
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



1

Chapter

Current State-of-the-Art of 
Clustering Methods for Gene 
Expression Data with RNA-Seq
Ismail Jamail and Ahmed Moussa

Abstract

Latest developments in high-throughput cDNA sequencing (RNA-seq) have 
revolutionized gene expression profiling. This analysis aims to compare the expres-
sion levels of multiple genes between two or more samples, under specific circum-
stances or in a specific cell to give a global picture of cellular function. Thanks to 
these advances, gene expression data are being generated in large throughput. One 
of the primary data analysis tasks for gene expression studies involves data-mining 
techniques such as clustering and classification. Clustering, which is an unsuper-
vised learning technique, has been widely used as a computational tool to facilitate 
our understanding of gene functions and regulations involved in a biological pro-
cess. Cluster analysis aims to group the large number of genes present in a sample of 
gene expression profile data, such that similar or related genes are in same clusters, 
and different or unrelated genes are in distinct ones. Classification on the other 
hand can be used for grouping samples based on their expression profile. There are 
many clustering and classification algorithms that can be applied in gene expression 
experiments, the most widely used are hierarchical clustering, k-means cluster-
ing and model-based clustering that depend on a model to sort out the number 
of clusters. Depending on the data structure, a fitting clustering method must be 
used. In this chapter, we present a state of art of clustering algorithms and statisti-
cal approaches for grouping similar gene expression profiles that can be applied to 
RNA-seq data analysis and software tools dedicated to these methods. In addition, 
we discuss challenges in cluster analysis, and compare the performance of height 
commonly used clustering methods on four different public datasets from recount2.

Keywords: clustering, classification, RNA-seq, gene expression,  
adjusted Rand index, machine learning, deep learning

1. Introduction

In recent years, RNA-seq based on Next generation Sequencing has become an 
attractive alternative for conducting quantitative analysis of gene expression. This 
approach offers a number of advantages compared to microarray analysis such as the 
discovery of novel RNA species (RNA-seq is not limited by prior knowledge  
of the genome of the organism, it can be used for the detection of novel transcripts), 
the higher sensitivity for genes expressed either at low or very high level and the 
unbiased approach compared to microarrays that are subject to cross-hybridization 
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bias. Overall, RNA-seq is a better technique for many applications such as novel gene 
identification, differential gene expression, and splicing analysis.

The principle of RNA-seq is based on high-throughput next generation sequenc-
ing (NGS) technologies. The first step in the technique involves converting the 
population of RNA to be sequenced into cDNA fragments with adaptors attached to 
one or both ends, each molecule is then sequenced to obtain either single end short 
sequence reads or paired end reads [1]. These reads are stored in fastq files formats 
and consist of raw data for many analysis pipelines (Figure 1).

The primary objective of this chapter is to present algorithms for clustering gene 
expression data from RNA-seq. Therefore, in the first section, we will describe the 
different steps of the gene expression analysis workflow from preprocessing the raw 
reads to gene expression clustering and classification. In the second part of  
the chapter we will describe traditional, model-based and machine learning cluster-
ing methods for gene expression data, then we will conclude this chapter with a 
study for clustering samples of four public datasets from recount2, using different 
clustering methods and also evaluating the performance of each one using the 
adjusted rand index (RDI) and accuracy.

2. RNA-seq data analysis

RNA-seq has become a common tool for scientists to study the transcriptome 
complexity, and a convenient method for the analysis of differential gene expression. A 
typical RNA-seq data analysis workflow starts by preprocessing raw reads for contami-
nation removal and quality control checks. The following step is to align the reads to 
a reference genome, or to make a de novo assembly if there is not any. Following the 
alignment, the quantification step aims to quantify aligned reads to produce a count 
matrix to use as entry data for Differential Expression (DE) analysis. Normalization 
and DE analysis normally go together as most of the methods have built-in normaliza-
tion and accept only raw count matrix. For this study, we are more interested in the 
clustering step, we will perform Normalization of the raw counts separately and do the 
clustering without going through differential gene expression analysis. In the following 
section we describe with more details each step of the pipeline (Figure 2).

2.1 Preprocessing

Preprocessing raw reads consist of checking the quality of the reads, adapters 
trimming, removal of short reads and filtering bad quality bases. Tools like FastQC 
can generate a report summarizing the overall quality of the sequence information 
[2]. Based on this report we can determine how the quality trimming should be 
set up. Trimmomatic is one of many tools used to clean up the raw data. It can be 
used to remove adapters from the reads, trim off any low-quality bases at the ends 
of reads, and filter short reads that can align to multiple locations on the reference 
genome. Once the trimming step is done, it is a good practice to recheck the quality 
of the reads by rerunning FastQC.

Figure 1. 
RNA sequencing.
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2.2 Alignment

Now that we have explored the quality of our raw reads, we can move on to read 
alignment. Read alignment is one of the first steps required for many different 
types of analysis. It aims to map the huge number of short RNA sequences gener-
ated by NGS instruments (reads) to a reference genome in order to identify the 
correct genomic loci from which the read originated. In RNA-seq, alignment is a 
major step for the calculation of transcript or gene expression levels; several splice-
aware alignment methods have been developed for RNA-seq experiments such as 
STAR, HISAT2 or TopHat. These aligners are designed to specifically address many 
of the challenges of RNA-seq data mapping using a strategy to account for spliced 
alignments [3–5].

2.3 Quantification

Quantification of gene expression is to count the number of reads that map to 
each gene using methods such as HTSeq-count, FeatureCounts or kallisto [6–8]. 
This step is crucial if we want to do a gene differential expression analysis, which 
means to identify genes (or transcripts), if any, that have a statistically significant 
difference in abundance across the experimental groups or conditions.

2.4 Normalization

The read counts generated in the quantification step need to be normalized to make 
accurate comparisons of gene expression between samples or when doing an explor-
atory data analysis. Several normalization methods are used for this purpose such as 
CPM (counts per million), TPM (transcripts per kilobase million), RPKM/FPKM 

Figure 2. 
RNA-seq data analysis workflow.
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(reads/fragments per kilobase of exon per million reads/fragments mapped), DESeq2’s 
median of ratios and EdgeR’s trimmed mean of M values (TMM) [9].

2.5 Clustering

Cluster analysis techniques have proven to be helpful to understand gene expres-
sion data by uncovering unknown relationships among genes and unveiling differ-
ent subtypes of diseases when it comes to clustering biological samples [10]. In the 
following section, we present methods for sample-based and gene-based clustering, 
starting with traditional methods used after data transformation then model-based 
clustering for data generated using a combination of probability distributions 
(Figure 3).

3. Clustering methods for gene expression data

3.1 Data transformation methods

Traditional clustering algorithms like hierarchical clustering and k-means can-
not be directly applied to RNA-seq count data, to apply these methods for cluster 
analysis of RNA-seq data, that tend to follow an over-dispersed Poisson or negative 
binomial distribution, we need to transform the data in order to have a distribu-
tion closer to the normal distribution. In the following section, we present popular 
methods for data transformation:

• Logarithmic, widely used method to deal with skewed data in many research 
domains, often used to reduce the variability of the data and make the 
data conform more closely to the normal distribution. However, it was 

Figure 3. 
Cluster analysis of RNA-sequencing data.
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demonstrated in [11], that in most circumstances the log transformation does 
not help make data less variable or more normal and may, in some circum-
stances, make data more variable and more skewed.

• Variance stabilizing transformation: This method was used to transform 
microarray data to stabilize the asymptotic variance over the full range of the 
data [12].

• Eight data transformations (r, r2, rv, rv2, l, l2, lv, and lv2) for RNA-seq data 
analysis were proposed in [13], these methods deal with the two common 
properties when it come to the count matrix generated in the quantification 
step, Sparsity and Skewness; Sparsity means that many counts in the count 
matrix are zero. Skewness means that the histogram of all counts in the count 
matrix is usually skewed.

3.2 Clustering methods based on normal distribution

3.2.1 Hierarchical methods

Hierarchical clustering method is the most popular method for gene expression 
data analysis. In hierarchical clustering, genes with similar expression patterns 
are grouped together and are connected by a series of branches (clustering tree or 
dendrogram). Experiments with similar expression profiles can also be grouped 
together using the same method. This clustering technique is divided into two types: 
agglomerative and divisive. In an agglomerative or bottom-up clustering method 
each observation is assigned to its own cluster. In a comparative study on Cancer 
data [14], three variants of Hierarchical Clustering Algorithms (HCAs): Single-
Linkage (SL), Average-Linkage (AL) and Complete-Linkage (CL) with 12 distance 
measure have been used to cluster RNA-seq Samples. The same methods will be 
used in our study along with hierarchical clustering with Poisson distribution [15].

3.2.2 k-medoids

K-medoids is a partitional clustering algorithm proposed in 1987 by Kaufman 
and Rousseeuw. It is a variant of the K-means algorithm that is less sensitive to noise 
and outliers because it uses medoids as cluster centers instead of means that are 
easily influenced by extreme values. Medoids are the most centrally located objects 
of the clusters, with a minimum sum of distances to other points. After searching 
for k representative objects in a data set, the algorithm which is called Partitioning 
Around Medoids (PAM) assigns each object to the closest medoid in order to create 
clusters. Like in k-means the number of classes to be generated needs to be specified.

3.3 Model-based clustering

Yaqing Si et al. described a number of Model based clustering methods for 
RNA-seq data in their paper [16], these methods assume that data are generated by a 
mixture of probability distributions: Poisson distribution when only technical rep-
licates are used and Negative binomial distribution when working with biological 
replicates. The first method they proposed is a model-based clustering method with 
the expectation-maximization algorithm (MB-EM) for clustering RNA-seq gene 
expression profile. The expectation-maximization algorithm is widely used in many 
computational biology applications, the authors in [17] explain how this algorithm 
works and when it is used. The second method is an initialization algorithm for 
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cluster centers, the idea behind this method is to randomly choose one cluster cen-
ter and then gradually add centers by selecting genes based on the distance between 
each gene and each of the selected centers. Two other stochastic algorithms have 
been proposed in this paper, a stochastic version of the expectation-maximization 
algorithm and a classification expectation maximization algorithm with simulated 
annealing. The last method in this paper is a model-Based Hybrid-Hierarchical 
Clustering Algorithm, it does not require to pre-specify the number of clusters to 
be generated as it is required by the previous methods. The authors propose to use 
agglomerative clustering starting with k0 clusters to speed up the calculation, then, 
it repeatedly identifies the two clusters that are closest together and merges the two 
most similar clusters. This method was called hybrid because it combines two steps: 
Obtaining the initial K0 clusters using one of the previous described algorithms 
then agglomerative clustering to build the hierarchical tree.

3.4  Classification and clustering algorithms of machine learning for RNA-seq 
data

Classification in machine learning is a supervised learning approach in which 
the algorithm learns from the data given to it and makes new observations, then 
applies the conclusions to new data. Clustering on the other hand is an unsuper-
vised learning problem for grouping unlabeled features. The learning algorithm 
that learns the model from the training data and maps the input data to a specific 
class is called classifier, in the following section, we briefly present three widely 
used classifiers for grouping RNA-seq data.

• Random forests (RF): an ensemble method that trains a large number of indi-
vidual decision trees, each tree gives a class prediction, the category that wins 
the majority votes is used as the final decision of the random forest model. The 
algorithm can perform both classification and regression tasks and has better 
accuracy among current algorithms.

• Support Vector Machine (SVM): one of the most popular supervised learning 
models, used for both classification and regression, the data points are sepa-
rated using an optimal hyperplane or a set of hyperplanes in a multidimen-
sional space with the maximum possible margin between support vectors.

• Poisson linear discriminant analysis: an approach used for the classification 
and clustering of RNA-seq data using a Poisson log linear model [15].

To test these algorithms, we used MLSeq (Machine learning interface for RNA-
sequencing data) which is an R package including more than 80 machine learning 
algorithms and a pipeline to classify RNA-seq data including normalization, filter-
ing and transformation steps [18].

3.5 Clustering with deep learning

Deep learning is also a technique that can be used to learn better data representa-
tion of high-dimensional data. The two recently published surveys [19, 20] present 
a taxonomy of existing deep clustering algorithms, by describing the different 
Neural Network Architecture that exists for feature representation, clustering loss 
function and Performance Evaluation Metrics for Deep Clustering. In [20], the 
authors categorize current deep clustering models into following three categories:
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• Auto-Encoders Based Deep Clustering

• CDNN-Based Deep Clustering (feed-forward networks trained only by specific 
clustering)

• Generative Adversarial Network (GAN)

These approaches are already used in the analysis of RNA-seq data, for exam-
ple, an unsupervised deep embedding algorithm that clusters single cell (scRNA-
seq) data was proposed in [21], another paper use a Lasso model and a multilayer 
feed-forward artificial neural network to analyze RNA-Seq gene expression data 
[22]. In [23], the authors used a Deep Neural Network model from the R package 
h2o for cancer data classification and in [24], ladder networks were used for gene 
expression classification.

4.  Clustering algorithms and software packages/tools corresponding  
to the algorithms

Clustering algorithms and software packages corresponding to the algorithms 
are shown in Table 1.

5. Clustering of public RNA-seq data from recount2

Recount2 is a multi-experiment resource of analysis-ready RNA-seq gene and 
exon count datasets. It contains 2041 different studies and over 70,000 human 
RNA-seq [25]. We selected for our study four different datasets based on the 
number of samples and the number of classes. We then performed sample-based 
clustering on each dataset and compared the results to the classes in the phenotype 
table in recount2 to evaluate the performance of each method. The methods used 
to classify the data are 3 subtypes of the hierarchical clustering with the Euclidean 
distance, hierarchical clustering with a Poisson model and k-medoids.

Methods Implementation in R

Hierarchical clustering hclust() function in “stats”

k-means “cluster”, “factoextra”

k-medoids “cluster”, “factoextra”

SOM “kohonen”

Model-based clustering with the expectation-maximization algorithm 

(MB-EM).

Stochastic version of the

expectation-maximization algorithms (Deterministic annealing (DA) 

algorithm).

Classification expectation maximization (CEM) algorithm with simulated 

annealing (SA).

“MBCluster.Seq”

Machine learning algorithms “MLSeq”

Table 1. 
Clustering algorithms and software packages corresponding to the algorithms.
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5.1 Datasets

Description of the four datasets from recount2 is shown in Table 2.

5.2 Adjusted Rand Index

There are several similarity measures for cluster evaluation, we chose to work with 
the adjusted Rand index which is the corrected-for-chance version of the Rand index. 
It is a measure used in data clustering to evaluate the performance of a clustering 
method, by comparing the results of a clustering algorithm against known classes from 
external criteria [26]. In our study, we performed different sample-based classifica-
tion method on four different datasets, after that, we compared the results to the class 
labels we associated to each sample based on the field “characterization of the samples” 
in the phenotype table in recount2, then we used the ARI for cluster validation.

5.3 Standard deviation

Figures 4–6 are examples to show the standard deviation of the transformed 
data, across samples, against the mean, using the shifted logarithm transformation, 
the regularized log transformation and the variance stabilizing transformation.

Dataset 

(accession)

Number 

of samples

Number 

of classes

Classes

SRP032789 20 4 17 breast tumor samples of three different subtypes:

• TNBC.

• Non-TNBC.

• HER2-positive.

SRP049097 54 4 3 subtypes of Leiomyosarcoma:

• 8 LMS cases from subtype I

• 6 cases from subtype II

• 3 cases from subtype III

• 7 cases of normal tissues

SRP042620 168 6 • 28 breast cancer cell lines.

• 42 Triple Negative Breast Cancer (TNBC) primary 

tumors.

• 42 Estrogen Receptor Positive (ER+) and HER2 

Negative Breast Cancer primary tumors.

• 30 uninvolved breast tissue samples that were adjacent 

to ER+ primary tumors.

• 5 breast tissue samples from reduction mammoplasty 

procedures performed on patients with no known 

cancer.

• 21 uninvolved breast tissue samples that were adjacent 

to TNBC primary tumors.

SRP044668 94 3 • 39 contrast-enhancing glioma core samples.

• 36 non-enhancing FLAIR glioma margin samples.

• 17 non-neoplastic brain tissue samples.

Table 2. 
Description of the four datasets from recount2.
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Figure 6. 
Standard deviation of the transformed data using the variance stabilizing transformation.

Figure 4. 
Standard deviation of the transformed data using the shifted logarithm transformation.

Figure 5. 
Standard deviation of the transformed data using the regularized log transformation.
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5.4 Machine learning classification

Three widely used machine learning algorithms were used for the classifica-
tion of the four datasets, Random forests, support vector machine and Poisson 
linear discriminant analysis. To perform this analysis, we first split the data into 
two parts as training and test sets, with 70% of samples for the training dataset, 
and the remaining 30% samples for the testing dataset, the training set is used to 
fit the parameters of the model, that is used thereafter to predict the responses 
for the observations in the test dataset. Normalization was applied with Deseq 
median ratio method and the variance stabilizing transformation was applied for 
the normalization of the dataset. The model was trained using 5-fold cross valida-
tion repeated 2 times. The number of levels for tuning parameters is set to 10.

5.5 Results

Classifier Accuracy Kappa

rf 1 1

SVM 0.6667 0.5

PLDA 1 1

Table 7. 
Classification results for SRP032789 data.

hclus (complete) hclust (single) hclust (average) hclust (complete) k-medoids

Euclidean Euclidean Euclidean Poisson distance Euclidean

0.4146015 0.3818763 0.4146015 0.4146015 0.6798897

Table 3. 
Performance of clustering methods (SRP032789).

hclus (complete) hclust (single) hclust (average) hclust (complete) k-medoids

Euclidean Euclidean Euclidean Poisson distance Euclidean

0.02880412 −0.003409256 0.0005777741 0.1874828 0.2791547

Table 4. 
Performance of clustering methods (SRP049097).

hclus (complete) hclust (single) hclust (average) hclust (complete) k-medoids

Euclidean Euclidean Euclidean Poisson distance Euclidean

0.1944569 0.005551586 0.1285448 0.1468464 0.2579758

Table 5. 
Performance of clustering methods (SRP042620).

hclus (complete) hclust (single) hclust (average) hclust (complete) k-medoids

Euclidean Euclidean Euclidean Poisson distance Euclidean

0.2379903 −0.007755123 0.399417 0.2657942 0.3771837

Table 6. 
Performance of clustering methods (SRP044668).
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5.6 Computational time

All experiments are performed on a machine with 16 GB RAM, 1024 GB hard 
disk running with a windows operating system and MLSeq R package.

6. Discussion and conclusion

Clustering the samples of the three datasets to the sub-classes defined in the 
phenotype table of recounts2 was not easy. We first tried to visualize the separation 
between the subtypes using principal component analysis (Figures 7 and 8–10), 
then using 4 variants of the hierarchical clustering and k-medoids we classified the 
samples of each dataset (Figures 11 and 12 show the hierarchical clustering plots of 
the dataset SRP032789). The performance of the 5 methods was different depend-
ing on the dataset (Tables 3–5), making it impossible to make a general system of 
recommendation. However, we can see that the k-medoid method has relatively 

Classifier Accuracy Kappa

rf 0.8235 0.765

SVM 0.7647 0.6909

PLDA 0.7647 0.6866

Table 8. 
Classification results for SRP049097 data.

Classifier Accuracy Kappa

rf 0.9412 0.9249

SVM 0.5882 0.4685

PLDA 0.7843 0.7267

Table 9. 
Classification results for SRP042620 data.

Classifier Accuracy Kappa

rf 0.8214 0.7271

SVM 0.6786 0.5218

PLDA 0.7143 0.5573

Table 10. 
Classification results for SRP044668 data.

SRP032789 SRP049097 SRP042620 SRP044668

rf 176.67 781.31 4234.89 1412.19

SVM 1080.92 2333.52 6645.21 1597.89

PLDA 31.45 60.93 234.98 72.66

Table 11. 
Computational time in seconds.
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Figure 8. 
PCA of the data from the study SRP049097.

Figure 9. 
PCA of the data from the study SRP042620.

Figure 7. 
PCA of data from the study SRP032789.
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Figure 10. 
PCA of the data from the study SRP044668.

Figure 11. 
Dendrograms obtained for the dataset from SRP032789 study using three variants of the hierarchical clustering 
method with the Euclidean distance.

Figure 12. 
Dendrograms obtained for the dataset from the study SRP032789 using the hierarchical clustering method with 
the Poisson distance.
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