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Chapter

Electric Load Forecasting an
Application of Cluster Models
Based on Double Seasonal Pattern
Time Series Analysis
Ismit Mado

Abstract

Electricity consumption always changes according to need. This pattern
deserves serious attention. Where the electric power generation must be balanced
with the demand for electric power on the load side. It is necessary to predict and
classify loads to maintain reliable power generation stability. This research proposes
a method of forecasting electric loads with double seasonal patterns and classifies
electric loads as a cluster group. Double seasonal pattern forecasting fits perfectly
with fluctuating loads. Meanwhile, the load cluster pattern is intended to classify
seasonal trends in a certain period. The first objective of this research is to propose
DSARIMA to predict electric load. Furthermore, the results of the load prediction
are used as electrical load clustering data through a descriptive analytical
approach. The best model DSARIMA forecasting is ([1, 2, 5, 6, 7, 11, 16, 18, 35, 46],
1, [1, 3, 13, 21, 27, 46]) (1, 1, 1)48 (0, 0, 1)336 with a MAPE of 1.56 percent. The
cluster pattern consists of four groups with a range of intervals between the mini-
mum and maximum data values divided by the quartile. The presentation of this
research data is based on data on the consumption of electricity loads every half
hour at the Generating Unit, the National Electricity Company in Gresik City,
Indonesia.

Keywords: electric loads, DSARIMA model, descriptive analytic, clustering,
forecasting, time series

1. Introduction

Fluctuations in electrical power greatly affect the performance of power gener-
ation systems. Changes in electrical power due to variations in demand for electrical
power momentarily result in an imbalance of electricity generated by the electric
power absorbed. If the power supplied is greater than there will be energy waste.
And if the power supplied is smaller then there will be overload which will result in
a blackout. This means that the amount of electric power generated must be bal-
anced or not too far from the nominal value of the electrical power requirements at
the load center. In fact, the use of electrical energy tends to change at any time.
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For this reason, it is necessary to predict the use of electric power that is able to
maintain a balance between supply and consumption of electric power in the power
generation system. Research of electricity load forecasting is very important in the
power plant system operation plan [1]. Load forecasting studies are classified into
three categories: long-term, medium-term and short-term predictions. Long-term
predictions are needed for planning the peak load capacity and system maintenance
schedule [2], medium-term predictions are needed for the planning and operation
of the power plant system [3], and short-term predictions are needed to control and
schedule the generating system [4]. So that load forecasting studies play a role in
ensuring the economic value of financing, system reliability, stability and quality of
electricity system services.

Fluctuations in electrical power at the load center contain a set of time-based
information. The characteristics of the load from the period of use both by house-
hold, commercial, industrial and public costs, are needed so that fluctuations can be
analyzed. The load characteristics, besides being able to be analyzed also contain a
series of load patterns tendencies due to usage. This conduct of using electric loads
contains seasonal patterns. Daily use tends to recur on certain days, as well as
weekly load patterns. This trend is then analyzed through the load cluster approach
to achieve load usage patterns based on seasonal patterns.

The Box-Jenkins time series study approach conducted in this research was able
to increase the estimated usage and application of seasonal patterns based on elec-
tricity load clusters. The time series prediction model is an accurate choice and
continues to grow to this day [5–7]. Researchers have carried out load forecasting
study activities with 2.06 percent MAPE [8]. In research, the parameter estimation
pattern was developed again with the least squares method which is better. And
then the load cluster modeling is developed to classify the trend based on seasonal
patterns.

2. Electrical load characteristics

The main purpose of an electric power distribution system is to distribute elec-
tric power from substations or sources to a number of customers or loads. The most
important main factor in the distribution system planning is the characteristics of
various electrical loads.

The electrical load characteristics are needed so that the system voltage, the
thermal effect of loading and the loading pattern can be analyzed properly. The
analysis is included in determining the initial projections in the next planning.

The characteristics of the electrical load are very dependent on the type of load it
serves. This will be clearly seen from the results of recording the load curve in a
time interval. The following are several factors that determine the load characteris-
tics according to the needs of this study [9].

2.1 Load factor

Load factor is the ratio between average load and peak load measured in a
certain period. Average load and peak load can be expressed in KiloWatt (KW),
KiloVolt-Ampere (KVA) and so on, but the units of both must be the same. Load
factor can be calculated for a certain period usually used in units of daily, monthly
or yearly.

The peak load referred to in this study is a momentary peak load or average peak
load in a certain interval (maximum demand), generally a maximum demand of
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15 minutes or 30 minutes is used. In this study, the load data used is 30-minute
interval load data.

The definition of the load factor can be written in the following equation:
when you are citing sources, the citations should be set in numbered format. All

the references given in the list of references should be cited in the body of the text.
Please set citations in square brackets keeping the below points in mind.

Load factor ¼ average load in a certain period

peak load in a certain period
(1)

The load factor can be known from the load curve. As for the estimation of the
magnitude of the burden factor in the future, it can be approached with existing
statistical data as was done in this study.

When applied to the power plant, it is formulated into

Load factor ¼ Paverage

Ppeak
� T

T
(2)

If T is in a year, an annual expense factor is obtained. If in 1 month the monthly
load factor is obtained, as well as the daily load factor.

2.2 Daily load

Daily load factors vary according to the characteristics of the load area, whether
it is a dense residential area, industrial area, trade or a combination of various types
of customers.

This daily load factor will also affect the weather conditions and certain days
such as holidays and so on.

2.3 Load curve

Load curves illustrate the variation of loading on a substation measured by KW
or KVA as a function of time. Measurement time intervals are usually determined
based on the use of measurement results, for example intervals of 30 minutes,
60 minutes, 1 day or 1 week.

The load curve shows the demand or load requirements at different time inter-
vals. With the help of this load curve, we can determine the magnitude of the
largest load and then the generating capacity can also be determined.

2.4 Peak load

Peak load or maximum demand is defined as the biggest load of needs that
occurs during a certain period. Certain periods can be in the form of daily, monthly
or annual periods. Furthermore, the peak load must be interpreted as the average
load during a certain interval, where the possibility of such load. For example, the
daily load of a distribution transformer where the peak load during an interval of
1 hour, ie between 19:00 (point A) and 20:00 (point B). The average value of the
A - B curve is its peak requirement.

Keep in mind here that peak needs are not instantaneous needs, but on average
during a certain time interval, usually a certain time interval is 15 minutes,
30 minutes or 1 hour.

The characteristics of the burden between holidays are different from ordinary
days so that they have different load variants. Load characteristics can also be
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distinguished by the factor of loading outside the time of the peak load, or who are
at the time of the peak load. So we need load forecasting with the aim of preparing
operating generating units. When electricity demand increases, it will be balanced
with adequate electricity supply to prevent power outages, otherwise if electricity
consumption decreases, electricity supply will be reduced so as not to over supply.

3. Electrical load analysis based on time series model

Box and Jenkins popularized the use of ARIMA models and the Box-Jenkins
methodology became highly popular in the 1970s among academics [10]. The
ARIMA model is also called the Box-Jenkins time series. A time series is a series of
observations taken sequentially based on time [11]. The observation process is
carried out at the same interval, for example in hour, daily, weekly, monthly, yearly
or other intervals. The purpose of time series analysis is twofold, namely to model
the stochastic mechanism found in observations based on time and to predict the
value of observations in the future. The value of a variable can be predicted if the
nature of the variable is known in the present and in the past.

3.1 ARIMA model classification

The ARIMA model is divided into several groups, namely: autoregressive (AR),
moving average (MA), and ARMA. The ARIMA model is a nonstationary ARMA
model that has gone through a differencing process so that it becomes a stationary
model. The ARIMA model also contains seasonal patterns. Defined as a pattern that
repeats in a fixed time interval. The application of this seasonal pattern has been
developed into a double seasonal pattern [12–14]. Double seasonal ARIMA model is
written with notation, as follows.

ARIMA p, d, qð Þ P1,D1,Q1ð ÞS1 P2,D2,Q2ð ÞS2 (3)

This model consists of two components, namely the first level which is usually
developed from a linear forecasting model to explain seasonal trends from data or
known as potential load. And at the second level developed from the ARIMA model
to capture autoregressive patterns from data or called irregular loads. For stationary
data, the seasonal factor can be determined by identifying the coefficient of autocor-
relation at two or three time intervals that are very different from zero. So that this
seasonal pattern can be identified whether it contains a tendency to have a seasonal
pattern or multiple seasonal patterns and has the following general form [15]:

ϕp Bð ÞΦP1 Bs1ð ÞΦP2 Bs2ð Þ 1� Bð Þd 1� Bs1ð ÞD1 1� Bs2ð ÞD2Zt ¼ θq Bð ÞΘQ 1
Bs1ð ÞΘQ 2

Bs2ð Þat
(4)

With

ϕp Bð Þ ¼ 1� ϕ1B� ϕ2B
2 � … � ϕpB

p

ΦP1 Bs1ð Þ ¼ 1�Φ11B
s1 �Φ21B

2s1 � … �ΦP1B
P1s1

ΦP2 Bs2ð Þ ¼ 1� Π12B
s2 � Π22B

2s2 � … � ΠP2B
P2s2

θq Bð Þ ¼ 1� θ1B� θ2B
2 � … � θqB

q

ΘQ1
Bs1ð Þ ¼ 1� Θ11B

s1 � Θ21B
2s1 � … � ΘQ1

BQ1s1

ΘQ2
Bs2ð Þ ¼ 1�Ψ12B

s2 � Ψ22B
2s2 � … � ΨQ2

BQ2s2 .
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3.2 ARIMA Box-Jenkins procedure

The prediction procedure of ARIMA Box-Jenkins model through five stages of
iteration, as follows:

i. Preparation of data, including checking of data stationary

ii. Identification of ARIMA model through autocorrelation function and
partial autocorrelation function

iii. Estimation of ARIMA model parameters: p, d, and q

iv. Determination of ARIMA model equations

v. Forecasting.

3.3 Identification

Identification requires calculation and general review of the results of the auto-
correlation function (ACF) and the parisal autocorrelation function (PACF). The
results of these calculations are needed to determine the appropriate ARIMA model,
whether ARIMA p, 0, 0ð Þ or AR pð Þ, ARIMA 0, 0, qð Þ or MA qð Þ, ARIMA p, 0, qð Þ or
ARMA p, qð Þ, ARIMA p, d, qð Þ. Meanwhile, to determine the presence or absence of
the dmodel value, it is determined by the data itself. If the data form is stationary, d
is 0, while the data form is not stationary, the value of d is not equal to 0 d>0ð Þ.
Likewise, the dual seasonal ARIMAmodel also refers to the autocorrelation function
(ACF) and partial autocorrelation function (PACF) as well as knowledge of the
system or process being studied.

Identification can be done after fixed time series data. The application of the
model after ACF and PACF data has a tendency according to the reference to
Table 1 and for the seasonal data patterns determined by referring to Table 2 [11].

3.4 Parameter approximation

There are two basic ways to get this parameter:

a. By trial and error, test several different values and choose one of these values
(or a set of values, if more than one parameter is estimated) that minimizes
the sum of squared residuals.

b. Iterative approach, choosing an initial estimate and then letting the computer
correct the iterative approximation.

ACF patterns PACF patterns ARIMA

parameters

Heading to zero after lag q Decreasing gradually/bumpy ARIMA 0, d, qð Þ

Decreasing gradually/bumpy Heading to zero after lag q ARIMA p, d, 0ð Þ

Decreasing gradually/bumpy (until lag q

is still different from zero)

Decreasing gradually/bumpy (until lag q

is still different from zero)

ARIMA p, d, qð Þ

Table 1.
PACF and ACF patterns.
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3.5 Parameter testing

Parameter testing phase is to test whether the selection of parameters p, d, q is
true and correct. The model is said to be good if the error value is random, meaning
that it no longer has a certain pattern. In other words, the model obtained can
capture well the existing data patterns. To see the error value of the test carried out
testing the value of the autocorrelation coefficient of the error, using one of the
following two statistics:

1.Q Box dan Pierce Test

Q ¼ n0
X

m

k¼1

r2k (5)

2.Ljung-Box Test

Q ¼ n0 n0 þ 2ð Þ
X

m

k¼1

r2k
n0 � kð Þ (6)

Spread by chi squared χ2ð Þ with free degrees dbð Þ ¼ m� p� q� P�Qð Þ
Where

n0 ¼ n� dþ SDð Þ (7)

3.6 Testing criteria

If Q ≤ χ2 α, dbð Þ, meaning: error value is random (model is accepted)
If Q > χ2 α, dbð Þ, meaning: error value is not random (model cannot be accepted

3.7 Parameter estimation

This study uses the least squares method in estimating parameters [15]. The
ARIMA model parameters are based on the time series observed with Z1,Z2, … ,Z1.
The quadratic method assumes that the best curve is the curve that has the least
square error of the data set. The parameter values of the ARIMA models p, d, and q
are determined through the stationary ACF and PACF chart plots.

3.8 Measuring accuracy level of forecasting result

Basically, to measure the accuracy of forecasting result can be done by
various methods. Some statistical methods such as as Root Mean Square Error

Model ACF PACF

AR pð Þ Dies down (decreases exponentially) in

seasonal lags

Cut off after lag ps

MA qð Þ Cut off after lag qs Dies down (decreases exponentially) in

seasonal lags

ARMA

p, qð Þ
Dies down (decreases exponentially) in

seasonal lags

Dies down (decreases exponentially) in

seasonal lags

Table 2.
PACF and ACF seasonal patterns.
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(RMSE), Mean Absolute Error (MEA) and Mean Absolute Percentage Error
(MAPE). In this research. MAPE is used as a standard measurement of the accuracy
offorecasting result. MAPE is defined as follows [13]

MAPE ¼
Pn

i¼1
Z�Ẑi

Zi

�

�

�

�

�

�

n
� 100% (8)

Where Zi and Ẑi is the actual and predicted values, while n is the number of
predicted values.

3.9 Electric load cluster modeling

Cluster analysis performed in this study refers to the statistical description of the
analysis technique. Descriptive statistics are methods relating to the collection and
presentation of a group of data so as to provide useful information [16]. This
description analysis includes several things, namely: frequency distribution, mea-
surement of central tendency, and measurement of variability [17].

The data that has been obtained from a study which is still in the form of random
data that can be made into grouped data is data that has been arranged into certain
classes. Lists containing grouped data are called frequency distributions or fre-
quency tables. Frequency distribution is the arrangement of data according to
certain interval classes or according to certain categories in a list. Frequency distri-
bution can be presented in groups, distribution based on rank order or ranking of
distribution classes, distribution in groups, and distribution charts.

Measuring central tendency is a statistical analysis that specifically describes a
representative score. The central tendency shows the location of the largest part of
the value in the distribution including a general description of data frequencies such
as mode, media, and mean or mean count.

While the measurement of variability to describe the degree of dispersion of
quantitative data. This measure consists of interquartile range, quartile deviation,
mean deviation, standard deviation and coefficient of variation, and variance.
Measurement of variability serves to determine the homogeneity or heterogeneity
of data. A data may have the same central tendency value but have different
variance values.

4. DSARIMA-based load forecasting

The data used in this study is the consumption of electric power every 30
minutes during January 2, 2009 to November 19, 2011 in the Generating Unit
service, the National Electricity Company in Gresik City, Indonesia.

The data is distributed on: 1. Data for training during January 2, 2009 to
November 12, 2011, 2. Data for testing with the assumption of real data compared to
training data from forecasting results during November 13–19, 2011.

Statistical Analysis System (SAS) is used as a simulation of electricity load
forecasting and Minitab programming is used to analyze the electricity load cluster
model.

4.1 Parameter identification

To identify data, the first step that must be taken is to plot the time series of the
data. The time series plot is displayed to see the data patterns and stationarity of the
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data which aims to determine the ARIMA model. The pattern of data as shown in
Figure 1 is very volatile. This condition is likely influenced by the integrated power
distribution system in the Java-Madura-Bali Indonesia interconnection system.

When referring to Figure 1(a), it can be seen that the data are not stationary in
variance or mean. For more details, it will be seen in the autocorrelation function as
shown in Figure 2. And if it refers to time series patterns there is a tendency for the
data to contain seasonal patterns as shown in Figure 1(b).

The data is not stationary in the variance, so it is necessary to transform the data
as follows. Testing stationarity in variance if the p-value or λ ¼ 1. Based on the
results of the transformation, the data is not stationary in the variance marked with
the value λ ¼ �0:13 as shown in Figure 3a. After going through the process of
transformation the data becomes significant with the value λ ¼ 1 as shown in
Figure 3b.

After the data is transformed it will be transformed back to get the active data
value, as follows

Figure 1.
(a) Data plot of electricity usage every 30 minutes during January 2, 2009 to November 12, 2011; (b) plot of
electrical load data with seasonal patterns (red box).

Figure 2.
ACF plot data.
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Z ∗

t ¼ Z�0,13
t (9)

Then

Zt ¼ Z ∗

t

� ��100
13 (10)

The data is stationary in variance, but the transformation results in Figure 2b
are not stationary in the mean. Data has not shown a constant value in the middle.
The stationarity of the data can also be seen through the plot of the autocorrelation
function (ACF). From Figure 2, it can be seen that the coefficient of autocorrelation
is significantly different from zero and slowly decreases. The pattern shows that the
data is not stationary in particular not stationary in the mean, while the ARIMA
method requires data that is stationary.

The ACF plot also shows that there are strong indications of having a seasonal
pattern in both daily and weekly seasonal averages as shown in Figure 4, below.

In Figure 4a, it can be seen that the electricity load data has a seasonal pattern
that is the daily seasonal as seen in lags 48, 96, 144, etc. And in Figure 4b, the data
also contains weekly seasonal as seen in lag 336, 672, 1008, 1344, etc.

Because the data is not stationary in the mean, it is necessary to do differencing
d ¼ 1ð Þ . The ACF plot of differencing data results is shown in Figure 5 below.

Based on the ACF plot in Figure 5, it appears that the nonseasonal data has been
stationary. However, seasonal plots are still not stationary with an indication that
ACF is still falling slowly in daily seasonal lags, ie lags 48, 96, 144, etc., and weekly
seasonal lags, ie lags 336, 672, etc.

Figure 3.
(a) Box-Cox transformation; (b) after transformation.

Figure 4.
ACF plots with seasonal patterns: (a) daily seasonal; (b) weekly seasonal.
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It is necessary to do differencing data once more in the seasonal pattern
d ¼ 1,D ¼ 1, s ¼ 48ð Þ. After going through seasonal differencing there are strong
indications that the data patterns have been stationary.

Based on the ACF plot for differencing d ¼ 1,D ¼ 1, s ¼ 48ð Þ it is clear that the
data as a whole has been stationary in the mean. The nonseasonal data plot has been
stationary in lags 1, 2, 3, … , 40. The data pattern tends to dies down and will be cuts
off after lag 7 and lag 8 in Figure 6a.

The ACF plot for seasonal patterns s ¼ 48 after differencing has also been
stationary at lags 48, 96, 144, etc. The data pattern tends to be cuts off after lag 48
in Figure 6b. The seasonal pattern s ¼ 336 tends to be cuts off after lag 336 in
Figure 6c.

For PACF plots both seasonal s ¼ 48ð Þ and s ¼ 336ð Þ dies down as shown in
Figure 6d. Based on the provisions in Tables 1 and 2, the parameter identification
results can be rewritten in the following Table 3.

The ACF and PACF data plots are stationary, the alleged nonseasonal ARIMA
models are in accordance with the stationary topology in Table 1 and the seasonal
ARIMA in Table 2. The temporary model of ARIMA provisional model is double

seasonal based on Table 3 is DSARIMA 1, 1, 1ð Þ 0, 1, 1ð Þ48 0, 0, 1ð Þ336 . However, there
is a possibility that white noise has not been fulfilled, so it is necessary to add or
change the order in accordance with the test.

4.2 Parameter estimation

AR and MA coefficients in the DSARIMA model are estimated using the least
squares method. The initial estimate that has been obtained is used as the initial
value of the estimation method iteratively. Obtained initial estimates of AR and MA
coefficients from the interim model DSARIMA (1, 1, 1) (0, 1, 1)48 (0, 0, 1)336 as
shown in Table 4 in the following.

Based on Table 4, AR and MA parameters have met the criteria for white noise
with a p-value greater than the error tolerance value α = 5%, with an alpha signifi-
cance level of less than 0.0001. However, it is necessary to re-test the residual

Figure 5.
ACF plot after differencing d ¼ 1:ð Þ
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assumptions which include the white noise assumption and meet the independent
criteria and are normally distributed 0, σ2ð Þ.

Ljung-Box Test is used to check the assumption of independence from residuals
with the following hypotheses:

H0 : ρ1 ¼ ρ2 ¼ … ¼ ρK ¼ 0

H1: there is at least one ρi that is not equal to zero for i ¼ 1, 2, … ,K

Figure 6.
ACF and PACF plot after differencing d ¼ 1,D ¼ 1, s ¼ 48ð Þ

Models ACF PACF Estimated parameters

Nonseasonal Dies down Dies down ARMA 1, 1ð Þ

Seasonal s ¼ 48ð Þ Cuts off Dies down MA 1ð Þ48

Seasonal s ¼ 336ð Þ Dies down Dies down MA 1ð Þ336

Table 3.
Identification plots for ACF and PACF.

Parameter Estimate Standard error t value Approx Pr> tj j Lag

MA 1.1 �0.35184 0.01899 �18.53 <0.0001 1

MA 2.1 0>95734 0.0013007 736.02 <0.0001 48

MA 3.1 �0.04526 0.0045103 �10.03 <0.0001 336

AR 1.1 �0.14,578 0.02006 �7.27 <0.0001 1

Table 4.
An output SAS of model with CLS iterative.
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With an error tolerance of 5%, H0 is rejected if the ρ-value < α, which means the
residual does not meet the assumption of white noise. The initial residual tests are
shown in Table 5 below.

Based on the estimated AR and MA coefficient parameters in Table 5, the
residual normal probability plot must meet the assumption of white noise with a

limit of< � 1:96
ffiffi

n
p ≈� 0:009, where n as many as 50,160 training data. Then based on

the initial estimation results in Table 5, it is necessary to estimate to meet the white
noise assumption, namely by including an estimate on the lag 2, 3, 4, 5, 7, 8, 9, 11,
16, 17, 18, 19, 20, 21, 22, 23, 27, 29, 30, 31, 46, 47, and 48. The results of the residual
check are shown in Table 6 below. The estimation results are significant for sea-
sonal lag, which is lag 48.

Based on residual checking, namely by adding and subtracting AR and MA
parameters, it can be seen that all lags have met the assumption of white noise with

a limit of < � 1, 96
ffiffi

n
p ≈� 0, 009 (see ACF Results). The best iteration results of the AR

and MA parameters are shown in Table 7 below.
Based on Table 7, the DSARIMA model is obtained with the coefficients

1, 2, 5, 6, 7, 11, 16, 18, 35, 46½ �, 1, 1, 3, 13, 21, 27, 46½ �ð Þ 1, 1, 1ð Þ48 0, 0, 1ð Þ336, which have
met the assumption of white noise.

To Lag ChiSq DF Pr > ChiSq ACF results

6 153.39 2 <0.0001 �0.002 �0.019 �0.041 �0.017 �0.028 �0.008

12 274.15 8 <0.0001 �0.033 �0.027 �0.0114 �0.009 �0.014 �0.007

18 342.13 14 <0.0001 �0.009 �0.009 �0.008 �0.017 �0.016 �0.023

24 422>74 20 <0.0001 �0.023 �0.018 �0.020 �0.011 �0.013 �0.003

30 43.05 26 <0.0001 �0.009 �0.008 �0.017 �0.008 �0.017 �0.014

36 489.03 32 <0.0001 �0.011 �0.009 �0.002 0.000 �0.010 0.000

42 497.60 38 <0.0001 �0.007 �0.008 0.002 �0.005 �0.004 0.003

48 804.03 44 <0.0001 0.001 0.002 0.006 0.018 0.044 0.060

Table 5.
An output SAS of model with ACF check of residuals.

To Lag ChiSq DF Pr > ChiSq ACF results

6 — 0 — 0.000 0.000 �0.002 0.004 0.001 0.002

12 — 0 — �0.005 �0.002 0.008 0.000 �0.007 �0.004

18 — 0 — 0.005 0.001 �0.008 0.001 �0.003 �0.003

24 18>10 5 0.0028 �0.007 �0.000 0.001 0.003 �0.001 0.002

30 24.78 11 0.0098 �0.005 �0.005 �0.002 0.009 0.0011 �0.001

36 31.03 17 0.0198 �0.005 �0.004 �0.000 �0.001 �0.004 0.008

42 33.77 23 0.0686 �0.000 �0.005 0.004 0.000 0.000 0.004

48 37.61 29 0.1314 0.005 0.006 �0.002 �0.002 0.003 �0.000

Table 6.
An output SAS of model with ACF check of residuals.
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4.3 Electrical load forecasting results

Based on the final results of the estimated parameters in Table 4 the ARIMA
coefficient parameters are obtained as follows: AR (1.1) = 1.1464, AR
(1.2) = � 0.295, AR (1.3) = � 0.0104, AR (1, 4) = 0.0189, AR (1.5) = � 0.0234, AR
(1.6) = � 0.004, AR (1.7) = � 0.0083, AR (1.8) = � 0.0125, AR (1.9) = � 0.0074,
AR (1.10) = 0.07, AR (2.1) = 0.03, MA (1.1) = 0.934, MA (1.2) = � 0.077, MA
(1.3) = 0.008, MA (1.4) = 0.00685, MA (1.5) = 0.017, MA (1.6) = 0.059, MA
(2.1) = 0.98, MA (3.1) = � 0.0364.

Based on the prediction model parameters obtained DSARIMA models

1, 2, 5, 6, 7, 11, 16, 18, 35, 46½ �, 1, 1, 3, 13, 21, 27, 46½ �ð Þ 1, 1, 1ð Þ48 0, 0, 1ð Þ336 with the
model equation as follows:

1� 1:1464Bþ 0:295B2 þ 0:0104B5 � 0:0189B6 þ 0:0234B7 þ 0:004B11
�

þ0:0083B16 þ 0:0125B18 þ 0:0074B35 � 0:07B46
�

1� 0:03B48
� �

Z ∗

t ¼

1� 0:934Bþ 0:077B3 � 0:008B13 � 0:00685B21 � 0:017B27
�

�0:059B46
�

1� 0:98B48
� �

1þ 0:0364B336
� �

at

After going through a reverse transformation Zt electrical load for the compari-
son of predicted results with actual data (testing) in Figure 7 below.

Parameter Estimate Standard error t value Approx Pr> tj j Lag

MA 1.1 0.934 0.01770 52.78 <0.0001 1

MA 1.2 �0.077 0.0072138 �10.64 <0.0001 3

MA 1.3 0.008 0.0038171 2.18 0.0293 13

MA 1.4 0.00685 0.0031724 2.16 0.0309 21

MA 1.5 0.017 0.0027856 5.92 <0.0001 27

MA 1.6 0.059 0.0067600 8.67 <0.0001 46

MA 2.1 0.98 0.0009744 1003.38 <0.0001 48

MA 3.1 �0.0364 0.0045572 �7.98 <0.0001 336

AR 1.1 1.1464 0.01855 61.81 <0.0001 1

AR 1.2 �0.295 0.0087427 �33.79 <0.0001 2

AR 1.3 �0.0104 0.0052195 �2.00 0.0454 5

AR 1.4 0.0189 0.0067496 2.80 0.0051 6

AR 1.5 �0.0234 0.0047509 �4.93 <0.0001 7

AR 1.6 �0.004 0.030582 �1.29 0.1958 11

AR 1.7 �0.0083 0.0033299 �2.49 0.0126 16

AR 1.8 �0.0125 0.0033252 �3.77 0.0002 18

AR 1.9 �0.007 0.0022520 �3.26 0.0011 35

AR 1.10 0.07 0.0067089 10.62 <0.0001 46

AR 2.1 0.03 0.0050410 5.86 <0.0001 48

Table 7.
An output SAS of model with CLS iterative.
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4.4 Model testing and measuring forecasting accuracy

Accuracy testing between actual power data and prediction results. Test using
the MAPE procedure and obtained at 1.56 percent.

5. Electric load modeling

The application of descriptive analytic methods in this book is presented to
obtain significant information in managing optimal electrical energy as the author
did [18]. Through frequency distribution, data can be arranged based on certain
criteria. Data categories are presented based on rank orders that contain ranking
data from the top or highest load to the lowest data value.

5.1 Data distribution forecasting results

This electricity load forecasting data is a usage data for a week at intervals every
half hour measurement at the power generation. This electricity load forecasting
data sample is 336 (N = 336) with mean of 370.56 MWh, meaning that the value is
centered at 370.526 MWh. Standard deviation of 36.2582 or the value of this devia-
tion is not too large, this shows the diversity of data is not too large, which means
the data is homogeneous.

Furthermore, forecasting the data shown in the time measurements every half-
hour of electric power consumption in the load center in Figure 8 below.

Figure 7.
Comparison of actual power with forecast power.
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Visualizations in other forms can be displayed in the form of boxplot graphics.
Figure 9 shows of range (in a box) every hour of measurement and the average
value line of every half hour of measurement.

Figure 9 shows that data tend to be at the minimum level, first quartile and the
median value. Electricity load increases at third quartile intervals and the maximum
load. This condition occurs between 18:30 until 21:30 at night.

Each measurement of electric power absorption at the load center has a
peak load. Based on the measurement data, it can be seen that the peak power
load absorption occurs at 19:00 and generally the peak load tendency occurs at
that hour.

Figure 8.
Plot data forecasting.

Figure 9.
Graph forecast boxplot.
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Henceforth processing this distribution data through seasonal data that can be
presented in the form of daily data, as follows.

The sample data used is Friday data and then the data will be presented in
Table 8 below.

Friday’s electricity load data—samples of electric load data are 48 (N = 48)
with mean of 375.143 MWh, meaning that the value is centered at 375.143 MWh.
Standard deviation of 35.4253 or the value of this deviation is not too large, this
shows the diversity of data is not too large, which means the data is homogeneous.

On Friday shown in Figure 10, the peak load occurred at 19:00 amounting to
444.234 MWh with a minimum electric absorption range of 327.509 MWh. On
Friday, the data has mean of 375.143 MWh.

No Days Mean StDev Median Minimum Peak Load Time of peak load

1 Friday 375.143 35.4253 375.832 327.509 444.234 19:00

2 Saturday 373.635 36.2699 375.208 325.378 445.746 19:00

3 Sunday 361.193 36.8101 357.005 312.912 438.985 19:00

4 Monday 368.672 36.5413 368.417 320.639 440.478 19:00

5 Tuesday 370.616 36.2821 371.793 321.685 439.731 19:30

6 Wednesday 371.619 36.3137 372.718 322.735 441.976 19:00

7 Thursday 372.806 36.6616 374.899 323.262 442.727 19:30

Table 8.
Daily data samples.

Figure 10.
Data plot on Friday.
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Furthermore, seasonal electricity load data on a daily scale can be restated in the
form of Table 8 below.

5.2 Predicted cluster data

In descriptive analysis, frequency distribution, measurement of central tenden-
cies and measurement of variability can be presented in the frequency distribution
graph. The purpose of the presentation and information provided in addition to
being able to describe the tendency of the data to form certain patterns, this analysis
can also be used as a reference for changes in electric power in the power generation
system.

The degree of data dispersion can be determined based on the range of
interquartile intervals that indicate the homogeneity of the data. In this study, the
electrical load cluster is defined as the range of quartile intervals to median value or
is shown in the electrical load data below.

It can be seen that the data sample with N = 336 has an average of 370.53 MWh
which means that the centralized data distribution is rated median. Standard devi-
ation of 36.26 or the value of this deviation is not too large, this shows the diversity
of data is not too large, which means the data is homogeneous.

Quartile intervals that divide data over median values form a cluster pattern,
with the distribution of data presented in Table 9 below

An important aspect of this data sample analysis is the presentation of data with
seasonal variants. Data development by taking into account the seasonal variants of
the hours and daily helped to optimize the management and operational decisions
of the generating system both in scheduling and controlling.

6. Conclusion

One of the research trends in electrical engineering is time series analysis. This
research includes forecasting studies and modeling of electrical load clusters. The
time series analysis method is very suitable with the characteristics of the electrical
load that is always fluctuating. This method is also able to produce different data or
not included in the training data process.

Clusters Interval range Frequency

1 Min–Q1 97

2 Q1–Median 83

3 Median–Q3 86

4 Q3–Max 70

N = 336

Table 9.
Range of clusters in the data variant.
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For the purposes of this electrical load research, forecasting study using the
DSARIMA method is an appropriate choice. This method accurately considers the
seasonal parameters of the electricity load with MAPE of 1.56 percent when com-
pared with the actual data.

Whereas the modeling of electrical load clusters based on descriptive analytic
methods, obtained knowledge of the dynamics of electrical loads. The electrical load
pattern has seasonal characteristics at daily and weekly intervals. This pattern forms
a unique load characteristic at all times.

So, forecasting studies and modeling of electricity load clusters are able to
answer the challenges of electricity energy utilization policies and the operation of
generating systems that are able to maintain the balance of supply and demand.

Nomenclature

T period of time (hours)
Paverage average load in period T (watts)
Ppeak peak load in the T (watts)

p,d, q nonseasonal parts of the model
P,D,Q seasonal parts of the model
S1, S2 1st and 2nd period seasonal
D1,D2, d order of differences
S number of period per season
m maximum lag time
rk autocorrelation or time-lag , 2, 3, … , k
Zt time series process in period T
Z ∗

t forecasting process in transformation in period T
Q 1 quartile 1
Q 3 quartile 3

Greek symbols

λ Box-Cox transformation number
αt white noise
θq Bð Þ regular MA polynomials of order q

ΘQ1
BS1
� �

,ΘQ2
BS2
� �

MA polynomials of orders

φp Bð Þ regular AR polynomials of orders p

ΦP1 BS1
� �

,ΦP2 BS2
� �

AR polynomials of orders

Abbreviations

MAPE mean absolute percentage error
MWh mega watt hours
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