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Chapter

The Security of Cryptosystems
Based on Error-Correcting Codes
Ahmed Drissi

Abstract

Quantum computers are distinguished by their enormous storage capacity and
relatively high computing speed. Among the cryptosystems of the future, the best
known and most studied which will resist when using this kind of computer are
cryptosystems based on error-correcting codes. The use of problems inspired by the
theory of error-correcting codes in the design of cryptographic systems adds an
alternative to cryptosystems based on number theory, as well as solutions to their
vulnerabilities. Their security is based on the problem of decoding a random code
that is NP-complete. In this chapter, we will discuss the cryptographic properties of
error-correcting codes, as well as the security of cryptosystems based on code
theory.

Keywords: McEliece cipher, hash function, syndrome decoding, correcting codes,
random code

1. Introduction

Like all asymmetric cryptographic systems, the idea is to base security on the
difficulty of reversing a one-way function with a trap door. The theory of error-
correcting codes contains well-structured and difficult problems to solve, more or
less suitable for use in cryptography. The first who had the idea of using error-
correcting codes for cryptographic purposes was McEliece in 1978 and he proposed
an asymmetric encryption algorithm. In 1986, Niederreiter proposed another cryp-
tographic system equivalent to that of McEliece [1]. The two systems of McEliece
and Niederreiter are of equivalent security against a passive attack; however, they
are not against an active attack [2]. In the following paragraph, we give an overview
of the theory of error-correcting codes. In the third paragraph, we will only deal
with the basic systems based on this theory. The last paragraph is devoted to the
discussion of security settings and the most well-known attacks. In what follows
we note.

F2m : a finite field of 2m elements.
K x½ �: the ring of polynomials with an indeterminate.
K x½ �= Pð Þ: the quotient ring K x½ � de modulo P.
K ∗ : a private set of the element 0.
dQ xð Þ: the degree of the polynomial Q xð Þ.
Fm
2 : the set of length vectors m and components 0 and 1.

Fn: the scalar product n times of the set F.
x½ �: the integer part of x:
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At: the transpose of the matrix A.
Ik: the identity matrix of order k.
gcd: greatest common divisor.
Ct
n: the combination of t elements among n elements.

2. Error-correcting codes

2.1 Finite fields

Finite fields are the basis of many error-correcting codes and cryptographic
systems, it is therefore essential to recall the theory of finite fields in order to
understand the functioning of linear codes. In this paragraph we present some
properties of finite fields and a method of representing them for later use. We are
interested in constructing finite fields F2m and the calculations on these fields. Finite
fields are generally constructed from primitive polynomials [3].

Definitions
The minimal polynomial of an element β on a finite field F is the unit polynomial

with coefficients in F smaller degree and its value in β is zero.
Proposition

1.The ring K x½ �= Pð Þ is a field if and only if the polynomial P xð Þ is irreducible on
the field K.

2.If P xð Þ is irreducible of degree m and K a finite field of q elements then
K x½ �= Pð Þ is field of qm elements.

This proposition gives us a way to build a finite field: Take a polynomial P
irreducible over a field K et former le quotient K x½ �= Pð Þ.

Theorem (the primitive element)
If K is a finite field of order q, then the multiplicative group K ∗ is cyclic

generated by an element α called primitive element of K and we write K ∗ ¼

αi, i ¼ 1…q�
� �

. Any generator of this group is called a primitive element of K.
Definition (primitive polynomial)
We say that a polynomial P∈F2 x½ � of degree m is primitive if it is the minimal

polynomial of a generator of F ∗
2m .

Lemma

Let F2 x½ � mð Þ ¼ Q xð Þ∈F2 x½ �, dQ xð Þ≤m� 1f g, P xð Þ∈F2 x½ � mð Þ primitive and α a

root of P xð Þ, so we have: Fm
2 ≈F2 x½ � mð Þ

≈F2 x½ �= P xð Þð Þ≈F2m ≈ 0f g∪ 1, α,…α2
m�1

� �

.
It follows from this lemma that we can represent the nonzero elements of a finite

field F2m by nonzero vectors of Fm
2 and that the αi have representatives of ximodP xð Þ

and consequently αi ¼ ximodP xð Þ. In what follows we denote by α a primitive
element of F2m .

2.2 Principle of error-correcting codes

In order to transmit a message, it must be coded, it consists in temporarily giving
it a certain form, the coding mode depends on the means of transmission, it can be
disturbed by noise, hence the need for coding which allows the receiver to find the
initial message even if it has been altered. Such coding is called channel coding.

2
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The principle of error-correcting codes is to add to a message to be transmitted
additional information called redundant or control information, so that transmis-
sion errors can be detected and corrected. This operation is called coding and its
result is a code word, each message is associated, therefore a code word of length
greater than that of the message.

The code is the set of code words thus obtained. We assume that all messages are
words of the same length >0, written using an alphabet F of q elements. Each

message x0, x1,…xk�1,ð Þ is an element of the set of Fk (message space). We then

have qk possible messages. We assume that all the code words are of the same length

n> k. Encode mmessages of length k, m≤ qk
� �

consists in choosing an integer n> k,

and associate with each message from Fk a word from Fn (injectively). The coding
introduces a redundancy equal to n� k. Decoding consists of receiving a word x of
Fn to determine if x is a code word and if not correct it thanks to the redundancy.
This is done using the Hamming distance.

Definition (hamming distance)
let x ¼ x0, x1,…xn�1ð Þ≔ x0x1…xn�1 and y ¼ y0, y1,…yn�1

� �

≔ y0y1…yn�1 of F
n.

We call the Hamming distance between words x and y, and we note dH x, y
� �

¼

d x, y
� �

the number of index i∈ 0, 1, 2…n� 1f g such as xi 6¼ yi, we call Hamming’s
weight of a word x the number of nonzero components of x, we note w xð Þ ¼ d x, 0ð Þ.

Definitions
We call the minimum distance of a code C an integer d such as d ¼

min d m,m0ð Þ,m∈C,m0 ∈C,m 6¼ m0f g. We call the weight of a word x of code C on
integer w xð Þ ¼ d x, 0ð Þ.

Proposal (correction capacity)
Let C a minimum distance code d, and x∈Fn a received message assigned to r

errors, with r≥ 1.

1.If 2r<d that is to say that r≤ d�1
2

� �

, the code C correct r errors.

2. If d�1
2

� �

< r ¼ d
2

� �

, the C code detects the existence of r errors but cannot always
correct them.

3.If d
2

� �

< r≤d� 1, the C code detects the existence d’ errors but risk of making
an erroneous correction.

The integer t ¼ d�1
2

� �

is called code correction capability, we also say that C is a
t-corrector code.

Proof
Let m the code word transmitted and x the message received and assigned from r

errors then d m, xð Þ ¼ r.

1.We show that the code word m is the only code word such as d m, xð Þ≤ r.

Otherwise it exists m0 of C such as d m0, xð Þ≤ r, we are d m,m0ð Þ≤d m, xð Þ þ
d x,m0ð Þ≤ 2r<d, then m ¼ m0.

2.There is no code word m0 of C such as d x,m0ð Þ<d m, xð Þ ¼ r, but the code
word m is not necessarily the only one to check d m, xð Þ ¼ r. Indeed be
m ¼ m1m2…mn and m0 ¼ m0

1m0
2…m0

n two code words and if we receive the
message x ¼ m1m2…mrm0

1…m0
r, we’ll have d x,mð Þ ¼ d x,m0ð Þ ¼ r.

3
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3.We know there is an error because x ∉ C, but there may be a code word
m0 ∉ C such as d m0, xð Þ<d m, xð Þ ¼ r.

The most used codes are the linear codes which we discuss in the next part.

2.3 Linear codes

Definitions
A linear code C of size n and dimension k on the finite field Fq is a vector

subspace of Fn
q. We note it n, k, d½ �q with d its minimum distance.

Linear codes are codes in which each code word y is obtained by linear
transformation of the components of the initial word (information) x.

A linear code is characterized by its generator matrix G, we have

C ¼ y ¼ xG=x∈Fk
q

n o

.

let H n� kð Þ � n matrix with coefficients in Fq. H is called the parity control

matrix of C if “x∈C⇔Hxt”.

Fk
q: the message space.

The systematic code

The matrix G defines a bijective function Fk
q ! C by x ! xGwhich we represent

qk messages, its length k by code words, of length n.
The generator matrix G of a C code is not unique; G can be transformed into

G0 ¼ IkjAð Þ with Ik the identity matrix with k order and A the matrix of k lines and
n� k columns.

G and G0 generate the same C subspace; G0 is called canonical generator matrix
and if the generator matrix of a code is of the form G ¼ IkjAð Þ, this code is said
systematic.

Theorem
Let C a n, k½ �q linear code.

1.If G is a generator matrix of C and H a parity control matrix of C then GHt ¼ 0.

2.If G is a k� nmatrix of rank k and H is a n� kð Þ � n matrix of rank n� k such
as GHt ¼ 0 then we have:

H is a parity control matrix of C if and only if G is a generator matrix of C.
Proof

1.We know that Ht ¼ 0, ∀x∈C, in particular we have GiH
t ¼ 0 for all i ¼ 1…k

with Gi is line of G. It follows that GHt ¼ 0.

2.)Þ Since GHt ¼ 0, then we have GiH
t ¼ 0. For all i ¼ 1…k. And since H

is a parity control matrix of C, we have the Gi belong to C. rg Gð Þ ¼ k, then
Gi, i ¼ 1…kf g constitute a basis of C. It follows that G is a generator matrix of C.

(Þ we have y∈C if and only if it exists x∈Fk
q such as y ¼ xG. Then y∈C if and

only if yHt ¼ xGHt ¼ 0. Then H is a parity control matrix of C.
In the case of systematic code, we have the following corollary.
Corollary
Let C a n, k½ �q linear code

4
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1.If G ¼ IkjAð Þ a canonical generator matrix of C then H ¼ �AtjIn�kð Þ is a parity
control matrix ofC.

2.If H ¼ BjIn�kð Þ is a parity control matrix of C then, G ¼ Ikj�Btð Þ is a generator
matrix of C.

Proof
By applying the preceding theorem

1.we have GHt ¼ IkjAð Þ �AtjIn�kð Þ
t
¼ �Aþ A ¼ 0, if G is a generator matrix of

C then, H is a parity control matrix of C.

2.we have GHt ¼ Ikj�Btð Þ BjIn�kð Þt ¼ Bt � Bt ¼ 0 then if H is a parity control
matrix of C we will have G is a generator matrix of C.

Encoding and decoding
The coding is obtained by applying the generator matrix. Decoding consists in

applying the control matrix to the message; if the result is 0 then the message is
valid otherwise look for errors and correct them. Hxt is called syndrome. Suppose
the word x is sent through a noisy channel and the word received is y so the error
vector is e ¼ y� x.

Given y, the decoder must decide which word of the code x has been transmitted
(which error vector?). For a vector u and a code C we call coset class of C, the set
uþ C ¼ uþ c, c∈Cf g. A representative of a class of C of minimum weight is called
a leader of this class.

Theorem
Let C a n, k, d½ �q linear code then,

1.u and v are of the same coset class of C if and only if u� v∈C.

2.Any vector of Fn
q is in a coset of C.

3.Given two coset classes, they are either disjoint or identical.

Proof

1.If u, v∈ xþ C then, it exists y, z∈C such as u ¼ xþ y and v ¼ xþ z, then u�
v ¼ y� z∈C, because C is a vector subspace of Fn

q.

If u� v∈C it exists x∈C such as u� v ¼ x then u ¼ vþ x∈ vþ C and we have
v ¼ vþ 0∈ vþ C.

2.Let a∈Fn
q, on a 0∈C thena ¼ aþ 0∈ aþ C.

3.Suppose that aþ Cð Þ∩ bþ Cð Þ 6¼ ∅, the nit exists v∈Fn
q such as

aþ Cð Þ∩ bþ Cð Þ contains the element v, the nit exists x, y∈C such as v ¼

aþ x ¼ bþ y hence b ¼ aþ x� y
� �

and a ¼ bþ y� x
� �

. ∀bþ c∈bþ C we

have bþ c ¼ aþ x� y
� �

þ c∈ aþ C (then bþ C⊂ aþ C). ∀aþ c∈ aþ C We

have aþ c ¼ bþ y� x
� �

þ c∈ bþ C (then aþ C⊂bþ C), hence bþ C ¼

aþ C.
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Principle

We construct the standard array of C which is a matrix of qn�k lines and qk

columns. It contains all the vectors of Fn
q; its first line corresponds to the words of C

with vector 0 on the left. The other lines represent the cosets ui þ C with the class
leader ui to the left. The procedure is as follows:

1.We list the words of C starting with 0 on the first line.

2.We choose a vector u1 of minimum weight that does not belong to the first line
and we list in the second line the elements u1 þ C, by entering below 0 the
class leader u1 and below each element x∈C the element u1 þ x.

3.We choose u2 in the same way and we repeat the same operation.

4.We iterate this process until all the side classes are listed and all the vectors of
Fn
q appear only once.

When the word y is received, we look for its position in the standard table. The
decoder then decides that the error vector e corresponds to the class leader who is
located in the first column of the same row of y and decode y like x ¼ y� e, by
choosing the code word of the first line on the same column ofy.

Remark
The standard table provides nearest neighbor decoding. Note that this process is

too slow and too expensive in memory for large codes. In practice each code has by
its structure a decoding algorithm.

2.4 The hamming code

A Hamming code with r≤ 2 redundancy is a linear code 2r � 1, 2r � 1� r½ �2 its
parity control matrix H, with H is a matrix of r lines and 2r � 1 columns that
correspond to the set of all nonzero vectors of Fr

2.
Theorem
The minimum distance of the Hamming 2r � 1, 2r � 1� r½ �2 code is d ¼ 3

(it therefore corrects a single error).
Proof
This code does not contain any element of weight 1 and 2 otherwise we would

have a column of H which would be zero or two columns of H would be identical.
It exists x∈C such as w xð Þ ¼ 3, indeed by definition of the parity control

matrix H, the first 3 columns are

0 0 0 …

⋮ ⋮ ⋮ …

0 0 0 …

0 1 1 …

1 0 1 …

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

then the vector

x ¼ 1 1 1 0⋯ 0ð Þ its weight w xð Þ ¼ 3 and belongs to C because Hxt ¼ 0.
Decoding
The vector syndrome x of which only the jth component is nonzero is none other

than the transpose of the jth column of H. If the columns of H are ordered in
increasing order of binary numbers, the jth column corresponds to the binary
writing of j, hence the following decoding algorithm:

Let y a message received, we calculate Hyt. If Hyt ¼ 0 then, y corresponds to the
message transmitted. If Hyt 6¼ 0 and assuming there is only one error, Hyt directly

6
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gives the position of the error written in binary in the form ⋯b3b2b1b0. We can

then correct y ¼ y1⋯yn like xþ ej for j ¼
Pn

i¼1bi2
i and ej the vector of which only

the jth coordinate is nonzero.

2.5 The Reed-Solomon codes

Let n ¼ q� 1 with q ¼ 2m et Fq x½ � kð Þ The set of polynomials of degree strictly less
than k on F2m . Let us build a length code n and dimension k. Let L ¼ α1, α2,⋯αn,ð Þ

a vector formed of distinct elements of F ∗
2m ¼ αi, i ¼ 1…n

� �

, with α primitive of F2m .

Each word of the code is the evaluation of a function f of Fq x½ � kð Þ on L then, we
have a length code n and dimension k and generator matrix

G ¼

1 1 … 1

α1 α2 … αn

:: :: … ::

α
k�1
1 α

k�1
2 … α

k�1
n

0

B

B

B

B

B

@

1

C

C

C

C

C

A

:

By its structure, this code has a minimum distance of at least n� kþ 1, because
two polynomials of degrees less than k distinct cannot be equal in addition to k� 1
positions. This distance is exactly equal to n� kþ 1, since the evaluation of a

polynomial of the form
Qk�1

i¼1 x� αið Þ his weight is n� kþ 1. So we have a code on
F2m of the form n, k, n� kþ 1½ �q which can have both good transmission rate and

good correction ability.
Remark
Reed-Solomon codes represent a special case of a slightly more general class

called generalized Reed-Solomon codes GRS whose definition is as follows.
Definition
Let v1, v2,…vnð Þ a vector of length n in F ∗

2m et α1, α2,⋯αn,ð Þ a vector of length n
in F ∗

2m , with the αi are distinct two by two.
The set of codes with the generator matrix G of the form

G ¼

v1 v2 … vn

v1α1 v2α2 … vnαn

… :: … …

v1α
k�1
1 v2α

k�1
2 … vnα

k�1
n

0

B

B

B

B

B

@

1

C

C

C

C

C

A

is called the family of generalized Reed-

Solomon codes.

2.6 The classical Goppa codes

Definition
Let L ¼ α1, α2,…αnð Þ a suite of n distinct elements of F2m and g zð Þ∈F2m z½ � a unit

polynomial of degree r irreducible in F2m z½ �. The irreducible binary Goppa code,
its support L (generator vector) and its generator polynomial g noted Γ L, gð Þ is the
set of words a ¼ a1,…anð Þ∈Fn

2 such that one of the following equivalent
characterizations is verified:

1.Ra zð Þ ¼
Pn

i¼1
ai

z�αi
¼ 0modg zð Þ:

7

The Security of Cryptosystems Based on Error-Correcting Codes
DOI: http://dx.doi.org/10.5772/intechopen.93782



2.Hat ¼ 0 with H ¼

1 1 … 1

α1 α2 … αn

:: :… … …

α
r�1
1 α

r�1
2 … α

r�1
n

0

B

B

B

B

B

@

1

C

C

C

C

C

A

g α1ð Þ�1

::

::

g αnð Þ�1

0

B

B

B

B

B

@

1

C

C

C

C

C

A

parity check matrix.

3.g zð Þ divided dσa zð Þ
dz with c σa zð Þ ¼

Qn
i¼1 z� αið Þai locator polynomial.

The construction of a code Goppa:
Goppa’s code is a linear code on the field F2, its construction requires the use of

an extension F2m . Each element of the matrix H is then broken down into m
elements of F2 placed in columns, using a projection of F2m in Fm

2 ; we go from a size
matrix r� n on F2m to a matrix of size rm� n on F2 so it is a length code n ¼ Lj j and
dimension k ¼ n�mr and has a minimum distance at least equal to d ¼ rþ 1.
Indeed the parity check matrix H is written as the product of a Vandermonde
matrix and an invertible matrix therefore all under a square matrix r� r of H is
invertible, then there are no code words with a weight less than or equal to r.

The decoding of a Goppa code:
Several techniques exist to decode Goppa codes but they work by the same

principle. Let c0 ¼ cþ e and w eð Þ< r
2. We start by calculating the syndrome Rc0 zð Þ

on F2m ; from this syndrome we will write a key equation, and we will finish the
decoding by solving the key equation to finde.

If Ra zð Þ ¼ 0 the word will belong to the code.
The key equation
Let σe zð Þ ¼

Pn
i¼1 z� αið Þei of degree < r

2. On introduit le polynôme we zð Þ ¼

σe zð ÞRe zð Þmod g zð Þ called evaluator polynomial.

σe zð ÞRe zð Þ ¼
X

n

i¼1

ei
z� αi

Y

n

j¼1

z� αj
� �ejmod g zð Þ ¼

X

n

i¼1

ei
Y

n

j ¼ 1

j 6¼ i

z� αj
� �ejmod g zð Þ:

We can solve the key equation in two different ways: Berlekamp Massey’s
algorithm and the extended Euclidean algorithm. The latter has the advantage of
being easier to present. Indeed we seek to find we and σe of degree < r

2 such as
we zð Þ ¼ σe zð ÞRe zð Þmod g zð Þ ¼ σe zð ÞRe zð Þ þ k zð Þ g zð Þ. If we try to calculate the gcd
of g, Reð Þ with the extended Euclidean algorithm, we will calculate at each step the
polynomials ui, vi, ri checking Reui þ gvi ¼ ri: At each step the polynomials ui and vi
will be of degree <i and the degree of ri is equal to r� i. There is therefore a step at
which if we stop the algorithm we will find a solution of the equation σe ¼ ui0 and
wi0 ¼ ri0 to a scalar coefficient.

3. Encryption/decryption systems

3.1 The basic system (McEliece)

We start by generating a code n, k, d½ �q linear of a well-chosen family and its

generator matrix G. We are going to mix this matrix to make it indistinguishable
from a random matrix, so we need a permutation matrix P her size is n� n (having
1 in each row and column and 0 everywhere) and an invertible matrix S her size

8
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k� k (S is jammer). The public key will be G0 ¼ SGP which is indistinguishable
from a random matrix (The definition of a random matrix comes from the defini-
tion of random code which be introduced in section four). The knowledge of S, P
and G allows us to find the structure of the design code and provides us with the
decoding algorithm.

3.1.1 The algorithms of the McEliece system

We cite the component algorithms of the McEliece cryptosystem [4].
The generation of keys
Input
A family of linear codes n, k, d½ �q chosen for design.

Procedure
Choose a generator matrix G in systematic form of the design code.
Choose an invertible matrix S her size k with coefficients in Fq.
Choose a permutation matrix P her size is n� n.
Calculate G0 ¼ SGP.
Output
The public key G0.
The private key S,G, Pð Þ.
Encryption of the plaintext.
Input
The public key G0.

The plaintext x∈Fk
q.

Procedure
Choose a vector e∈Fn

q (an error) his weight less than or equal to the design code

correction capacity.
Calculate y ¼ xG0 þ e.
Output: The cipher text y.
Decryption of cipher text
Input: the cipher text y, The private key S,G, Pð Þ.
Procedure

Calculate u ¼ yP�1.
Calculate x0 ¼ fG uð Þ with fG the design code decoding algorithm, whose gener-

ator matrix is G.

Calculate x ¼ x0S�1.
Output: the plaintext x.
Remark
The use of binary Goppa code as a secret key is initially proposed by McEliece in

its original version. Where he took the following parameters: m ¼ 10, n ¼ 2n ¼
1024, r ¼ 50, k ¼ n�mr ¼ 524: So far it seems that this choice is perfectly safe, but
it is not used in practice because the size of its public key is very large.

Example

We use the Hamming code with its generator matrix G ¼

1 0 0 0 1 0 1

0 1 0 0 0 1 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1

2

6

6

6

4

3

7

7

7

5

and parity check matrix H ¼

1 0 1 1 1 0 0

0 1 1 1 0 1 0

1 1 0 1 0 0 1:

2

6

4

3

7

5

The generation of keys
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Let the private key S,G, P.

S ¼

1 0 0 0

0 1 0 1

1 0 1 1

0 0 0 1

2

6

6

6

4

3

7

7

7

5

¼ S�1, P ¼

0 1 0 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 1 0 0

0 0 0 0 0 1 0

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

,

P�1 ¼

0 0 0 1 0 0 0

1 0 0 0 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 1 0 0

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

The public key: G0 ¼ SGP ¼

0 1 0 0 1 1 1

1 0 0 1 0 0 1

1 1 1 0 0 0 1

1 0 0 0 1 1 1

2

6

6

6

4

3

7

7

7

5

Encryption
Let the plaintext x ¼ 0110ð Þ and let error vector e ¼ 0010000ð Þ.
The cipher text is y ¼ xG0 þ e ¼ 0111000ð Þ þ 0010000ð Þ ¼ 0101000ð Þ.
Decryption
We decipher the text received y ¼ 0101000ð Þ. We have y ¼ xG0 þ e ¼ xSGPþ e

then P�1 ¼ xSGþ eP�1 ¼ 1100000ð Þ ¼ y0. Hy0t ¼

1

1

0

0

B

@

1

C

A
, so the error is in the third

position hence u ¼ 1110000ð Þ ¼ xSG. And since G is generator matrix of the

systematic system then xS ¼ 1110ð Þ then x ¼ 1110ð ÞS�1 ¼ 0110ð Þ. x. Then the
plaintext sought.

3.2 The Niederreiter variant

Let C a linear t-corrector code of length n and dimension k. Let H a parity check
matrix of C her size is n� kð Þ � n. We randomly choose an invertible matrix S and
P a permutation matrix. We calculate H0 ¼ SHP. We will have H0 a public key and
S,H, Pð Þ the private key, with the knowledge of a syndrome decoding algorithm in
C. Let x a plaintext of length n and weight t, we calculate the cipher text y ¼ H0xt.

The recipient receives y knowing the secret key, he can calculate S�1y ¼ HPxt.

Using the syndrome decoding algorithm of C, he can find Pxt and applying P�1 the
plaintext x is found.

The algorithms of the Niederreiter cryptosystem [5]
The generation of keys
Input
A linear code n, k, d½ �q is chosen for the design, of which we know a decoding

algorithm by syndrome.
Procedure
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Choose a parity check matrix H of design code.
Choose a matrix S, invertible of size k with coefficients in Fq.
Choose a permutation matrix P of sizen� n.
Calculate H0 ¼ SHP.
Output
The public key H0.
The private key S,H, Pð Þ.
Encryption
Input
The public key H0.
The plaintext x∈Fn

q of weight less than or equal to the correction capacity.

Procedure
Calculate y ¼ H0xt.
Output
The cipher text y.
Decryption
Input
The private key S,H, Pð Þ.
The cipher text y.
Procedure

Calculate y0 ¼ S�1y.

Calculate x0 ¼ fH y0
� �

with fH the code syndrome decoding algorithm, its parity

check matrix is H.

Calculate x ¼ x0P�1.
Output
The plaintext x.
Remark
Reed-Solomon codes were originally proposed by Niederreiter as a family of

codes that could be considered by his cryptosystem. In 1992 Sidelnikov and
Shestakov have shown that it is easy to attack this cryptosystem [2].

4. The security of cryptosystems based on correcting codes

The security of cryptosystems based on error-correcting codes is based on the
problem of distinguishing the design code (hidden) from a random code. We first
give the following definitions:

• Code equivalence

Two codes are said to be equivalent if their generator matrices (respectively
parity) are deduced from each other by permutation of columns.

• Random code

A random code is a linear code of which the k linearly independent lines of the
generator matrix (or the n linearly independent columns of the parity matrix) have
been generated randomly.

The main parameters for securing an McEliece cryptosystem and its variants are
then the structure of the code family chosen for the design, which it is desirable that
it will be difficult to find an equivalent code. Since the robustness of such a system
lies in the difficulty of decoding and the hidden structure of the design code, then
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the attacker can attempt to attack the system by two methods: decoding attack and
structural attack. The resistance of the system to these two attack methods depends
on the family of codes chosen for the design. The choice of code family is the
essential point in the design of the cryptosystem.

4.1 Decoding attack

The attacker directly attempts to decode the cipher text in the C code (generator
matrix G or public key parity H); the principle consists of decoding the intercepted
cipher text relative to the public code using general decoding algorithms. We cite
two decoding problems in a random code:

Problem 1
Given G a random binary matrix of size k� n, generator of a C code of

dimension k. x a random word of Fn
2 and t a positive integer, find if there is an error

word e of Fn
2 such as w eð Þ≤ t and xþ e∈C.

Problem 2
Given H a binary random parity matrix; her size n� kð Þ � n of a C code its

dimension k, s a random vector of Fn�k
2 and t a positive integer, find if there is a

word x of Fn
2 such as w xð Þ≤ t and Hxt ¼ s.

Decoding in random code is behind the following attacks:

• Algorithme de décodage par ensemble d’information

The principle is based on two steps: the selection of a set of information and the
search for low-weight word. There are several variants which propose to optimize
one or the other of these two steps.

Definition
Let C a linear code of generator matrix G and length n. A set of information I is a

subset of 1, 2,…nf g such as GI, her size k� k formed of columns of G labeled by the
elements of I, is invertible.

Remark

The matrix GIjGJ

� �

with I∪ J ¼ 1, 2,…nf g is equivalent to G.
Algorithm
Input
G: a matrix generating of a code C.
t: a positive integer.
y: a word of Fn

2 such as d y, C
� �

≤ t.
Output
The couple x, eð Þ such as y ¼ xGþ e where w eð Þ≤ t.
Procedure
Randomly draw a set of information I of the code C (let J such as I∪ J ¼

1, 2,…nf g).

Calculate R ¼ G�1
I GJ.

Write y ¼ yIjyJ

� 	

.

Calculate eJ ¼ yJ � yIR.

Repeat the previous operations until you find eJ such as w eJ
� �

≤ t.

Returne ¼ 0jeJ
� �

.
Determine the word x such as y� e ¼ xG.
Proof

We have a y ¼ xGþ e and y ¼ yIjyJ

� 	

¼ x GIjGJ

� �

þ eIjeJ
� �

. Hence eI ¼

yI � xGI and eJ ¼ yJ � xGJ.
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If the set of information I does not contain an error position eI ¼ 0ð Þ and like GI

is invertible, we obtain yI ¼ xGI, eJ ¼ yJ � yIG
�1
I GJ. Then e ¼ 0jyJ � yIG

�1
I GJ:

� 	

is

the solution sought.
Remark

We have Ck
n possibilities to choose k ¼ Ij j positions of 1, 2,…nf g ( Ij j is a

cardinally of I). And we have Ck
n�t possibilities to choose k ¼ Ij j positions among

n� t positions where ei ¼ 0. So the probability of getting the set of information I

with eI ¼ 0 is p ¼
Ck
n�t

Ck
n

and the average number of iterations will be 1
p.

Example
Let us try to attack the following system by this method: We

haveG ¼
1 1 1 0 0 1 0 1

0 1 0 1 1 1 1 0


 �

.

The cipher text y ¼ 10101011ð Þ ett ¼ 1.
looking m, eð Þ such as mGþ e ¼ y.

Let I ¼ 1, 5f g⊂ 1, 2,…8f g then GI ¼
1 0

0 1


 �

¼ G�1
I

andGJ ¼
1 1 0 1 0 1

1 0 1 1 1 0


 �

.

yI ¼ 1, 1ð Þ and yJ ¼ 0, 1, 0, 0, 1, 1ð Þ. Then eJ ¼ yJ � yIG
�1
I GJ ¼ 001000ð Þ, it

follows that eIjeJ
� �

¼ 00001000ð Þ.

yIjyJ

� 	

þ eIjeJ
� �

¼ 11010011ð Þ þ 00001000ð Þ ¼ 11011011ð Þ ¼ m GIjGJ

� �

¼ m
1 0 1 1 0 1 0 1

0 1 1 0 1 1 1 0


 �

then m ¼ 11ð Þ.

• Decoding by paradox of birthdays

Consider an instance of problem 2. For a parity check matrix H of size r� n, a
syndrome s and a weight t. If the weight t is even, let us separate the columns of H
in two sets of the same size H1 and H2 such as H ¼ H1jH2ð Þ.

Let us build L1 ¼ H1et1, e1of length n
2 and the weight t2

� �

et L2 ¼

sþH2et2,e2of length n
2 and the weight t2

� �

. Common elements of L1 and L2 are such

that H1et1 ¼ sþH2et2, that is to say e1je2ð Þ is solution of problem 2.
The probability that one of the solutions splits into two equal parts of the parity

matrix is p ¼
C
t=2

n=2

� 	2

Ct
n

; to solve problem 2 you have to repeat these operations 1
p on

different permutations of the public code.

• The recovery of a plaintext encrypted twice by the same McEliece system

This is an active attack that only applies to the McEliece encryption system
(because it is not deterministic) and does not apply to the Niederreiter system.
Suppose the plaintext x is encrypted in two different ways. We will have y1 ¼
xGþ e1, y2 ¼ xGþ e2 où e1 et e2 sont deux vecteurs d’erreur distincts de poids t.
We get the word y1 � y2 ¼ e1 � e2 which is less than or equal to 2t. Once an attacker
has detected that the two cipher texts y1 and y2 correspond to the same plaintext,
this information will reduce the number of iterations of the decoding algorithm set
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of information. Message forwarding is detected by observing the weight of the two
cipher texts. If the two plaintexts are identical then, the weight of the sum of the
two numerical texts remains less than 2t in general (t the correction capacity).

Algorithm
Input
G: The public key of sizek� n.
Two words y1 and y2 such as y1 ¼ xGþ e1, y2 ¼ xGþ e2 where e1 and e2 are two

distinct error vectors of weightt.
Output
The plaintext x.
Procedure
Calculate y1 � y2.
Randomly draw a set of information I⊂ 1, 2,…nf g which label the zero positions

of y1 � y2.

Calculate eJ ¼ yJ � yIG
�1
I GJ où y1 ¼ yIjyJ

� 	

etI∪ J ¼ 1, 2…nf g.

Repeat the previous operations until the weight of e (≤ t).

Return x ¼ yIG
�1
I .

Example
Let us try to attack by this method the system of the previous example.
Either plaintext encrypted two ways in which the public key is

G ¼
1 1 1 0 0 1 0 1

0 1 0 1 1 1 1 0


 �

:

y1 ¼ mGþ e1 ¼ 11ð Þ
1 1 1 0 0 1 0 1

0 1 0 1 1 1 1 0


 �

þ 00010000ð Þ ¼ 10101011ð Þ

y2 ¼ mGþ e2 ¼ 11ð Þ
1 1 1 0 0 1 0 1

0 1 0 1 1 1 1 0


 �

þ 00100000ð Þ ¼ 10011011ð Þ

y1 þ y2 ¼ 00110000ð Þ:

Draw a set of information that labels the zero positions of y1 þ y2 let I ¼ 7, 8f g.

GI ¼
0 1

1 0


 �

¼ G�1
I , GJ ¼

1 1 1 0 0 1

0 1 0 1 1 1


 �

;

y1 ¼ 10101011ð Þ, yI ¼ 11ð Þ, yJ ¼ 101010ð Þ.

eJ ¼ yJ � yIG
�1
I GJ ¼ 101010ð Þ � 11ð Þ

0 1

1 0


 �

1 1 1 0 0 1

0 1 0 1 1 1


 �

¼ 000100ð Þ:

yIjyJ

� 	

þ eIjeJ
� �

¼ 11101010ð Þ þ 00000100ð Þ ¼ 11101110ð Þ

¼ m
0 1 1 1 1 0 0 1

1 0 0 1 0 1 1 1


 �

So we extract m ¼ 11ð Þ.

4.2 Structural attack

The attacker tries to find a decomposition of the key G0 ¼ S1G1P1, which allows
it to develop its own decoding algorithm. Succeeding in a structural attack generally
amounts to finding a code equivalent to the public code for which we know a
decoding algorithm. This attack depends exclusively on the structure of the space of

14

Cryptography - Recent Advances and Future Developments



the keys used. We quote here a successful attack on an McEliece system with the
Reed-Solomon code as the design code.

• The attack of Sidelnikov and Shestakov

Sidelnikov and Shestakov showed [6] that generalized Reed-Solomon codes
were so structured that one could find a decoder of the public code in polynomial
time. The systematic form of the matrix generating a GRS code can be obtained
from the following proposition:

Proposal

Let G ¼

v1 v2 … vn

v1α1 v2α2 … vnαn

… :: … …

v1α
k�1
1 v2α

k�1
2 … vnα

k�1
n

0

B

B

B

B

B

@

1

C

C

C

C

C

A

a matrix generating a Reed-Solomon

code generalized on Fqm then there is a matrix k� k invertible S coefficient in

Fqm and a matrix R ¼ Rij

� �

i ¼ 1…k

j ¼ kþ 1…n

such that IjRð Þ ¼ SG and Rij ¼
vj
vi

Qk
s ¼ 1

s 6¼ i

αj�αs

αi�αs

Proof
For i ¼ 1, 2…k we define the following interpolation polynomial

f i xð Þ ¼
Qk

s ¼ 1

s 6¼ i

αj�αs
αi�αs

¼
Pk

j¼1f ijx
j�1 of degree k� 1 such that f i αið Þ ¼ 1, f i αj

� �

¼ 0 for

j ¼ 1, 2…k and j 6¼ i. We note S ¼
f ij
vi

� 	

i ¼ 1…k

j ¼ 1…:k

.

The ith row of the matrix produces SG is f i α1ð Þ v1vi , f i α2ð Þ v2vi ,…f i αnð Þ vnvi

� 	

By construction of polynomials f i, the k first columns of the matrix SG form
the identity matrix, therefore S is invertible and SG ¼ IjRð Þ where R ¼ Rij and

Rij ¼ f i αj
� � vj

vi
.

Corollary
Let I the identity matrix its order k and R ¼ Rij

� �

i ¼ 1…k

j ¼ kþ 1…n

where

Rij ¼
vj
vi

Qk
s ¼ 1

s 6¼ i

αj�αs
αi�αs

. Alors la matrice IjRð Þ is the generator matrix in systematic form

of the generator matrix GRS code G ¼

v1 v2 … vn

v1α1 v2α2 … vnαn

… :: … …

v1α
k�1
1 v2α

k�1
2 … vnα

k�1
n

0

B

B

B

@

1

C

C

C

A

.

Proof
Can be deducted from the definition of the generalized Reed-Solomon code and

the latest proposal.
Algorithm
Input
A family of generalized Reed-Solomon code of length n, of dimension k

constituting the key space.
The public key G0.
Results

The matrix G ¼ vjαij

� 	

i ¼ 0,::k� 1

j ¼ 1…n

and S invertible matrix its size k� k such that

G0 ¼ SG.
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Procedure
Put the matrix G0 in form IjRð Þ by Gaussian elimination.

Determine the matrix G ¼ vjαij

� 	

i ¼ 0,::k� 1

j ¼ 1…n

such that α1,…αn et v1,…vn check the

equations Rij ¼
vj
vi

Qk
s ¼ 1

s 6¼ i

αj�αs
αi�αs

.

Determine the matrix S such that G0 ¼ SG.

5. Conclusion

In conclusion, the security of cryptosystems based on error-correcting codes
is strongly linked to the family of code used in the design of the system. The
cryptosystem based on the Reed-Solomon code was broken by Sidelnikov and
Shestakov in 1992. The version of McEliece using Goppa codes has been studied for
40 years and it seems perfectly secure from a cryptographic point of view; but it is
not used in practice because the size of its public key is much larger that we know
how to do with systems from other fields (RSA for example), hence the importance
of finding a way to reduce the size of their public key. In the end, the McEliece
system based on Goppa’s code remains a preferred system as a post-quantum
cryptosystem. We have not covered in this chapter other cryptographic applications
of error-correcting codes, including hash functions [3, 7–11], pseudo-random
generators, identification protocols, etc.
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