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Chapter

ARCH and GARCH Models:
Quasi-Likelihood and Asymptotic
Quasi-Likelihood Approaches

Raed Alzghool

Abstract

This chapter considers estimation of autoregressive conditional heterosce-
dasticity (ARCH) and the generalized autoregressive conditional heteroscedasticity
(GARCH) models using quasi-likelihood (QL) and asymptotic quasi-likelihood
(AQL) approaches. The QL and AQL estimation methods for the estimation of
unknown parameters in ARCH and GARCH models are developed. Distribution
assumptions are not required of ARCH and GARCH processes by QL method.
Nevertheless, the QL technique assumes knowing the first two moments of the
process. However, the AQL estimation procedure is suggested when the conditional
variance of process is unknown. The AQL estimation substitutes the variance and
covariance by kernel estimation in QL. Reports of simulation outcomes, numerical
cases, and applications of the methods to daily exchange rate series and weekly
prices’ changes of crude oil are presented.

Keywords: ARCH model, GARCH model, the quasi-likelihood, asymptotic
quasi-likelihood, martingale difference, daily exchange rate series,
prices changes of crude oil

1. Introduction
The autoregressive conditional heteroscedasticity (ARCH(q)) process is defined by
y,=u+é&, t=123,--T. (1)
and
of = a0+ m& 4+t 6 t=1,23,-,T (2)

& are iid with E(¢) = 0 and V(§,) = 6% and ¢, are i.i.d with E({,) = 0 and
V() = a%. For estimation and applications of ARCH models, see [1-19]. Moreover,

ARCH models have now become the standard textbook material in econometrics
and finance as exemplified by, for example, [20-23].

The generalized autoregressive conditional heteroscedasticity (GARCH(p,q))
process y, is defined by

yt:ﬂ+§t’ t:1,233)"'9T- (3)
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and

3 =ao + alf?_l + e+ apéf_p +ﬁlo-t2—1 + o +ﬂqaf_q9 t=1,2,3,---,T. (4)

o

& areiid with E(¢) = 0 and V(&) = o2.

The GARCH model was developed by Bollersev [24] to extend the earlier work
on ARCH models by Engle [1]. For estimation and applications of GARCH models,
(see, [2, 3, 6-8, 10, 11, 14]). Moreover, GARCH models have now become the
standard textbook material in econometrics and finance as exemplified by, for
example, [20-23].

This chapter considers estimation of ARCH and GARCH models using quasi-
likelihood (QL) and asymptotic quasi-likelihood (AQL) approaches. Distribution
assumptions are not required of ARCH and GARCH processes by the QL method.
But, the QL technique assumes knowing the first two moments of the process.
However, The AQL estimation procedure is suggested when the conditional vari-
ance of process is unknown. The AQL estimation substitutes the variance and
covariance by kernel estimation in QL.

This chapter is structured as follows. Section 2 introduces the QL and AQL
approaches. The estimation of ARCH model using QL and AQL methods are devel-
oped in Section 3. The estimation of GARCH model using QL and AQL methods are
developed in Section 4. Reports of simulation outcomes, numerical cases and appli-
cations of the methods to a daily exchange rate series, and weekly prices changes of
crude oil are also presented. Summary and conclusion are given in Section 5.

2. The QLE and AQL methods
Let the observation equation be given by
y, =£.(0) + ¢, t=1,2,3-,T, (5)

where (; is a sequence of martingale difference with respect to F;, F; denotes
the o-field generated by y,,y, ,, -, y, fort>1; thatis, E({,|F;_1) = E;_1(;) = 0,
where f,(0) is an F,_1 measurable and 6 is parameter vector, which belongs to an
open subset © € R?. Note that ¢ is a parameter of interest.

2.1 The QL method

For the model given by Eq. (5), assume that E;_1(£,{}) = %, is known. Now, the
linear class Gr of the estimating function (EF) can be defined by

Gr = {Xijwt(yt - ft(0>)}

and the quasi-likelihood estimation function (QLEF) can be defined by
G7(0) =) _£:(0)Z (v, — £:(0)) (6)

where W, is F;_;-measureable and f;(6) = of,(6)/00. Then, the estimation of @
by the QL method is the solution of the QL equation Gy (6) = 0 (see [25]).
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If the sub-estimating function spaces of Gr are considered as follows:

G = {W,(y, — £.(0))}

then the QLEF can be defined by
G,(0) =£.(0)%, ' (y, — £:(0)) %)

and the estimation of § by the QL method is the solution of the QL equation
G, (0) = 0.

A limitation of the QL method is that the nature of X, may not be obtainable. A
misidentified %, could result in a deceptive inference about parameter 6. In the next
subsection, we will introduce the AQL method, which is basically the QL estimation
assuming that the covariance matrix %, is unknown.

2.2 The AQL method

The QLEF (see Egs. (6) and (7)) relies on the information of %;. Such informa-
tion is not always accessible. To find the QL when E,_4 (g“tC;) is not accessible, Lin
[26] proposed the AQL method.

Definition 2.2.1: Let Gj*w’n be a sequence of the EF in G. For all Gr € G, if

(EGr) " (EG:Gr) (EG)) - (BGr,) (561,61 (£61,) N

is asymptotically nonnegative definite, G7,, can be denoted as the asymptotic
quasi-likelihood estimation function (AQLEF) sequence in G, and the AQL sequence
estimate 07, by the AQL method is the solution of the AQL equation G, = 0.

Suppose, in probability, X, is converging to E; 1 (CtC;). Then,

G}, (0) =Y £.(0), 1 (y, — £:(0)) (8)

expresses an AQLEF sequence. The solution of G, (6) = 0 expresses the AQL
sequence estimate {67, }, which converges to 6 under certain regular conditions.

In this chapter, the kernel smoothing estimator of X, is suggested to find %, in
the AQLEF (Eq. (8)). A wide-ranging appraisal of the Nadaray-Watson (NW)
estimator-type kernel estimator is available in [27]. By using these kernel estima-
tors, the AQL equation becomes

G,.(0) = > £40)5,,(07) (y, - £.0) = 0. (©)

The estimation of by the AQL method is the solution to Eq. (9). Iterative tech-
niques are suggested to solve the AQL equation (Eq. (9)). Such techniques start with the

ordinary least squares (OLS) estimator @(0) and use it,n <9(0)> in the AQL equation

(Eq. (9)) to obtain the AQL estimator 0", Repeat this a few times until it converges.
For estimation of unknown parameters in fanatical models by QL and AQL
approaches, see [21, 28-33]. The next sections present the parameter estimation of

ARCH model using the QL and AQL methods.
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3. Parameter estimation of ARCH(q) model using the QL and AQL

methods

In this section, we will develop the estimation of ARCH model using QL and

AQL methods.

3.1 Parameter estimation of ARCH(q) model using the QL method
The ARCH(q) process is defined by
Y, =u+é, t=1,23,--,T.

and

op=aot &+ gl + 8 t=123-T.

(10)

(11)

& are iid with E(§) = 0 and V(§,) = 6% and ¢, are i.i.d with E(;) = 0 and

V(¢;) = of. For this scenario, the martingale difference is

& B Je — H
o) of —ao — g~ —agll, )

The QLEF to estimate o7 is given by

-1
@-on”° n
G(t) 0, ) = 0,1
0 0% Gtz — Qo — aléf_l - aqftz_q
= agz (atz —ag — alftzfl — ey tzfq)_

. 22
. . . o, . . 2 .
Given &, = 0, initial values y, = (,uo, @0y Alys "5 gy s a&)) and ¢, | =

(yt_l — ,uo)z, then the QL estimation of 67 is the solution of Gy (atz) =0:

~2

) )
oy = a0+ g+ -+ agé t=1,2,3--,T.

The QLEF, using {63} and {yt}, to estimate the parameters y, ag, a1, -

given by
-1 0
0 -1
T , af 0 !
GT(ﬂ,aO,al,'"aaq) — Z O o1
=1 0 6%
. . 0
0 &,
Je — H

(12)

(13)

"y g 18
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The QL estimate of y, ag, a1, -+, a, is the solution of G (/4, ag, 0, =+, aq) =0,
. ) . 2 )
where {, = af —ag —mé,_ 4 — - — aqa’jtfq,t =1,2,3,---,T and

S (8 -8)
T-1

&7 = (14)

~

A A A A2\ - o e . . .
W= </,t, g, (1, ++y Qg 05) is an initial value in the iterative procedure.

3.2 Parameter estimation of ARCH(q) model using the AQL method

For ARCH(q) model given by Egs. (10) and (11) and using the same argument
listed under Eq. (11). First, to estimate o7, so the sequence of (AQLEF) is given by

. Y, — H
G (7) =(031)2t,i< ) : )

2 2
e T R

Given ;to =0,00) = (,uo, g, A1y **+s aq), Zﬁg,) =1,, and %t2_1 = (,'thl — ;40)2, then the

AQL estimation of 67 is the solution of G (¢?) = 0, that is,
. 2 2
atz =ag+mé_4+ -l-aqéjt_q, t=1,2,3---,T. (15)

Second, by kernel estimation method, we find
it’n <0(0)> . On (yt) 6"A(yt’ Gt) ‘
6n(06y,)  6ulor)

Third, to estimate the parameters 6y = (,uo, ag, A1y ***s aq) using {8?} and {yt}
and the sequence of (AQLEF):

-1 0
0 -1
T ) —
GT(/"O)aO)ala“')aq) - Z 0 611 Zt,n
= .
0 -&,

Ji —H
X 2 2 2 ’
Oy — Q0 — gy g — = 0y,

The AQL estimate of 0y = (,uo, ag, A1, =+ aq) is the solution of G7(6y) = 0. The
estimation procedure will be iteratively repeated until it converges.

3.3 Simulation studies for the ARCH(1) model

The estimation of ARCH (1) model using QL and AQL methods are considered in
simulation studies. The ARCH(1) process is defined by

yt:/’l+§t9 t:1,2335“')T- (16)
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and
ol =ao+mé  +¢&, t=1,23-T. (17)

& are iid with E(¢,) = 0 and V(&,) = 6% and ¢, are i.i.d with E(,) = 0 and
V(&) = 0%-

3.3.1 Parameter estimation of ARCH (1) model using the QL method

For ARCH(1) given by Egs. (16) and (17), the martingale difference is

©)-(e2)
&) \?—ao—a&,)

The QLEF to estimate o7 is given by

G (02)_(0 1) 61«? 0 - yt_:u
O% ’ 0 02 atz —ag — aléjtz 1 (18)

= 052 (atz —ag — a1cft2_1).

. i~ . ~2 2
Given &, = 0, initial values y, = (,uo, ®0,, A1y s ago) and &_; = (y,_; — po) "> then

the QL estimation of 67 is the solution of G (¢?) = 0,

~2
63 =ao + alétfl) L= 13 29 3"'9 T. (19)

To estimate the parameters 4, ao, and ay, using {67 } and {y, }, the QLEF is given by

r (-1 0 2 0 -1
— U
GT(ﬂ,ao,CIl):Z 0 -1 <Ot 2 > ( 5 yt )
1

2

The solution of Gr(u, ag, a1) = 0 is the QL estimate of y, ag, and a;. Therefore

T y T 1
=Y %5/ = (20)
t=1 "'t t=1 "t
T 232 T . T 22
&y = TZt:lafgt—l - Zt:ﬁzzt:lé_l (21)
T 14 T 22 \? )
thzlgt—l - (Zt:1§t_1>
T ~2 ~ T 22
. - — > &
Qg = 2119, letlét 1 22)
and let
. =2
2 ZtT:l <Ct - é’)
0; = (23)

~ . . . ~2
where {, = af —ag —aié,_4,t =1,2,3,---,T.
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~

ANaA oA A2 . e . . . .
W= <,u, ag, 01, a§> is an initial value in the iterative procedure.

The initial values might be affected the estimation results. For extensive discus-
sion on assigning initial values in the QL estimation procedures, see [21, 34].

3.3.2 Parameter estimation of ARCH (1) model using the AQL method

Considering the ARCH(1) model given by Egs. (16) and (17) and using the same
argument listed under Eq. (17). First, we need to estimate 67, so the sequence of
(AQLEF) is given by

_ Ye = H
G(t) (atZ) = (O’l)Et,nl( ) ' 2 >

o; —ag — m&; 4

Given %O =0, 00 = (g, @0, M1, Hg), Z( ) — =1, and éjt 1= (yt 1 )2, then the
AQL estimation of atz is the solution of G, ( t) = 0, that is,

2 =ao+amé , t=1,2,3,T. (24)
Second, by kernel estimation method, we find
im<9(0)> _ ( ou(y,) O ()’t’ﬁt))
O (Uta)’t) O (Ut)

Third, to estimate the parameters 6 = (u, ag, @1) using {8?} and {yt} and the
sequence of AQLEF:

-1 0
T
o1 Y —H
Gr(u, ap, ay) 0 -1 |2 ( )
;; ) “\op — a0 — mé
0 _‘ft—l

The AQL estimate of y, ¢, and y is the solution of Gr(u, ag, @) = 0. Therefore
.1
=1 t:1 On (yt)
(Zt 10',,0})(21’ 10‘,,0') <Zt 1gna>(zt 10;10')

a1 = . (26)

(Et—l (;;(;«11 ) (Zt 16,(o ) (Zt 16 a,, )
<ZzT:1 %) - (Zth1 atz(alz))

o = . . (27)
Ztil Oy (10't)

(25)

M”
Q>
%\e

and let

N =\ 2
f_lT(ét -¢) o8
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The estimation procedure will be iteratively repeated until it converges.

For each parameter setting, T = 500 observations are simulated from the true
model. We then replicate the experiment for 1000 times to obtain the mean and
root mean squared errors (RMSE) for ao, &1, and j. In Table 1, QL denotes the QL
estimate and AQL denotes the AQL estimate.

We generated N = 1000 independent random samples of size T = 20, 40, 60, 80,
and 100 from ARCH(1) model. In Table 2, the QL and AQL estimation methods
show the property of consistency, the RMSE decreases as the sample size increases.

3.4 Empirical applications

The first data set we analyze are the daily exchange rate of r, = AUD/USD
(Australian dollar/US dollar) for the period from 5/6/2010 to 5/5/2016, 1590
observations in total. The ARCH model (Egs. (16) and (17)) is used to model
Yy = log (r1) — log (r1-1).

We used the S + FinMetrics function archTest to carry out Lagrange multiplier
(ML) test for the presence of ARCH effects in the residuals (see [35]). For 7, the p-
values are significant ( < 0.05 level), so reject the null hypothesis that there are no
ARCH effects and we fit {y,} by following models:

yt:/’l+§t’ t=12,3,-,T. (29)
243} ay H @0 (451 K o (461 14
True 0.010 0.980 1.30 0.010 0.980 -1.30 0.010 0.980 0.030
QL 0.009 0.989 1.299 0.009 0.989 —-1.30 0.009 0.989 0.029

0.001 0.010 0.006 0.001 0.010 0.006 0.001 0.010 0.006

AQL 0.009 0.989 1.30 0.009 0.989 -1.29 0.009 0.989 0.030

0.001 0.010 0.0003  0.002 0.009 0.0003 0.001  0.009 0.0003

True 0.050 0.950 1.30 0.050 0.950 -1.30 0.050 950 0.030

QL 0.049 0.949 1.29 0.049  0.940 -1.30 0.049 0.94 0.029

0.001  0.0001 0.014 0.001 0.010 0.014 0.001 0.010 0.014

AQL 0.049 0.940 1.32 0.049  0.940 —1.30 0.049  0.940 0.032

0.001 0.010 0.018 0.001 0.010 0.018 0.001 0.01 0.001

True 0.10 0.90 1.30 0.10 0.90 -1.30 0.10 0.90 0.030

QL 0.098 0.910 1.29 0.098 0.910 —-1.30 0.098 0.910 0.023

0.002 0.010 0.019 0.002 0.010 0.020 0.002 0.010 0.029

AQL 0.098 0.910 1.31 0.098 0.910 -1.32 0.098 0.910 0.031

0.002 0.010 0.012 0.002 0.010 0.021 0.001 0.010 0.001

True 0.1 0.90 —-0.03 0.05 0.95 —0.03 0.01 0.98 —0.03

QL 0.098 0.910 —0.031 0.051 0.949 —0.030 0.009  0.990 —0.030

0.002 0.010 0.019 0.001 0.001 0.014 0.001 0.016 0.006

AQL 0.098 0.910 —0.031 0.051 0.949 —0.031 0.009  0.990 —0.031

0.002 0.010 0.001 0.001 0.001 0.002 0.001 0.010 0.001

Table 1.
The QL and AQL estimates and the RMSE of each estimate is stated below that estimate for ARCH model.
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(200] 25} M oo o /]
T =20 True 0.010 0.980 —0.030 0.05 0.950 13
QL 0.009 0.990 —0.029 0.0495 0.9485 1.300
0.0008 0.0100 0.0319 0.0005 0.0015 0.0703
AQL 0.009 0.990 —0.031 0.0495 0.9485 1.3107
0.0009 0.010 0.0084 0.0005 0.0015 0.0213
T =40 QL 0.009 0.990 —0.031 0.0495 0.9485 1.3015
0.00089 0.010 0.0223 0.0005 0.0015 0.0492
AQL 0.009 0.990 —0.031 0.0495 0.9485 1.3113
0.00089 0.010 0.0039 0.0005 0.0015 0.0143
T =60 QL 0.009 0.990 —0.029 0.0495 0.9485 1.300
0.0009 0.010 0.0180 0.0005 0.0015 0.0404
AQL 0.009 0.990 —0.031 0.0495 0.9485 1.311
0.0009 0.010 0.0027 0.0005 0.0015 0.0128
T =80 QL 0.009 0.990 —-0.029 0.0490 0.9485 1.300
0.0009 0.010 0.016 0.0005 0.0015 0.0353
AQL 0.009 0.990 —0.310 0.0495 0.9485 1.3112
0.0009 0.010 0.0020 0.0005 0.0015 0.0119
T =100 QL 0.009 0.990 0.0292 0.0495 0.9485 1.3017
0.0009 0.010 0.0142 0.0005 0.0015 0.0314
AQL 0.009 0.990 —0.031 0.0495 0.9485 1.3111
0.0009 0.010 0.0018 0.0005 0.0015 0.0116

Table 2.
The QL and AQL estimates and the RMSE of each estimate is stated below that estimate for ARCH model with
different sample size.

and
Gtz =ap + algtz_l + gta t=1,23,-,T. (30)

& are iid with E(¢) = 0 and V(&,) = 6% and ¢, are i.i.d with E(,) = 0 and
V(&) = 6%-

The estimation of unknown parameters, (o, a1, ), using QL and AQL are given
in Table 3. Conclusion can be drawn based on the standardized residuals from the
fourth column in Table 3, which favors the QL method, gives smaller standardized
residuals, better than AQL method.

g o H E;A
Sd(g)
QL 0.1300 0.8387 —0.00012 0.00013
AQL 0.0200 0.9599 —0.00111 0.1350

Table 3.
Estimation of ao,ay, i for the exchange rate pound/dollar data.
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4. Parameter estimation of GARCH(p,q) model using the QL and AQL
methods

In this section, we developing the estimation of GARCH model using QL and
AQL methods.

4.1 Parameter estimation of GARCH(p,q) model using the QL method
The GARCH(p,q) process is defined by
y,=u+&  t=1,2,3,-,T. (31)
and
o = a0+ & 4+ -+ @l Prop g+ ot =123, T. (32)

& are iid with E(§) = 0 and V(&) = 6% and ¢, are i.i.d with E(¢,) = 0 and
V(¢,) = of. For this scenario, the martingale difference is

<§t> _ Je = H
- o] — a0 — &l g — - apgtz—p — P10} 4 — _ﬂqatz—q '

The QLEF to estimate o7 is given by

G (2) (0 1)<6t2 0)_1<§t>
@0)\0:) = Y 0 ‘7% ¢ (33)

-2( 2 2 2 2 2
= 0¢ (Gt —ao — g g = =gl — frop g — _ﬁqat—q>'

. - e el ~2
Given &, = 0, initial values y, = (,uo, A0y> X195 ***5 Ap s P1y 5 ---,ﬂ%, GEO), S =
2 . . . .
(y,_; — Ho) "> and atz_j are the QL estimations of atz_j, wherei=1,2, -, pandj=1,2,
-+, q, then the QL estimation of ¢7 is the solation of G, (¢7) = 0,

o; = a0 + &g+ F apll, +frop g o Byt t=1,2,3-,T. (34)

The QLEF, using {&f} and {yt}, to estimate the parameters 6 = u, ag, a1, -+, ay,
P1> =+ Py is given by

-1 0
0 -1
0 —&,
Ll 0 e
GT(H): 2 < ) ( )
; 0 _ft—P 0 Ué%o Ct
0 —0'31
0 —Gtz_q

10
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The QL estimate of y, ao, a1, -, g, fy, =+, B, is the solation of Gr(0) = 0, where
.. . Y ) . .
¢ = atz —ag—mé, 4 — - — apft_p — ﬂlatz_l — —ﬁqatz_q,t =1,2,3,---,T and
=2
T (s %
Zt:l <§t - g)

e (35)

~2
O'é«—

~

W = (f1,00, 01, =+, Qp, P1, s By 6%) is an initial value in the iterative procedure.

4.2 Parameter estimation of GARCH(p,q) model using the AQL method

Considering the GARCH(p,q) model given by Egs. (31) and (32) and using the
same argument listed under Eq. (32). First, we need to estimate o7, so the sequence
of (AQLEF) is given by

Gy (e7) = (0,1, (?)

. P 2
leen §O = O, 00 = (/,[0, aO(), alo) ceey apo’ﬂlo’ ..-,ﬁq()), 2§21) = 12, and étfi =
(yH. — ,uo)z, and &f_j is the AQL estimation of atz_j, wherei=1,2,-,pandj=1,2, -,
q, then the AQL estimation of ¢7 is the solation of G (c7) = 0, that is,

. 2
Gtz =y + algt_1 + e+ apétz—p +ﬂ10t2—1 + +ﬂq6?—q’ = 1) 2: 3) T. (36)

Second, by kernel estimation method, we find
S <9(0)> | On (yt) 8nAO)t’ Gf) ‘
6n(06y,)  6ulor)

Third, to estimate the parameters g = (yo, a0, a1, -+, @) using {67 } and {y, }
and the sequence of (AQLEF):

o
|
AN
TN
_

T : :
GT(,uo,ao,Oﬁ, "',Olq) - Z 0 & it;(?)
t

=1 I—q

(@)
|
e 9
JuEN

0 —o2

The AQL estimate of 6 = (i, ag, a1, -+, @) is the solation of Gr(6) = 0. The
estimation procedure will be iteratively repeated until it converges.

4.3 Simulation studies for the GARCH(1,1) model

The estimation of GARCH(1,1) model using QL and AQL methods are consid-
ered in simulation studies. The GARCH(1,1) process is defined by

11
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yt:ﬂ+§t’ t:1)2a3:"'aT- (37)
and
of =0 +aill  thoa+,  t=123,T. (38)
& are iid with E(§) = 0 and V(§,) = 6% and ¢, are i.i.d with E(,) = 0 and
V() = 02-
4.3.1 Parameter estimation of GARCH (1,1) model using the QL method

For GARCH(1,1) given by Egs. (37) and (38), the martingale difference is

()= (o w e pts)
& Gtz_‘ZO_alftz—1_ﬂlUt2—1 '

The QLEF to estimate o7 is given by

1
Gtz 0 Ye — H

G (a7) = (0,1) i i X
0 o; ol —ag — aé | — Piot 4 (39)

—2( 2 2 2
= 0¢ (Gt —ap — & g — ﬁl"t—l)'

. s el ~2 2
_ _ 2 _ ~2
Given &, = 0, initial values y, = (,uo, Q0> My > 040) yE 1= (yt_l — ,uo) ,and 6,

is the QL estimation of 62 ,, then the QL estimation of 7 is the solation of
G (o7) =0,

2 =ao+ alét 1 +,B10t 1> t= 1a 2’ 3) T. (40)

To estimate the parameters y, ao, and a;, using {67 } and {y, }, the QLEF is
given by

-1 0
r| 0 -1 o2 0\ "
Gr(u, ao, a1, 1) = Z
=1 0 —&,|\0 of
0 o7 1
Je —H

2
Gtz —ag — g g — ﬂ10t2—1

The solation of Gr(u, ag, a1, 1) = 0 is the QL estimate of y, ag, a1, and f;.
Therefore

>|\<

N

(41)

ﬁ.i,| =
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/ — S O 1’4:t2 1S°_t§t 1 S§t2 1@2 1S t2 ?1
tlgtl 2821531&;1
S.op ﬁl
&1 — O'tgt 1S Oy 1§t 1 ) (43)
g8,
T 2 _ 55T % 2T -
A Zt:lo-t2 _ alzt:1§t71 —ﬁ12t 10t2 1
%0 = (44)
T
and let
=\ 2
T A A~
) Zt:l <Ct - é)
O = T_1 (45)
where

Ct: Az—&o _alft 1 ﬂlo-t 1 t:1)233,"'aTa

t
T T ~2 22
S i Z N %2 Zt=10t_1zt:1f-ft_1
28 = O 15¢-1 — T ’
t—15t—-1 t:]_
T T 2T 32
S _ Z Azéz _ > 107D i1 a
28, - 0y 61 T )
t=
T 2 \?
. o (X&)
b &gt T

T T Az T .2

S o 2242 t=10¢ 2_1=101-1

622, = 0101 — T )
—1

2
T A2
T (Zt 10¢— 1>
S o = E oh = 7
6, 1071 t—1 T

W= (ﬂ, ag, 1, 6%) is an initial value in the iterative procedure.

The initial values might be affected the estimation results. For extensive discus-
sion on assigning initial values in the QL estimation procedures, see [21, 34].

4.3.2 Parameter estimation of GARCH (1,1) model using the AQL method
Considering the GARCH(1,1) model given by Egs. (37) and (38) and using the

same argument listed under (Eq. (38)). First, we need to estimate atz, so the
sequence of (AQLEF) is given by

_ Y —H
G (e?) = (0,1)X ,}( )
ole) = 0.1, of —ao — m&l | — pro} 4
Given & = 0, 80 = (40> @0,05 @1,0, fr0)> Z% = by &4 = (3, 4 — o)’ and 62, is
the AQL estimation of 7 ;, then the AQL estimation of 67 is the solatlon of

G(t) (Gtz) = 0, that is,

R 22
6 = a0+ mé | +piopy,  t=1,2,3-,T (46)

13
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Second, by kernel estimation method, we find

2 (0) = (wt) a-n?m)'

Third, to estimate the parameters 6 = (u, a9, a1, ;) using {67 } and {y,} and the
sequence of AQLEF:

-1 0
T
0 -1 s Y — K
GT(,“: aO;alaﬂl) - ~2 by < g 5
t:zl 0 -5, o ‘th — o0 — al‘ftz—1 7 ﬁ16t2—1
0 -6,

The AQL estimate of y, ag, @1, and 3, is the solation of Gr(u, ag, 21, ;) =0
Therefore

= Sty v

=1 —1 On
5 Doae,Vad, ~ 558 San,
p1= - (48)
SS7, —8S,2 2 SSa 2
Oy 1§t 1 01011 &1bi
88,2 — 1SS,y
&y = t:gs tltl. (49)
& 1;31
o Sy = S - ATy 5
Zt:1 6n(6t)
and let
. 2
~2 tT:l (é} B é) (51)
T T T 1
where
N / R o "
¢ = Gtz — a0 — gy — .3103—1’ t=123,T,
T .2 32 T T 2 T 32
o, & 1 o, G
SS ., . — f 1521 _ o _ t—1 _ t—1 ,
ik ; 64 (01) ) <; an(at)> (; 6n(0r) ;Gn(dt)
T ~232 T T 2 T 32
E_ 1 o e
SS — At t—1 _ _ . 13 _ t—1 ,
528, tz_; (07 ;%(Gt) tz—l: 2 (01) ;;an(at)
T4 T %4 T 32 2
SS L, = _ _ t—1 o . t—1 ,
A ;an (O't)> <; 6u(01) <; On oy;))
T4 T A2A21 T2 T Azl
SS,, — _ 0101 % i1
22 =\ 25010 o) 2 i) 25
T4 T .4 T .2 2
SSGZ 0-2 — _ _ t—1 - _ t—1
b=\ 7))\ Zae) T\ e
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u o o P /] @o o B
True 0.15 0.65 0.87 0.10 0.20 0.41 0.88 0.08
QL 0.149 0.779 0.865 0.074 0.199 0.461 0.912 0.057
0.040 0.353 0.011 0.029 0.031 0.155 0.033 0.025
AQL 0.150 0.661 0.851 0.092 0.209 0.405 0.901 0.076

0.001 0.012 0.019 0.009 0.010 0.006 0.021 0.004

True —-0.10 0.48 0.89 0.08 0.16 0.37 0.9 0.08
QL —0.101 0.556 0.902 0.058 0.159 0.434 0.922 0.058
0.034 0.212 0.014 0.024 0.030 0.189 0.024 0.025
AQL —0.110 0.486 0.891 0.0752 0.161 0.374 0.911 0.076
0.010 0.006 0.001 0.005 0.001 0.004 0.011 0.004
True 0.18 0.39 0.88 0.08 0.09 0.50 0.89 0.05
QL 0.179 0.447 0.892 0.058 0.089 0.538 0.898 0.036
0.031 0.146 0.015 0.024 0.033 0.090 0.009 0.015
AQL 0.180 0.395 0.882 0.076 0.091 0.504 0.892 0.046
0.001 0.005 0.002 0.005 0.002 0.004 0.002 0.004
Table 4.

The QL and AQL estimates and the RMSE of each estimate is stated below that estimate for GARCH model.

The estimation procedure will be iteratively repeated until it converges.

For each parameter setting, T = 500 observations are simulated from the true
model. We then replicate the experiment for 1000 times to obtain the mean and
root mean squared errors (RMSE) for ao, &1, ﬁl, and /.. In Table 4, QL denotes the
QL estimate and AQL denotes the AQL estimate.

We generated N = 1000 independent random samples of size T = 20, 40, 60, 80,
and 100 from GARCH(1,1) model. In Table 5, The QL and AQL estimation
methods show the property of consistency, and the RMSE decreases as the sample
size increases.

4.4 Empirical applications

The second set of data is the weekly price changes of crude oil prices P;. The P; of
Cushing, OK, West Texas Intermediate (US dollars per barrel) is considered for the
period from 7/1/2000 to 10/6/2016, with 858 observations in total. The data are
transformed into rates of change by taking the first difference of the logs. Thus,

y, = log (P;) — log (P;—1) and fit {y,} by using GARCH (1,1):

yt:/’t+§t’ t:1’2:3a"':T- (52)

and

o =ao+m& 4+ o a+¢, t=1,23T. (53)
& are iid with E(¢) = 0 and V(&,) = 6% and ¢, are i.i.d with E(,) = 0 and
V(&) = 64%-
The estimation of unknown parameters, (o, a1, f1, ), using QL and AQL are
given in Table 6. Conclusion can be drawn based on the standardized residuals

15
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7 o oy ' H o 431 B
True 0.16 0.37 0.90 0.08 —0.10 0.48 0.89 0.08
QL 0.17 0.42 0.89 0.07 —0.09 0.51 0.90 0.06
T=20 0.176 0.511 0.008 0.016 0.169 0.451 0.018 0.022
AQL 0.16 0.38 0.89 0.07 —0.10 0.47 0.90 0.07

0.037 0.012 0.007 0.014 0.066 0.014 0.013 0.018

QL 0.16 0.42 0.89 0.07 —0.09 0.51 0.91 0.06

0.149 0.422 0.007 0.016 0.137 0.326 0.018 0.021

T =40 AQL 0.16 0.38 0.89 0.07 —0.10 0.47 0.90 0.07

0.027 0.012 0.007 0.013 0.022 0.014 0.012 0.016

QL 0.16 0.42 0.89 0.07 —0.09 0.52 0.91 0.06

0.121 0.289 0.007 0.018 0.119 0.307 0.018 0.021

T =60 AQL 0.16 0.38 0.89 0.07 -0.10 0.47 0.90 0.07

0.019 0.012 0.007 0.011 0.014 0.013 0.012 0.015

QL 0.16 0.42 0.89 0.07 -0.10 0.51 0.90 0.06

0.100 0.159 0.007 0.017 0.108 0.248 0.018 0.021

T =80 AQL 0.16 0.38 0.89 0.07 -0.10 0.47 0.90 0.07

0.012 0.012 0.007 0.011 0.012 0.013 0.012 0.015

QL 0.16 0.42 0.89 0.07 -0.10 0.51 0.90 0.06

0.100 0.159 0.007 0.018 0.101 0.242 0.018 0.021

T =100 AQL 0.16 0.38 0.89 0.07 -0.10 0.47 0.90 0.07

0.012 0.011 0.007 0.011 0.011 0.013 0.012 0.015

Table 5.
The QL and AQL estimates and the RMSE of each estimate is stated below that estimate for GARCH model
with different sample size.

Ko 214] a ﬂl gth
Sd(g)
QL 0.0008 0.566 0.912 0.0004 0.002
AQL 0.0089 0.630 0.972 0.041 0.185

Table 6.
Estimation of u, ao,a,, 5, for the rates of change prices data.

from the fourth column in Table 6, which favors the QL method and gives smaller
standardized residuals, better than AQL method.

5. Conclusions

In this chapter, two alternative approaches, QL and AQL, have been developed
to estimate the parameters in ARCH and GARCH models. Parameter estimation for
ARCH and GARCH models, which include nonlinear and non-Gaussian models is
given. The estimations of unknown parameters are considered without any distri-
bution assumptions concerning the processes involved, and the estimation is based

16



ARCH and GARCH Models: Quasi-Likelihood and Asymptotic Quasi-Likelihood Approaches
DOI: http://dx.doi.org/10.5772/intechopen.93726

on different scenarios in which the conditional covariance of the error’s terms are
assumed to be known or unknown. Simulation studies and empirical analysis show
that our proposed estimation methods work reasonably quite well for parameter
estimation of ARCH and GARCH models. It will provide a robust tool for obtaining
an optimal point estimate of parameters in heteroscedastic models like ARCH and
GARCH models.

This chapter focuses on models in univariate, while it is desirable to consider
multivariate extensions of the proposed models.
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