal, attention, 
and motor control, to trigger high-level cognitive performance [86, 104, 110–113]. 
This functional characteristic of the ILN in the regulation of the arousal has been 
employed for deep brain stimulation in cases of minimally conscious state. Schiff 
[22, 114] showed that stimulating the ILN in minimally conscious state patients 
could improve their motor behavior, but without showing any sign of “real” 
consciousness [22, 114, 115]. Therefore, although the ILN seems to be involved in 
consciousness, it cannot produce a constant and fluent stream of consciousness 
by itself.

Finally, the MTN have been reported as the main “gateway” of information 
to the HPC and the limbic system, with a high dependence on the individual’s 
arousal levels [116–119]. Concretely, the nucleus reuniens and rhomboid of the 
MTN jointly with the mPFC and the HPC form a specialized neural circuit that 
contribute to learning and to the cognitive flexibility [120], probably due to its 
relationship with the working memory [116, 117]. This circuit constituted by the 
MTN-HPC-mPFC could be modified via the functional state of the TRN [121] 
and also affect the content of consciousness [122]. Other authors propose that the 
circuit formed via the orbital and mPFC, the amygdala, the hypothalamus, and 
the MTN could also be involved in the visceral and emotional control of human 
behavior [123–128]. The MTN directly influences the arousal and attentional 
processes through its involvement in emotional regulation [129]. Thence, it is 
implicated in the emotional adjustment of behavior in a continuously changing  
environment [130]. According to these authors, the MTN could mediate the 
selection of the most suitable behavior depending on the emotional tone inputs 
received in a specific moment [118, 130]. This evidence places the MTN as a 
remarkable interface between the diverse structures of the limbic system to 
integrate memory, emotion, and cognition [100, 119, 129, 131].

All of this evidence points out that the TRN-ILN-MTX thalamic axis and its 
connections throughout the brain are essential components for being conscious and 
aware of our surroundings due to the axis’s capacity to place the T-C neural loop 
in an optimal functional state [24, 35]. In this sense, it is important to distinguish 
between “be aware” and the “formation of consciousness.” Being aware of some-
thing means that our cognitive systems are prepared to receive and manipulate 
the content of consciousness, but the formation of the content of consciousness 
depends on other neural processes. The content of consciousness is formed mainly 
in the posterior cortex [132, 133] through cortico-thalamo-cortico circuits, which 
facilitate connections among various sensory cortical areas in the “content-specific 
Neural Correlates of Consciousness (NCC)” [70, 133–136]. Regardless of the 
content-specific NCC, when it comes to accessing consciousness, some neurophysi-
ological requirements, such as a late P300 wave, are needed to ignite a global brain 
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activation that will trigger awareness [137]. The conscious perception of the content 
of consciousness is the end of the concatenation of neurophysiological events that 
propagate from the back to the front cortex [6, 138]. It would be like a competi-
tion among various neural coalitions to access consciousness, and once a winning 
coalition exists (the first to break neurophysiological requirements), a specific 
representation or the content of consciousness can be perceived as generating a 
genuine experience of consciousness [137]. Afterward, this content of conscious-
ness is controlled by high-order cognitive functions and is incorporated into plans, 
desires, and/or thoughts [6, 139].

2.3 C-C neural loop

Once the content of consciousness is created in the back brain [132, 133], 
various cortico-cortical networks consciously manipulate the information [140]. 
One of the main cortico-cortical networks, which is broadly documented, is the 
Default Mode Network (DMN) [141–144]. This network is formed by the anterior 
and posterior cingulate cortex, the mPFC, the orbital PFC, the medial temporal 
lobe (parahippocampal cortex and HPC), the retrosplenial cortex, and the 
inferior parietal lobe [145] . The DMN is a rest neural network, whose activity is 
maximum when the subject is awake and the cognitive demand is low (low-level 
processing of exogenous information) [146]. Moreover, the DMN is character-
ized by a high metabolism during rest states [147–150], a progressive deactivation 
when more cognitive resources are needed to process information [147], and a 
high connectivity with other cortico-cortical networks to exchange information 
[140, 143, 151]. Traditionally, the DMN has been related to internal processes, 
such as self-reference thoughts and mind-wandering [152–154], although some 
studies currently link its activity to extrinsic processes, such as certain atten-
tional processes [155] and the recall of memories [156–159]. Recently, it has been 
posed that the DMN could also be involved in the integration of spatial, self-
reference, and temporal information, thus generating episodic memories [160]. 
These authors suggest that, henceforth, the DMN is mostly activated in all of the 
cognitive processes [160].

One of the key points for understanding the role of the DMN in consciousness is 
to conceive it as a cognitive system that modulate cortico-cortical activity through 
its mediation in the transfer of information from resting states or task-negative net-
works to cognitively active states or task-positive networks [140, 147, 156, 161–164]. 
When a subject is resting (with the low-level processing of exogenous information), 
the DMN controls cortical activity with the posterior cingulate cortex (PCC) and 
the precuneus (Pcu) as their main neural nodes. However, as long as elaborated pro-
cessing is required and the load of the working memory increases, the physiological 
burden of the DMN decreases in favor of task-positive networks: the fronto-parietal 
central executive network (FPN), the dorsal attention network (DAN), and the 
salience network (SN). The FPN includes the dorsolateral PFC, the mPFC, the ante-
rior insula (aINS), the Pcu, and the interior parietal lobe [140, 165–167]. On the other 
hand, the DAN is formed by the frontal eye field and the intraparietal sulcus [168], 
and the SN by the aINS, the dorsal anterior cingulate cortex, the amygdala, the ventral 
striatum, and the ventral tegmental area of the mesencephalon [169]. All of these 
networks share overlapping regions whereby they can exchange neural information 
depending on the ongoing cognitive activity [147, 149, 150, 170–173] . The outcome 
of the continuous interactions among the cortico-cortical networks will define the 
functional conscious state of the individual [163].

The FPN, DAN, and SN play a key role in conscious behavior due to its capac-
ity to operate jointly and synchronically in a highly coordinated and temporally 
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accurate manner [140, 165, 174]. For instance, the DAN has been related to 
focalized attention and working memory, whereas the SN has been related to 
social communication, social behavior, and self-consciousness [171, 175–178] 
. When all of these task-positive networks are operating, the DMN needs to 
deactivate [179–181] to facilitate the transition from low-energy cognitive states 
to high-energy cognitive states [147]. In these high-energy cognitive states, the 
mPFC takes control of the global brain activity at the expense of the PCC and the 
Pcu [170, 182]. Therefore, the alteration of structural and functional connectiv-
ity “within and between cortico-cortical networks” could cause the individual to 
experience a broad spectrum of neuropsychiatric and neurocognitive disorders 
[162, 163, 180, 183, 184].

The FPN and SN, especially in the prefrontal regions, regulate the cognitive 
processes involved in the achievement of conscious goals through the regulation of 
the physiological equilibrium between the DMN and the rest of the cortico-cortical 
networks (cognitive control) [140, 165–167, 185, 186]. Some studies point out that 
the mPFC and aINS regulate physiological equilibrium among brain networks 
[178, 187]. For instance, Crone and colleagues compared the activation/deactiva-
tion of the DMN in vegetative states (currently known as “unresponsive wakeful-
ness state”), minimally conscious states, and individuals with preserved and 
functional consciousness (control subjects) [182]. They suggested that although 
the deactivation of the DMN was normal in control subjects, the same deactiva-
tion was significantly diminished in overlapped areas between the DMN and the 
FPN in a minimally conscious state, and it was absent in unresponsive wakefulness 
state patients. In other words, the cohesive and functional integrity between the 
DMN and the task-positive networks is a crucial factor in the transition between 
rest states (those with a low cognitive burden) to high-demand cognitive states 
(those with a high cognitive burden) [147]. Our team conducted an investigation 
whereby we compared cortical connectivity between minimally conscious states 
and severe neurocognitive disorders [4]. Our results revealed how the degree of 
connectivity between the anterior and the posterior cortex in the beta band was 
essential for maintaining a preserved consciousness. In this investigation, patients 
with minimally conscious states showed a low connectivity between the posterior 
and the anterior cortex, which could explain why their consciousness fluctuates 
over time [4]. In contrast, subjects with preserved consciousness showed a high 
connectivity between the anterior and the posterior cortex, whereby they can 
operate continuously without the absence of consciousness [4]. In this sense, in a 
case study, an unresponsive conscious patient emerged to a minimally conscious 
state when connectivity between the anterior and the posterior cortex increased 
[188]. Thus, the integration of the posterior and the anterior cortex into long-
distance cortico-cortical networks is one of the principal prerequisites for main-
taining functional consciousness [9, 182, 189, 190].

3.  Assumptions for the neuroFunctional Model of Consciousness 
(nFMC)

1. The nFMC is a theoretical and referential framework from which the study of 
consciousness can be tackled in all of its operative dimensions: neurophysi-
ological, clinical, neuropharmacological, and phenomenological.

2. Consciousness is a global neural process that keeps the individual in an optimal 
and continuous functional state, thus allowing qualia and high-order processes 
to take place to drive behavior.
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3. The nFMC divides global neural activity into three large systems, or functional 
loops, that are morphologically differentiated (although they share overlapped 
areas) and have semi-independent neurophysiological processes: the B-T neu-
ral loop, T-C neural loop, and C-C neural loop (see Figure 1).

4. Cognitive, behavioral, and emotional expression due to brain damage will 
depend on the location and extension of the lesion within the neural loop, thus 
leading to clinical outcomes that they may vary from a mild cognitive impair-
ment to a disorder of consciousness, such as a coma, minimally conscious 
state, or unresponsive wakefulness state.

5. Each neural loop is activated hierarchically and sequentially by its preceding 
level, thus extending a representation of the neural processes that took place in 
the lower level, as well as integrating and transforming this neural representa-
tion into new information.

6. The nFMC is in accordance with predictive coding models that present brain 
activity as a system in which lower brain structures project predictions/signals 

Figure 1. 
Consciousness is the phenomenological quality of human existence that arises from a hierarchical, parallel, and 
serial activation of long-distance brain networks [7], which operate as neural loops that “inform” upper and 
lower levels about their own operations [29, 30]. These loops receive input from lower levels (which contains 
new information/predictions) and input from upper levels (error predictions). The loop will integrate all of 
this new information, updating its own functional state and, consequently, also the functional state of the rest 
of the loops and the brain [29–32, 191]. ARAS: Ascending reticular activating system; TNN: Task-negative 
networks; TPN: Task-positive networks.
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via bottom–up processing, and where higher cortical areas send prediction er-
rors back via top-down processes.

7. Neural processes (both automatic and controlled) related to consciousness 
(such as P300, brain rhythms, and neurotransmitter discharges) can be local-
ized within either of the neural loops or in their reciprocal interactions.

8. The nFMC is complementary and comprises several assumptions considered in 
previous theories and investigations of consciousness:

• Consciousness can be deemed a Global Neural Workspace in which distinct 
neural networks compete to access consciousness [11, 25, 192].

• Consciousness is the result of functional units or complexes that integrate 
information and that are activated or deactivated depending on the ongoing 
sensorial/visceral necessities [8, 26, 27].

• Consciousness is a neurophysiological continuum commanded by inner 
spatio-temporal brain laws [6].

9. Regarding the neural mechanisms or processes involved in the formation of 
the content of consciousness, the nFMC aligns with models and evidence 
that posit that the contents of consciousness are formed in the back brain via 
cortico-thalamo-cortical connections [70, 132–136]. In addition, the nFMC 
recognizes that PFC top-down connections could modulate the selection and 
even the formation of the content of consciousness [28].

4. Conclusion

Human behavior has to be understood as a global brain activity dominated by 
complex and hierarchical neural processes that cannot be divided and explained 
by isolated functional units. Consciousness is the “operating system” running 
underneath the “interface” of overt and covert human behavior, and it is domi-
nated by the interactions of various neural levels composed of differentiated and 
semi-independent neural networks. Thence, the nFMC gathers reliable knowledge 
generated in the study on neural correlates of consciousness, providing a novel 
theoretical and referential framework that will help clinicians, researchers, and 
even students to localize the neural processes of interest within a global brain 
activity model. A further proposal should extend the structures and connectivity 
involved within and between each neural loop introduced in the nFMC.
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