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Chapter

Using Multi-Criteria Optimization
in Decision Support under Risk
Andrzej Łodziński

Abstract

The chapter presents an extension of a previous method for decision support
under risk. The decision-making process is modeled by a multi-criteria optimization
problem, in which the individual evaluation functions represent the results of
decisions in several possible scenarios with associated risks. The decision support
method is an interactive decision-making process. The choice is made by solving the
problem depending on the control parameters that define the aspirations of the
decision maker as well as on an evaluation of the obtained solutions. The decision
maker selects a set of parameters representing various risks’ impacts that influences
a solution, and then he/she evaluates the obtained solution by accepting or rejecting
it. In another case, the decision maker selects a new value and the problem is solved
again for the new parameter. In this chapter, an example of supporting
decision-making under risk is presented.

Keywords: decision under risk, multi-criteria optimization, symmetrically efficient
decision, scalarizing function, method of decision selection

1. Introduction

In real decision-making problems, the evaluation of a decision is usually
nondeterministic, because each problem concerns future activities and is evaluated
in terms of future results. A significant portion of the parameters determining the
decision conditions and assessment of the results may change, for example, raw
material prices, product prices, currency exchange rates, and the sales potential of a
given product.

The paper [1] presents a method of modeling decisions under risk in the form of
a multi-criteria optimization problem. In this chapter, this approach is developed to
apply multi-criteria optimization to supporting decision-making under risk.

As pointed out in [1], when making a decision, the decision maker must take
into account both the choice of decisions and the risk’s conditions that may occur in
his/her environment. Depending on the degree of knowledge of the decision-
making situation (features of the problems being solved and the nature of the
environment), decisions can be made in a situation of certainty, uncertainty, or
risk. This chapter extends the previous work to represent three types of decision-
making under risk. The first type of decision-making: decisions are made under
conditions of certainty when the decision maker has accurate and reliable informa-
tion on which to base his/her actions. The effects of the actions can be predicted
with high accuracy. The second type of decision-making: a decision maker has a
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situation of uncertainty when he can determine what factors will affect the
decision-making situation, but he cannot determine the probabilities of their
occurrence and therefore also the risks’ impacts of the decisions taken. The other
type of decision-making is a decision in risk conditions that applies to situations
where the decision maker can determine what factors will affect the decision situa-
tion and determine the probabilities of their occurrence. The decision maker, using
his experience and information from the environment, can determine with known
or estimated probability the effects of decisions as well as the circumstances
surrounding them.

Decision-making under risk is a process in which the results of actions taken by
the decision maker are uncertain due to the potential of unforeseen circumstances,
factors interfering with these circumstances, or disruptive factors, for example,
ambient conditions, called scenarios. These, in turn, are caused by factors indepen-
dent of the decision maker and have a significant impact on the results of the
decision. Examples of scenarios can be: good or bad weather in the future; decline,
stabilization, or rising stock values on the stock exchange in the future; and differ-
ent price values and order volumes for a company operating in the future. Each
such variant is a scenario. At the same time, each scenario clearly defines the
implementation of results for individual decisions. Only the past is known from
experience; we observe the present and try to predict the future. Such predictions
are related to the construction of probable scenarios based on statistical analysis of
the past data in order to find indications about the future and to anticipate it as
accurately as possible. The decision maker is not able to determine with certainty
which actions will lead to a result, but he can calculate the probability that a given
result will occur. Specific scenarios correspond to the appropriate implementation
of the assessment function. For each scenario, we are interested in the best
evaluation value [1, 2].

As pointed out in [1], the theory of decision-making under risk refers to utility
function and two-criterion techniques (Markowitz-type models). The utility func-
tion of the decision maker ensures complete order. If it is known, then the optimal
decision is one that maximizes the expected utility [3–5].

This chapter shows an extension of [1] on how the decision problem under risk
can be modeled with the multi-criteria optimization, that is, simultaneous minimi-
zation of a vector evaluation function whose particular coordinates represent the
result of the decision when the given scenario is under risk occurred. The traditional
approach [1] to solving a multi-criteria optimization problem requires the intro-
duction of a single scalar objective function valuating individual y vectors and
hence the decision vectors x. The solution of the decision problem is then reduced to
determining the solution of the optimal single-criteria optimization problem. This
approach implies the assumption that the preference relationship can be described
using the utility function, u. The major difficulty in solving multi-criteria decision
problems is due to the inability to determine a single aggregate quality indicator a
priori, while the utility function is just such an indicator. Multi-criteria optimization
techniques allow you to solve such a problem without using utility function models.
This provides to the interactive multi-criteria techniques for decision support under
risk. There are tools of the interactive analysis to define decision support process.
They depend on additional preference information gained interactively from the
decision maker, allowing simultaneously the decision maker to learn the problem
during the process with possible evolvement of the preferences. The effective
decision support is using the reference point method. Using the multi-criteria opti-
mization approach, there is no need to identify the utility function of the decision
maker. This approach is good for any decision maker who makes decisions under
risk conditions (in a cost problem where less is better) for which less is better. This
is consistent with first-order stochastic dominance.
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The chapter is organized as follows:

• Section 2 presents a modeling approach of decision under risk.

• Section 3 defines a symmetrically effective decision that resolves the decision
problem under risk conditions.

• Section 4 discusses the technique of generating symmetrically effective
decisions and the method of supporting the decision maker.

• Section 5 gives an example of the application of the proposed decision support
approach to a discrete problem.

• Section 6 provides a conclusion of this chapter.

2. Modeling of decision under risk

This section discusses how multi-criteria optimization methods can be used to
model decisions under risk. The problem of multi-criteria optimization in the
decision space and in the assessment of decision space is formulated.

Decision-making under risk is modeled by introducing scenarios, which repre-
sent possible states of the environment. Scenarios are factors that influence the
outcome of a decision but are beyond the influence of the decision maker. For
example, the risk factors can be raw material prices, product prices, currency
exchange rates, deposit rates, and demand (e.g., sales opportunities for a given
product) which may change. There may also be a catastrophic event changing the
situation, for example, closing of the sales or supply market (e.g., due to embargo),
customer insolvency, loss of license, etc.

The scenarios representing the risk factors are presented according to their
probability distribution. If we assume that the probability of each scenario is a
rational number, then by repeating relevant scenarios, it is possible to approach a
situation where the probability of each scenario is the same, for example, selection
between random variables Y 0 and Y 00:

P Y 0 ¼ xð Þ ¼
1=2 x ¼ 2

1=2 x ¼ 4

�

P Y 00 ¼ xð Þ ¼
1=4 x ¼ 1

3=4 x ¼ 5

�

is equivalent to the problem of choosing between two lotteries y0 ¼ 2,  2,  4,  4ð Þ
and y00 ¼ ð1,  1 ?ð Þ,  5,  5Þ with equally probable outcomes, where the order of
outcomes is not important.

The number of occurrences of a specific scenario corresponds to the probability
assigned to it. The specific set of scenarios Si, i ¼ 1,…,m corresponds to the appropriate
realization environment conditions associated with the evaluation function f i xð Þ, i ¼
1,…,m, where x∈X0, a decision set that belongs to the set of admissible decision. There
is an assessment function associatedwith each scenario. At the same time, each scenario
clearly defines the implementation of results for the individual evaluation function. For
each scenario, a lesser value of the evaluation function is preferred [4, 6, 7].

They are given as:

• the feasible decision set X0 ⊂Rn;

• the set of scenarios S1, S2,…, Sm and the set of probabilities p1, p2,…, pm of
occurrence of each scenario, and these probabilities are assumed to be known
to the decision maker; and
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• the decision assessment function, x, at the scenario f i xð Þ, i ¼ 1,…,m, where
there is one evaluation function, f i xð Þ, associated with each scenario.

The problem of decision under risk is modeled in the form of some kind of
multi-criteria optimization problem:

min
x

f f 1 xð Þ,…, fm xð Þ
� �

: x∈X0g (1)

This is a special problem of multi-criteria optimization in the sense that all
assessment functions are expressed in the same units. This differs from the standard
multi-criteria optimization problem, where evaluation functions can be expressed
in different units. In the case of modeling decisions in risk conditions, individual
assessments, although generated by different functions, are all expressed on the
same scale, which allows comparison of their values.

There are as many assessment functions in a multi-criteria problem as there are
scenarios. Each scenario has a different assessment function. You want to have the
best score for all scenarios.

In the problem of multi-criteria optimization, all values for all scenarios are
taken into account and by not looking at the values in each scenario (and not
looking at individual coordinates). The result of the decision is the grade vector.
You want to have the best score for all scenarios. One grading vector that gives the
best score for all scenarios is sought.

The function, f , assigns to each decision variable vector, x∈X0, an evaluation
vector, y ¼ f xð Þ, which measures the quality of decisions, x, from the point of
view of the determined system of evaluation functions, f 1,…, fm. For each individ-
ual assessment at a given scenario, the lower rating means a better evaluation. The
formulation of the multi-criteria optimization problem is expressed in the decision
space. This is a way for representating the decision problem, where the goal is to
choose the right decision, given a set of criteria associated with decision’s risk.

There is a transformation f ¼ f 1, f 2,…, fm
� �

of a set of feasible decisions, X0,

into a set of achievable assessment vectors, Y0. The problem of choosing the best
decision arises naturally. The choice of decision only considers grade vectors and
decisions with identical grade vectors that are equally good. Thus, the problem of
determining the best decision can be limited to the issue of choosing the best grade
vector in the set of achievable grades (achievable grade vectors):

Y0 ¼ y : y ¼ f xð Þ, x∈X0f g

This leads to a multi-criteria model in the assessment space:

min
x

y ¼ y1,…, ym
� �

: yi ¼ f i xð Þ ∀i, x∈X0

� �

(2)

where grades are directly specified as individual variables.
Each vector x in the set X0 corresponds to the vector y for the set Y0. The vector

from the set Y0 is selected and one sees the decision from the set X0.

3. Symmetrically efficient solutions

This chapter extended the way of defining a symmetrically effective decision
compared to the work [1]. This chapter provides the basic definition of a symmet-
rically effective decision. It is a decision that is a solution to a specific multi-criteria
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optimization problem, a problem used to support decisions under risk. Decision
assessments must meet an additional condition—the condition of anonymity of
preference relationships.

The model of the decision problem under risk in the form of a multi-criteria
optimization problem imposes additional properties of preference relations and,
consequently, limits the choice of decisions to an appropriate subset of the entire set
of effective decisions. In the problem of making decisions under risk, minimizing all
assessments is equally important.

Decision problems under risk are, when the decision is based on minimization of
a vector outcome with various realizations under several scenarios. The preference
model leads to the Pareto efficiency with respect to the realizations under scenarios
understood as multiple criteria. The case of equally probable scenarios leads to the
concept of symmetric optimization (efficiency) of multi-criteria corresponding to
realizations under scenarios. The solution should have the feature of anonymity: no
distinction is made between results that differ in their orientation coordinates. This
solution of the problem, called a symmetrically efficient decision, is an efficient
decision that possesses an additional property, that is, that of preference relation
anonymity.

Nondominated solutions (optimum Pareto) are defined with the use of preference
relations which answer the question of which one of a given pair of evaluation
vectors y1, y2 ∈Rm is better. This is the following relation:

y1 ≻ y2⇔ y1i ≤
2
i ∀i ¼ 1,…,m∧∃j y1j < y2j (3)

The vector of evaluation ŷ∈Y0 is called the nondominated vector, provided there
is no vector y∈Y0 such that ŷ is dominated by y. The domination structure is shown
in Figure 1.

The set of nondominated solutions is defined as follows:

Ŷ0 ¼ ŷ∈Y0 : ŷþ ~D
� �

∩Y0 ¼ ∅
� �

g (4)

where ~D is a positive cone without the top. The positive cone can be ~D ¼ Rm
þ.

The set Ŷ0 is shown in Figure 2.
A decision x̂∈X0 is called an efficient decision (Pareto optimal) if there is no x

such that yi ¼ f i xð Þ≤ ŷi ¼ f i x̂ð Þ for i ¼ 1,…,mwith strict inequality for at least one i
[5, 8].

Figure 1.
Dominance structure in R2.
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In the problem with homogeneous and equally important assessments, the
relation of the decision maker preferences should be impartial due to individual
assessment functions. That is, for a given set of evaluation functions, only the
distribution of the values achieved by these functions for a given decision is
important, and it is not important which function it took. This requirement is
formulated mathematically as a property of the anonymity of preference
relationships. The risk assessment vector should meet the property of anonymity.

The relation is called an anonymous (symmetric) relation if, for every vector
y ¼ y1, y2,…, ym

� �

∈Rm and for any permutation, P, of the set 1,…,mf g, the

following is true:

yP 1ð Þ, yP 2ð Þ,…, yP mð Þ

� �

≈ y1, y2,…, ym
� �

(5)

We look at the whole with the help of an anonymous preference relationship,
and all scenarios are considered rather than on individual results for given
scenarios. Anonymous preference relationship is a superstructure over a preference
relationship—an additional condition of anonymity is added.

A nondominated vector satisfying the anonymity property is called a symmetri-
cally nondominated vector. The set of symmetrically nondominated solutions is

marked as follows: Ŷos. In the decision space, symmetrically efficient decisions are
specified. The decision x̂∈X0 is called a symmetrically efficient decision, if the
corresponding evaluation vector ŷ ¼ f x̂ð Þ is a symmetrically nondominated vector.

The set of symmetrically efficient decisions is marked as follows: X̂os [9, 10].
The domination structure of symmetric dominance depends on the location of

an evaluation vector, y, relative to the line y1 ¼ y2 ¼ … ¼ ym. The domination
structure is shown in Figure 3.

The relation of symmetric domination can be expressed as the domination of
evaluation vectors with coordinates ordered in no decreasing order. This can be
formalized with the map T : Rm ! Rm such that T yð Þ ¼ T1 yð Þ,T2 yð Þ,…,Tm yð Þð Þ,
where T1 yð Þ, ≥T2 yð Þ≥ ,…, ≥Tm yð Þ and a permutation, P, of the set 1,…,mf g exists
such that Ti yð Þ ¼ yP ið Þ for i ¼ 1, ::,m.

Figure 2.
Nondominated solutions.

6

Systems-of-Systems Perspectives and Applications - Design, Modeling, Simulation…



The evaluation vector y0 symmetrically dominates the vector y00 if the following
condition is satisfied:

y1 ≻ ay
2
⇔T y1

� �

≤T y2
� �

(6)

The relation of symmetrical domination ≻ a is a simple vector domination for
evaluation vectors with no decreasing coordinates of evaluation vector [9, 10].

For the problem of decisions under risk expressed in the form of a multi-criteria
optimization problem, the solution is a set of symmetrically effective decisions.

4. Technique of generating symmetrically efficient decisions

This chapter extended the way of defining a symmetrically effective decision
compared to the work [1]. This chapter discusses how to support decisions under risk.
It is an interactive IT system that processes relevant data for a given decision situation
and assists the decision maker in recognizing the decision problem in the sense of
understanding his own preferences. The decision maker’s role is paramount. The
system is not a substitute for the decision maker at any stage of decision-making.
Such a system is to support, not replace in the final selection of the decision maker.

In multi-criteria decision problems, the relation of preferences is not known a
priori, and therefore the final choice of solution can be made only by the decision
maker. Given the numerous set of solutions, this selection is made using the appro-
priate interactive information system—the decision support system. Such a system
processes important data for a given decision situation but also supports the decision
maker in recognizing the decision problem in the sense of understanding his own
preferences. The decision maker’s role is paramount. The system is not a substitute for
the decision maker at any stage of decision-making. Decision support system is to
support, not replace in the final selection of the decision maker. In the problem of
multi-criteria optimization, you cannot impose an optimal solution on the decision
maker, you should support it—give the decisionmaker the opportunity to review such
solutions that give the best results—symmetrically nondominated solutions. The deci-
sion maker chooses the decision by looking at the symmetrically nondominated set.
This system enables a controlled review of the set of symmetrically efficient solutions.
On the basis of the values of certain control parameters given by the decision maker,
the system presents various solutions that are symmetrically efficient for analysis.

Figure 3.
Symmetric dominance structure in R2.
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Solutions of a symmetrically efficient multi-criteria problem can be determined
by solving the optimization of a multi-criteria problem:

min y1,…, ym
� �

: x∈X0

� �

(7)

with the scalarizing function y : Rm ! R defining the preference relation:

y1 ≻ ay
2
⇔ s y1

� �

> s y2
� �

(8)

If the relation fulfills the condition of anonymity, the efficient solution gener-
ated by this scalarization is also a symmetrically efficient solution to the multi-
criteria problem (1).

Symmetrically efficient decisions for a multiple criteria problem (1) are obtained
by solving a special problem in multi-criteria optimization, that is, a problem with
coordinates of the vector of evaluation arranged in a no decreasing order. This
problem is as follows:

min
y

f T1 yð Þ,T2 yð Þ,…,Tm yð Þð Þ : y∈Y0g (9)

where y ¼ y1, y2,…, yk
� �

is an evaluation vector,
T yð Þ ¼ T1 yð Þ,T2 yð Þ,…,Tm yð Þð Þ, where T1 yð Þ, ≥T2 yð Þ≥ ,…, ≥Tm yð Þ is an

ordered evaluation vector,
Y0 is the set of evaluation vectors.
An efficient solution of multi-criteria optimization problem (9) is a symmetri-

cally efficient solution of the multi-criteria problem (1).
The method of determining individual symmetrically efficient decisions

involves the solution of a parametric scalarization of a multi-criterion problem. This
is a problem of single objective optimization using a specially created scalarizing
function of two variables: the evaluation vector, y∈Y, and control parameter,

y∈Ω⊂Rm; thus, we have s : Y0 � Ω ! R1:

min
x

fs y1,…, ym
� �

: x∈X0g (10)

The parameter y ¼ y1, y2,…, ym
� �

is available to the decision maker, enabling him
or her to review the set of symmetrically efficient solutions.

To ensure the anonymity of the relationship, it is necessary and sufficient that
the scalarizing function is symmetrical, that is,

s yP 1ð Þ, yP 2ð Þ,…, yP mð Þ

� �

≈ s y1, y2,…, ym
� �

(11)

for any permutation, P, of the set 1,…,mf g.
Complete and sufficient parameterization of the set of symmetrically efficient

solutions can be achieved, using the method of the reference point for problem (9).
In this method, aspiration levels are applied as control parameters. An aspiration
level is a value of the evaluation function that satisfies the decision maker.

The scalarizing function defined in the method of the reference point is as follows:

s y, yð Þ ¼ min
1≤ i≤m

Ti yð Þ � Ti yð Þi
� �

þ ε �
X

m

i¼1

Ti yð Þ � Ti yð Þi
� �

(12)

where y ¼ y1, y2,…, ym
� �

is an evaluation vector,
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T yð Þ ¼ T1 yð Þ,T2 yð Þ,…,Tm yð Þð Þ, where T1 yð Þ, ≥T2 yð Þ≥ ,…, ≥Tm yð Þ is a no
decreasing ordered evaluation vector,

y ¼ y1, y2,…, yk
� �

is a vector of aspiration levels,
T yð Þ ¼ T1 yð Þ,T2 yð Þ,…,Tm yð Þð Þ, where T1 yð Þ≥T2 yð Þ≥ ,…, ≥Tm yð Þ is a no

decreasing order vector levels of aspiration,
ε is an arbitrary small, positive adjustment parameter.
This kind of scalarizing function is called a function of achievement. The aim is to

find the solution closest to the specific requirements, that is, the aspiration levels.
Maximizing this function determines the symmetrically efficient solution, ŷ, and
the symmetrically efficient decision, x̂. Note that the symmetrically efficient solu-
tion, x̂, depends on the aspiration level, y [9, 11].

The solution to the multi-criteria optimization problem is a set of efficient
solutions. The choice of solution should be made by the decision maker using an IT
system. Such a system allows him to browse the entire set of solutions and make
choices freely. The final choice of the solution among the set of efficient solutions
can only take place based on the user’s preferences. A tool for searching the set of
solutions is the function (12). The maximum of this function depends on the
parameter, y, which is used by the decision maker to select a solution. The method
of supporting decision selection is an iterative method consisting of the alternating
performance of:

• calculations, that is, finding another symmetrically efficient solutions;

• interaction with the system, that is, dialog with the decision maker, which is a
source of additional information about his or her preferences.

The method of supporting decision selection is shown in Figure 4.
This method of supporting decision-making, which does not impose a rigid

scenario for the analysis of the decision-making problem upon the decision maker,
enables modification of his or her preferences during the analysis of the problem.
The decision maker plays a key role in the decision-making process.

5. Example: selecting a decision

The problem of selecting a decision is shown in order to illustrate the method of
supporting a decision under risk [12]. The costs of 10 alternatives in three scenarios

Figure 4.
The method of supporting decision selection.
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are presented in Table 1. The probabilities of particular scenarios are as follows:
P1 = 0.3, P2 = 0.6, and P3 = 0.1.

The decision maker’s problem is to select one of 10 decisions with three possible
future scenarios. Since the configuration of conditions that will apply during the
decision is unknown, this problem is a selection decision under risk [13].

The problem of decision-making under risk is modeled as a multi-criteria
optimization problem:

min x
x

y1, y2, y3, y4, y5, y6, y7, y8, y9, y10 : x∈ x1, x2,x3, x4, x5, x6, x7, x8, x9, x10f g
� �

,

(13)

where the results of particular decisions are the following vectors:

y1 ¼ 59, 65, 75ð Þ for decision x1,

y2 ¼ 50, 58, 71ð Þ for decision x2,

y3 ¼ 68, 72, 60ð Þ for decision x3,

y4 ¼ 69, 72, 62ð Þ for decision x4,

y5 ¼ 53, 60, 63ð Þ for decision x5,

y6 ¼ 51, 59, 65ð Þ for decision x6,

y7 ¼ 68, 71, 77ð Þ for decision x7,

y8 ¼ 56, 57, 75ð Þ for decision x8,

y9 ¼ 62, 58, 80ð Þ for decision x9,

y10 ¼ 62, 55, 70ð Þ for decision x10,

in which particular coordinates of evaluation vectors occur with probabilities:
P1 ¼ 0:3, P2 ¼ 0:6, and P3 ¼ 0:1.

The problem consists in selecting a decision for which the evaluation vector has
the minimum value in the sense of symmetrical dominance.

The repeating of relevant scenarios results in a situation in which the probability
of each scenario is the same and, that is, P ¼ 1=10. The result is a problem
equivalent to the starting problem in which the results for each decision, namely:
x1, x2,x3, x4,x5, x6, x7, x8, x9, x10 are the following evaluation vectors with equally
probable coordinates:

Decision S1 S2 S3

Decision x1 59 65 75

Decision x2 50 58 71

Decision x3 68 72 60

Decision x4 69 72 62

Decision x5 53 60 63

Decision x6 51 59 65

Decision x7 68 71 77

Decision x8 56 57 75

Decision x9 62 58 80

Decision x10 62 55 70

Table 1.
Scenarios of 10 decisions.

10

Systems-of-Systems Perspectives and Applications - Design, Modeling, Simulation…



y1 ¼ 59, 59, 59, 65, 65, 65, 65, 65, 65, 75ð Þ,

y2 ¼ 50, 50, 50, 58, 58, 58, 58, 58, 58, 71ð Þ,

y3 ¼ 68, 69, 68, 72, 72, 72, 72, 72, 72, 60ð Þ,

y4 ¼ 69, 69, 69, 72, 72, 72, 72, 72, 72, 62ð Þ,

y5 ¼ 53, 53, 53, 60, 60, 60, 60, 60, 60, 63ð Þ,

y6 ¼ 51, 51, 51, 59, 59, 59, 59, 59, 59, 65ð Þ,

y7 ¼ 68, 68, 68, 71, 71, 71, 71, 71, 71, 77ð Þ,

y8 ¼ 56, 56, 56, 57, 57, 57, 57, 57, 57, 75ð Þ,

y9 ¼ 62, 62, 62, 58, 58, 58, 58, 58, 58, 80ð Þ,

y10 ¼ 62, 62, 62, 55, 55, 55, 55, 55, 55, 70ð Þ:

In order to compare the vectors in the sense of symmetrical dominance, the
coordinates of vectors are ordered in no decreasing order and the results are the
following evaluation vectors for each decision:

T y1
� �

¼ 75, 65, 65, 65, 65, 65, 65, 59, 59, 59ð Þ,

T y2
� �

¼ 71, 58, 58, 58, 58, 58, 58, 50, 50, 50ð Þ,

T y3
� �

¼ 72, 72, 72, 72, 72, 72, 68, 69, 68, 60ð Þ,

T y4
� �

¼ 72, 72, 72, 72, 72, 72, 69, 69, 69, 62ð Þ,

T y5
� �

¼ 63, 60, 60, 60, 60, 60, 60, 53, 53, 53ð Þ,

T y6
� �

¼ 65, 59, 59, 59, 59, 59, 59, , 51, 51, 51ð Þ,

T y7
� �

¼ 77, 71, 71, 71, 71, 71, 71, , 68, 68, 68ð Þ,

T y8
� �

¼ 75, 57, 57, 57, 57, 57, 57, , 56, 56, 56ð Þ,

T y9
� �

¼ 80, 62, 62, 62, 58, 58, 58, 58, 58, 58ð Þ,

T y10
� �

¼ 70, 62, 62, 62, 55, 55, 55, 55, 55, 55ð Þ:

The set of symmetrically nondominated vectors is as follows: Ŷos ¼

y2, y5, y6, y8, y10
� �

. Five decisions x2, x5, x6, x8, and x10 are symmetrically efficient

decisions. When making a selection, one should choose from among them and the
decisions x1, x3, x4, x7, and x9 should be rejected regardless of individual prefer-
ences. These five decisions are incommensurate with respect to a symmetrical
preference relation. The choice between them depends on the individual prefer-
ences of the decision maker.

The method of the reference point for the problem with coordinates of the
evaluation vector arranged in no decreasing order is used to determine the solution
of the problem (13). The decision maker controls the selection of an investment
project through the levels of aspiration by specifying the desired values of the

aspiration vector for each scenario: y ¼ y1, y2, y3

� �

, where y1 is a level of the

aspiration value for scenario 1, y2 is a level of the aspiration value for scenario 2, and
y3 is a level of the aspiration value for scenario 3.
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The multiple-criteria analysis is presented in Table 2.
At the beginning of the selection, the decision maker identifies the aspiration

levels as the best values that can be achieved separately for each scenario, and in
subsequent iterations, he or she changes the aspiration levels depending on his or
her preferences.

In the first iteration, the decision maker determines the preferences as an aspi-
ration level equal to the vector y ¼ 50, 55, 60ð Þ and obtains the decision solution, x6,
as the solution. In the second iteration, the decision maker reduces the requirements
for scenarios 1 and 2 without changing the requirement for scenario 3, states the
vector y ¼ 55, 60, 60ð Þ as the aspiration level, and obtains decision x5 as the solution.
In the third iteration, the decision maker does not change the requirements for
scenario 1, increases them for scenario 2, and reduces them for scenario 3, and he or
she states the vector y ¼ 55, 56, 68ð Þ as the aspiration level and obtains decision x2 as
the solution. In the fourth iteration, the decision maker does not change the
requirements for scenarios 1 and 2 and reduces the requirement for scenario 3. He
or she states the vector y ¼ 55, 56, 74ð Þ as the aspiration level and obtains decision x8
as the solution. In the fifth iteration, the decision maker reduces the requirements
for scenario 1 leaves the requirements for scenario 2 unchanged, and increases the
requirements for scenario 3. He or she states the vector y ¼ 62, 56, 68ð Þ as the
aspiration level and obtains decision x10 as the solution.

The final selection of a specific solution depends on the decision maker’s prefer-
ences. The example given here shows that the method enables the decision maker to
discover his or her decision-making capabilities in the course of interactive analysis
and obtain a satisfactory solution.

6. Conclusions

In the decision-making process, risk plays a significant role, influencing the final
result of the decision. The decision maker should be able to analyze them when
making decisions. Using his experience and information from the environment, he
should make such decisions that will not bring unnecessary threat (risk) to the
effects of the decision. Despite the use of objectified tools optimizing decision-
making processes in the choice of solution, ultimately the decision maker takes
responsibility for the decisions taken.

Iteration

1. Aspiration level y

Solution x̂

y ¼ 50, 55, 60ð Þ

Decision x6

2. Aspiration level y

Solution x̂

y ¼ 55, 60, 60ð Þ

Decision x5

3. Aspiration level y

Solution x̂

y ¼ 55, 56, 68ð Þ

Decision x2

4. Aspiration level y

Solution x̂

y ¼ 55, 56, 74ð Þ

Decision x8

5. Aspiration level y

Solution x̂

y ¼ 62, 56, 68ð Þ

Decision x10

Source: own calculations.

Table 2.
Interactive analysis of the search for a decision.
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The chapter presents a method for the decision made under risky situations. The
risk is introduced to the model with a set of scenarios with specified probabilities.
The choice is made by solving the problem of multi-criteria optimization. This
provides a systematic procedure to help a decision maker choose the most desirable
and satisfactory decision under risk situations. Therefore, using this way, a decision
can be made according to the decision maker’s preference. This method is
characterized by:

• The use of reference point method, that is, the concepts of aspiration levels and
minimization of the achievement function to organize interaction with the
decision maker.

• The assumption that the decision maker’s preferences are not fully formed
changes during the decision-making process, while the main problem of the
decision support system is to support the decision maker’s learning rather than
the final act of choice.

• The method gives a whole set of solutions symmetrically effective decisions
and allows the decision maker a free choice. This procedure does not replace
the decision maker in making decisions. The whole decision-making process is
controlled by the decision maker.
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