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Chapter

The Modulus of Resilience for
Critical Subsystems
Eric Easton, Mario Beruvides and Andrea Jackman

Abstract

Accelerating digitization of critical infrastructures is increasing interconnection
and interdependence among high-reliability subsystems. The resulting dependen-
cies create new challenges in preventing underinvestment in high impact, low
probability (HILP) events which can have disastrous consequences for society’s
critical subsystems. These more impactful events highlight the differences between
reliability and resiliency, with the latter applicable to black swans. A number of
approaches for quantifying resiliency have been proposed; however, a review of
literature identified conceptual gaps when applied to empirical event data. This
chapter provides a scenario agnostic method to quantify resiliency by applying
concepts from materials science in a generalized form. This new formulation
resulted from a mapping of constructs used in tensile testing to characteristics of
protracted subsystem disruptions. Based on the mapping and gap analysis, a
resiliency index calculation was developed and applied using examples based on
empirical data from high impact events.

Keywords: resiliency, critical infrastructures, high impact, low probability (HILP),
reliability, digital systems

1. Introduction

Digitization is occurring in many industries in many different forms; however,
regardless of the application, a common set of enablers are employed. As the
proliferation of digital transformation continues, decision makers will need to dis-
tinguish between reliability and resiliency in the planning, design, and operation of
these subsystems. Tightly coupled common hardware and software platforms
potentially increase the breadth of accidental failures as well as the impact of
intentional sabotage. Beyond end use applications is an overall reliance on electric-
ity which these digital subsystems require to function. Hardware, software, and
electricity form the foundation upon which digitalization rest. The increased
interdependence and interconnection can lead to common failure modes of previ-
ously isolated subsystems, resulting in increased probability of high impact events.
Interconnection results in the establishment of a singular system with all other
structures existing as subsystems. Evaluation of subsystems will need to include
internally and externally initiated disruptive events. Highly impactful events,
sometimes termed black swans, cannot only disrupt subsystems but fundamentally
change their structure. Impactful as they are, rarity can make these events prone to
underinvestment due to heuristics and biases, most prominently the availability
heuristic. A quantifiable metric can aid in our ability to appropriately allocate
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resources to study, adapt, and mitigate these high impact, low probability events
before they unexpectedly fracture the established subsystems we rely on. The
avoidance of fracture is central to the application of the modulus of resilience in
critical subsystems. The chapter will review the differences between the reliability
and resiliency as well as the importance of distinguishing between the concepts.
Additionally, ideals related to resilience are identified and expressed in a concise
operational definition. The research utilized the progression shown in Figure 1 for
the investigation.

Borrowing concepts from materials science allows for an isomorphic application
where analogous structures are leveraged to represent HILP event scenarios. In this
chapter, the isomorphic application is presented to provide a method of quantifying
resiliency or its absence based on the intended aim of the subsystem. This concept is
consistent with select portions of previous literature, but divergent in others.
Following a review of previous research, a gap analysis was completed to identify
opportunities for new considerations in quantifying resiliency. Lastly, an example
in applying the modulus of resilience for critical subsystems is provided to
demonstrate the computational process.

2. The increasing case for resiliency

Reliability and resiliency are sometimes discussed in a similar context with
respect to subsystem performance; however, they differ conceptually in both the
events they measure and the characteristics they quantify. The measures which
define reliability provide insights as to the context of the metrics use. Many of the
most common reliability metrics utilize mean-based calculations from reoccurring
failures over time. These metrics include mean time between failure (MTBF), mean
time to failure (MTTF), and mean time to repair (MTTR). These metrics require
successive failures in order to quantify subsystem performance. Mean time between
failure (MTBF) is used in reliability to provide the number of failures per million
hours for a subsystem. Mean time to repair (MTTR) is the time needed to repair a
failed subsystem. Mean time to failure (MTTF) measures reliability for a subsystem
which cannot be repaired. It is the mean time expected until the first failure of a
subsystem. MTTF is a statistical value and represents the mean over a long period of
time and a large number of operations. The reliability metrics can effectively rep-
resent common cause events which produce reoccurring failures; however, these
calculations are less applicable to low probability special cause events. A special
cause is something special, not part of the system of common causes. It is detected
by a point that falls outside the control limits [1]. Often, subsystems have an
allowable level of tolerance to minor disruption preventing sustained impairment in
accomplishing the aim of the subsystem. Plotting the number of events by type
versus percent of subsystem output disrupted graphically displays the relationship
between common cause and special cause events. The allocation of events is closely
represented by a pareto distribution Figure 2.

Figure 1.
Research phases.
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Resiliency events reside at the tail of the distribution as rare events resulting
from extraordinary scenarios. Such events have been produced by multiple failures
within a single subsystem as discussed in the book Normal Accidents by Charles
Perrow. His work examined failures in highly complex operating environments.
The increasing interdependence results in an interconnected ecosystem where a
failure in a single subsystem can create failures in multiple subsystems. When
interactive complexity is joined with tight coupling, the risk of a system accident is
considerably increased. Interconnectedness and complexity among contemporary
subsystems is increasing at a rapid pace as technologies develop faster than assess-
ments can be made regarding their risks. As we move away from individual events
and account for the larger system, we find the “eco-system accident,” an interaction
of systems that were thought to be independent but are not because of the larger
ecology [2]. As systems grow in size and in the number of diverse functions they
serve, and are built to function in ever more hostile environments, increasing their
ties to other subsystems, they experience more and more incomprehensible or
unexpected interactions [2]. Common mode failures, first included in analytical
models in 1967, can contribute to unexpected actions from complex systems. In
addition to common mode failures, proximity and indirect information sources are
two additional indications of interconnectedness. Ultimately, the probability of a
subsystem being subjected to significant disruption is dependent on the cumulative
probability of both internal and external risks. Inevitably, the probability of signif-
icant disruption will increase as interdependence increases. While increases in
events causing significant disruption are expected, their count is not expected to be
significant enough for the application of mean-based reliability metrics. Therefore,
resiliency-based metrics are needed which match the periodicity and scale of high
impact, low probability events.

3. Quantifying high impact, low probability events

HILP events require a subsystem to bounce back to normalcy following major
disruption. The goal is to regain pre-disruption levels of output as quickly as possible;
however, recovery time is not the only metric of importance. The shape of the
recovery curve is also of significance. Resiliency aids in defining a disaster response
paradigmwhich differs from previous approaches such as resistance and sustainability
by emphasizing return to normal. Nonetheless, the literature frequently uses the
concept of resilience to imply the ability to recover or bounce back to normalcy after a
disaster occurs [3]. Review of scholarly work related to the resiliency concept identi-
fied three main ideals: no assumption that disaster prevention is always possible,

Figure 2.
Representative plot of event type distribution.
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recognition of the need to include social variables, and the necessity to include disci-
plines outside the physical sciences and engineering. The term resiliency has increased
in usage over the past decades. A multitude of definitions have been proposed whose
interpretations can align with either resistance or sustainability. Although the resil-
ience construct offered advantages in many areas relative to competing paradigms, the
ambiguity associated with its meaning and scope hindered consensus. The multiplicity
of definitions is a reflection of the philosophical and methodological diversities that
have emerged from disaster scholarship and research [4].

Resilience first came to prominence in the English language in the early 19th
century when Tredgold used the term to describe a property of timber [5]. In his
essay “On the transverse strength and resilience of timber,” Tredgold tested the
properties of timber to be used in ship making. Tredgold cites resilience as the
power of resisting a body in motion [5]. The statement is foundational in
establishing the concept of resilience as more than recovery but instead as an ability
to first withstand an applied force. Furthermore, Tredgold varied the weight and
height of objects dropped on the test samples and recorded the effects to different
forces on various wood pieces. These effects ranged from no effect, broke to curved.
A second reference to the consideration of force can be found in the 1858 work, “On
the Physical Conditions Involved in the Construction of Artillery, and on Some
Hitherto Unexplained Causes of the Destruction of Cannon in Service,” by Robert
Mallet. He states the modulus of resilience of other writers, referred to hereafter,
depends, is much greater for gunmetal, and hence a given force produces a
greater proportional distortion of form [6]. The modulus of resilience was further
formalized by materials science using stress/strain testing.

4. Methods in quantifying resilience

The range of methods for defining resilience include qualitative, quantitative
and probabilistic. A quantitative method can be used to compare outcomes using
data from different actual events. A number of researchers have explored quantify-
ing resilience to move beyond qualitative representations. Henry and Ramirez-
Marquez [7] proposed a quantitative approach for system resilience as a function of
time. The formulation was a ratio of the recovery and losses using a figure-of-merit
function. A disruptive event (ej) at time, te, impacts the system until time, td.

Яφ tje j
� �

¼
φ tje j
� �

� φ tdje
j

� �

φ t0ð Þ � φ tdje jð Þ
(1)

As shown, the numerator relates to the recovery until time t and the denomina-
tor represents the total loss due to disruption. Hosseini et al. [8] reviewed defini-
tions and measures of system resilience. Their literature review was based on
multiple domains including organizational, social, economic, and engineering using
papers published between 2000 and April 2015. The major categories of assessment
approaches are qualitative and quantitative with quantitative measures further
defined as either probabilistic or deterministic.

The intent to analyze protracted subsystem disruptions leads to a focus on
quantitative deterministic methods of calculating resiliency. The literature review
by Hosseini et al. [8] included 11 deterministic methods of quantification. Bruneau
et al. [9] utilized a method of integration based on the degradation in quality of
infrastructure during recovery period of Eq. (5). Larger RL values indicate lower
resilience while smaller RL imply higher resilience. Hosseini et al. [8] RL is calcu-
lated based on the formulation in Eq. (2).
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RL ¼

ðt1

t0

100� Q tð Þ½ �dt (2)

Zobel [10] proposed a method based on the total possible loss over some suitably
long-time interval (T*), percentage of functionality lost after disruption (X), and
time required for full recovery (T). An effort was made to analyze different com-
binations of X and T which result in the same level of resilience as shown in Eq. (3).

R X,Tð Þ ¼
T ∗ � XT=2

T ∗
(3)

This metric is based on a linear recovery making it unrealistic for some scenarios.
Alternative methods were proposed by Cox et al. [11] based on economic resil-

ience using the difference in disruption (%∆DYmax) between the expected disrup-
tion (%∆Y) and maximum potential disruption (%∆Ymax). Therefore, an estimate
of performance degradation is required. Such an estimation may be a challenge to
precisely develop; however, the formulation is shown in Eq. (4).

R ¼
%∆Ymax �%∆Y

%∆DYmax (4)

Alternatively, Rose [12] considered time effects using a concept of dynamic
resilience. The quantification of dynamic resilience is the difference in system
recovery with hastened system recovery (SOHR) and without hastened system
recovery (SOWR). This calculation is utilized over the total number of time steps
(N) considered. The dynamic resilience calculation is shown in Eq. (5).

DR ¼
X

N

i¼1

SOHR tið Þ � SOWR tið Þ (5)

Wang et al. [13] explored resilience in information systems based on the number
of operations in the enterprise information system (m). The ratio of the demand
time (di) and completion time of operation (ci) are weighted by the importance of
operation (zi).

R ¼ max
X

m

i¼1

zi
di
ci

(6)

The larger the value of the metric the more resilient the system is determined to
be. The calculation requires the assignment of a weight and assumes the number of
operations is known. When attempting to quantify unknown events the number of
operations can be difficult to estimate.

Chen and Miller-Hooks [14] quantifies the “post-disruption expected fraction of
demand that, for a given network, can be satisfied within pre-determined recovery
budgets” (Hosseini et al.). The measure was based on transportation networks and
compares the maximum demand that can be satisfied before disruption (Dw) and
after disruption (dw) for pair (w).

Resilience ¼ E
X

w∈W

dw=
X

w∈W

Dw

 !

(7)

Orwin andWardle [15] considered the instantaneous and maximum disturbance
in the quantification of resilience. The maximum absorbable force without
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upsetting system function (Emax) and effect of the disturbance on safety (Ej) at a
given time (Tj) are used to define resilience.

Resilience ¼
2� Emaxj j

Emaxj j þ E j

�

�

�

�

 !

� 1 (8)

Frameworks for local and global resilience were introduced by Enjalbert et al. [16]
for modeling system safety in public transportation systems. A safety indication func-
tion (S(t)) is used to calculate resilience either instantaneously or over time,
representing local and global, respectively. Global resilience is calculated from the time
of disturbance (tb) to the end of the disturbance (te). The calculations are as follows:

Local resilience ¼
dS tð Þ

dt
(9)

Global resilience ¼

ðte

tb

dS tð Þ

dt
(10)

Francis and Bekera [17] introduced a metric for dynamic resilience. The calcu-
lation uses the speed of recovery (Sp), original performance level (Fo), performance
level at new stable level (Fr) and performance level immediately after disruption
(Fd). The speed of recovery variable assumes exponential growth for a maximum
acceptable recovery time (tδ), total recovery time (tr) to a new equilibrium state,
time to complete initial recovery (t ∗r ), and a decay in resilience (a). The resilience
metric is calculated using Eq. (11).

ρi ¼ Sp
Fr

Fo

Fd

Fo
(11)

Sp ¼ tδ=t
∗

r

� �

exp �a tr � t ∗r
� �� �

for tr ≥ t ∗r (12)

Otherwise,

Sp ¼ tδ=t
∗

r

� �

(13)

Cimellaro et al. [18] utilized quality of service to represent resilience. The
method uses before disruption quality of service (Q1(t)), post disruption quality of
service (Q2(t)), a control time (TLC) and a weighting factor (α) in developing a
healthcare resilience metric.

R ¼ α

ð:

TLC

Q1 tð Þ

TLC
dtþ 1� αð Þ

ð:

TLC

Q2 tð Þ

TLC
dt (14)

Aside from the works investigated by Hosseini et al. [8], Dessavre et al., [19]
introduced a new model and visual tools adding a stress dimension representing the
force and stress of disruptive events. Defining the stress of the events is not a trivial
task and completely domain dependent [19].

A review of the concepts found in literature was completed for elements consis-
tent with the modulus of resilience. Methods were limited to quantitative
approaches which could be utilized with empirical data sets. Although the use of
scaling factors was identified in literature [13, 18], such methods are not desired in
the development of subsystem-based methods due to the subjectivity associated
with them. A ratio-based approach has merit in its ability to normalize event effects
and resulting recovery. Area-based calculations using integration are preferred to
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point calculations based on their ability to compensate for nonlinear restoration
curves; however, complexity beyond the resilience triangle [9] would be necessary
to capture differences in event magnitude and restoration response in disparate
events.

The concept of a yield point was not identified in existing literature. A return to
normal operation was typically used to identify the end of the restoration time
period; however, this approach does not set the time based on the aim of the
subsystem. Evaluations of subsystems beyond a critical point with respect to use of
the subsystem output could lead to poor decision-making. One of the main weak-
nesses of the current resilience metric is that they do not relate the effects of a
disruptive event to any of the event characteristics, unlike materials science [19].
Materials science utilizes a change in length for evaluation of stress and strain;
however, the difference in recovery response to a common cause and special cause
event was not found in the literature review. These distinctions serve to highlight
the differences between reliability for normally occurring events and resiliency to
low frequency events. Additionally, the need for utilizing subjective variables
[10, 11, 12, 14, 15] does not lend well to empirical study.

The ability to normalize responses to different events is beneficial for evaluating
the resiliency of different subsystems or different events on the same subsystem.
The literature reviewed began analysis of the event from the start of restoration [7]
or by treating the entire curve from time of event to the completed restoration as a
single integral [16]. This approach can confuse the quantities of force, stress and
strain. An equal force can result in different stress and strain based on the
subsystem being reviewed. As a result, the descending slope and associated area
prior to the start of recovery may prove informative of stress. Strain is more
associated with the total area under the curve. The review of literature did not
identify a bifurcation of the curve to delineate stress (prior to start of recovery) and
strain (total area). Therefore, the assumption of instantaneous loss and exponential
recovery [17] are not representative of many empirical cases.

In reviewing the concepts of resilience, a force is applied to a subsystem, the
subsystem absorbs a portion of the force, experiences stress, and adapts to recover to
a pre-disruption state. These references highlight an importance of considering the
stress on the subsystem in determining the resiliency of a subsystem. Three primary
points of measure for use in quantifying resiliency were identified including: stress,
total area of event and change in length. Stress is a foundational variable of resiliency,
as the term resiliency implies a response to a significant disruption. Therefore, only
events of significance from a subsystem level are commonly referred to in terms of
resilience. Additionally, the ability to compare resiliency events needs some level of
normalization based on the associated stress for each event. Force continues to be
applied until the subsystem decay ceases, allowing for subsystem assessment and
initiation of recovery. The rate of subsystem decay influences the stress applied to the
subsystem and the subsystem ability to bounce back. This connection exists due to the
role of adaptation in the resiliency process. A slow evolving scenario (i.e., slow
subsystem decay) presents the subsystem opportunity to adapt, resist, and recover in
ways an acute decay will not. Therefore, when considering the normalization process
of resiliency both the decay (i.e., stress proxy) and recovery portion of the resiliency
curve must be independently considered. The delayed decay provides an opportunity
for improved response from the subsystem.

Total area of recovery best quantifies recovery and resiliency by compensating
for the nonlinearity in the response function. As the subsystem attempts to recover,
disruptions in the recovery process may cause discontinuities not captured by linear
slope calculations. Similarly, time to recovery (i.e., 3 days to recovery) calculations
may fail to represent intermediate progress in recovery.
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Consideration of a failure point based on the aim of the subsystem aids in
representing real-world scenarios. Recovery which occurs after a critical point of
the subsystem would indicate a lack of resiliency. As an example, if a water
subsystem requires 10 days to restore operation post contingency but the con-
sumers of the water can only survive 4 days without water; the subsystem lacks
resiliency. Attempts to quantify the subsystem’s resilience should stop at 4 days.
Calculations beyond the 4-day time period no longer support the aim of the
subsystem or the practical operation of the subsystem.

Lastly, change in length was included in the materials science calculation of the
modulus of resilience. The change in length from the original length to the length
under stress could be translated to a subsystem resilience construct to allow consid-
eration of how subsystem recovery under lower stress common cause events and
high stress special cause events are related. The consideration of a change in length
may aid in joining concepts associated with reliability in the quantification of
resilience.

Comparing these constructs with the reviewed literature results in the identifi-
cation of conceptual gaps. The resulting resiliency values should reflect the
subsystem performance for practical cases. Units are required based on subsystem
parameters. The x-axis utilizes units of time, while the y-axis measures the units
associated with the aim of the subsystem.

The methods of quantification reviewed begin the process of quantification at
the point of recovery or assume no time delta between the initiating event and start
of recovery. To support the incorporation of stress in the quantification of resil-
ience, a bifurcation of the event curve is used as shown in Figure 3.

The use of ratio methods may provide consistency in scenarios of similar char-
acteristics. When disparate characteristics are present, computed values may prove
inconsistent with event outcomes. Depending on the event characteristics, either
ratio methods or area-based methods may identify a less resilient subsystem
response as more resilient. Figure 4 depicts the concept of less recovery time for
less disruption. The scenario of Figure 4 is representative of a minor difference in
subsystem response and would provide consistent rankings for resilience outcomes
in many cases, where less area is representative of increased resilience.

Conversely, cases may exist where a longer recovery results from a less impact-
ful initial event. The delayed recovery to a less impactful event could result from
many factors including a lack of preparedness, inability to adapt, etc. In such cases,
observation would assume that the subsystem which took longer to recover from a
less impactful event is less resilient. However, present formulations may suggest the
opposite. Figure 5 illustrates this scenario, where the smaller area is not represen-
tative of the more resilient outcome.

Figure 3.
Bifurcation of event curve.
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The fracture point should be set based on the aim of the subsystem. For example,
if a drinking water subsystem failure requires a 7-day restoration period but 4 days
is the survival period without water; the calculation of subsystem resiliency should
be limited to a 4-day period. In some cases, the acknowledgement of a fracture
point will result in the calculation of resiliency stopping prior to the subsystem
returning to pre-disruption output levels. Figure 6 represents a case where the
subsystem recovery takes longer than the subsystem failure point.

Calculations to quantify resiliency which consider values beyond the failure
point are theoretical as opposed to practical in nature. The failure point should be
given priority in quantifying resiliency.

An operational definition is derived from the combination of literature review
and isomorphic adaptation of the modulus of resilience. Hence, resiliency is defined
as the ability to limit proportional stain from abnormal stress to less than the
subsystem yield point, through the achievement of recovery in less than the
subsystem critical timeframes. This definition allows the use of quantitative

Figure 5.
Recovery curves with dissimilar characteristics.

Figure 6.
Representation of failure point.

Figure 4.
Recovery curves with similar characteristics.
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measures in the calculation of resilience in a deterministic and normalized approach
based on concepts from materials science.

An evaluation between two groups can result in an isomorphic application of
findings from one structure to another. This mapping between groups can yield
opportunities to apply known methodologies in an inter-disciplinary manner. The
process of verifying an isomorphism requires the identification of elements in each
structure and evaluating their equivalence. If equivalence is identified an opportu-
nity for applying the computational framework may exist. The quantification of
subsystem resilience was compared to resiliency as used in materials science. Mate-
rials science’s definition of resiliency includes the concepts of per unit volume,
maximum energy, and integration from zero to the elastic limit. The modulus of
resilience (Ur) is found from the stress-strain curve measured during the tensile
test. Stress (σ) in the stress-strain curve is “the applied force per unit original
undeformed cross-sectional area of the specimen” [20] as delineated in Eq. (15).

σ ¼
F

A0
(15)

where F = force; A0 = cross sectional area.
Young’s modulus (E) serves as a measure of stiffness for a solid material.

“Because of the difficulty in determining the elastic limit, it is commonly replaced
by the proportional limit, which is the stress at which the stress-strain curve is out
of linearity” [20].

E ¼
F=A

∆L=L0
(16)

And,

F ¼ σ � A (17)

where F = force; A = actual cross-sectional area; ∆L = amount of change in
length; L0 = original length of the object.

“The modulus of resilience is the strain energy per unit volume absorbed up to
the elastic limit for a tensile test and equals the area under the elastic part of the
stress-strain curve” [20].

Ur ¼ 1
2

σ2=Eð= Þ (18)

“This quantity indicates how much energy a material can absorb without
deforming plastically” [20]. Plastic deformation occurs when a material undergoes
non-reversible changes in response to applied forces. The use of the stress-strain
curve from materials testing is similar to conditions faced by disrupted subsystems
regardless of type. Stress is the impact to the material under test, while strain is the
resulting effects of the stress.

Based on the desire of applying a consistent methodology to quantify resilience
regardless of disruption magnitude or subsystem size, the percentage of subsystem
disrupted is proposed to achieve a per unit value. The area under the curve will then
be integrated from the beginning to end of the disruptive event. Calculus to deter-
mine area under the curve is shown in Eq. (19).

Total Area under the Curve ¼

ðEr

Ei

f xð Þdx (19)

where Ei = Event initial; Er = Event restored.
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The area under the curve will then be applied to the maximum percentage of
subsystem disrupted.

Resiliency index RIð Þ ¼
1

2

SDð Þ2

SD�Atð Þ=Anl

De�Dað Þ=Da

0

@

1

A (20)

where SD = % of subsystem disrupted; Anl = Area under the curve to
nonlinearity; At = Total area under the curve; Da = Duration of average disruption;
De = Duration of event disruption.

Protracted subsystem disruptions create stress and strain due to an inability to
complete the subsystem aim. The similarities between tensile strength test used in
materials science and the need to measure stress and strain subsystems create an
isomorphic relationship. Table 1 shows the parallels between materials science and
protracted subsystem disruptions.

The application of the modulus of resilience to a specific subsystem requires the
identification of an aim the subsystem exist to accomplish. “Without an aim, there
is no system” [21]. The aim should be quantifiable with metrics available for analy-
sis. The data must be accessible in order to serve as the basis for the resilience
calculations and will vary based on the subsystem under study. Examples include
percentage of successful operations or percentage of end users receiving service.
The next section provides an empirical example in applying the modulus of
resilience.

5. Application of the modulus of resiliency

The power industry was selected to provide an example for applying the modu-
lus of resiliency using empirical data. The aim of the electric subsystem is to deliver
electricity to all end use customers; therefore, data regarding the number of cus-
tomers out of service can be used to quantify subsystem performance. The use of
customers out of service in quantifying subsystem performance was supported by a
review of regulatory reliability metrics used by Public Utility Commissions. For
major electric utility disruptions, DOE situation reports provide customer outage
information for and are publicly available from the DOE website. One of the most
prominent events to challenge utilities is hurricane, and as a result, multiple

Materials

science.

Protracted subsystem disruption Comparisons

Stress applied Peak percent of subsystem out of

service

Percent out of service is equivalent to stress

Cross-sectional

area

Area under curve from the origin to

peak subsystem out of service

Area from zero to peak subsystem out of

service is point where curve loses linearity

Actual cross-

sectional area

Area under curve for entire disruptive

event

Represents total strain experienced by

subsystem

Change in

length

Delta between subsystem’s average

duration of disruptions and event

disruption duration

Use of change in duration accounts for the

change in length between average and

protracted event

Original length System’s average duration of

disruptions

Accounts for average non-protracted

disruptions events

Table 1.
Parallels between materials science test and protracted subsystem disruptions.
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hurricane events have data on the DOE website. Following data collection, plots can
be constructed of the electric utility response in restoring customers. The inflection
points were identified, and a yield point designated by reviewing disaster pre-
paredness data from the Capital Region Study [22]. The study indicated that 73% of
survey respondents had less than 10 days of food stored. Therefore, an event lasting
greater than 10 days would most likely result in scarcity from food spoilage and
diminished retail capabilities. With a known bifurcation and yield point, analysis
can be completed.

Hurricanes Wilma and Irma presented an opportunity to compare resiliency of
separate events in the same region. Following Wilma, the ability of several infra-
structures to recover from severe events was reviewed in the Florida region. “[M]
ore than $141.5 million has been obligated by FEMA for 119 Hazard Mitigation
Grant Program projects to build stronger, safer more resilient communities in
Florida” [23]. Florida was once again subjected to a hurricane when Irma came
ashore 12 years later. More than six million customers lost power as a result of Irma;
compared to 4 million from Wilma. Although more than a decade apart, these two
storms provide an opportunity to compare the recoveries following significant
investment in resiliency. The comparison of the two resiliency indices can present
an opportunity to calculate a cost per unit of resiliency and explore concepts such as
diminishing returns or optimization from multi-hazard investment. Multi-hazard
resiliency actions would provide an ability to address multiple HILP scenarios with
a single investment. A resiliency index for each of the scenarios would be computed
in order to create a composite change in resiliency for a given investment. The goal
of this composite approach is to provide a means for justifying highly adaptable
subsystem structures based on resiliency benefits.

The example demonstrates the process of calculating the resiliency index for a
power utility scenario and comparing the response before and after the investment
in resiliency. The values shown in Table 2 were extracted from United States
Energy Information Administration (EIA) data. The additional data points associ-
ated with 0.5 and 1.5 days were included due to nonlinearities in customer outages
associated with Hurricanes Wilma and Irma, respectively. Similarly, day 9 for
Hurricane Wilma was approximated for the purpose of this analysis. The data
required to calculate the change in length was available by collecting System

Day. % Out of service (Hurricane Wilma 2005) % Out of service (Hurricane Irma 2017)

0 0 0

0.5 34 20

1 35 40

1.5 34 64

2 31 56

3 28 40

4 21 31

5 18 20

6 12 11

7 10 7

8 9 4

9 6 1

Table 2.
Outages for Hurricanes Wilma and Irma.
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Average Interruption Duration Index (SAIDI) data. SAIDI data provides a basis for
the average duration a customer faces and can be compared to the protracted
system disruption as a change in length.

Following the collection of empirical data, the total area under the curve was
calculated by dividing the outage curve into time steps and summing the areas of
each time step as shown in Figures 7 and 8, respectively.

The study region had a SAIDI of 60 minutes and a protracted outage duration of
12,960 minutes. Therefore, the resiliency index (RI) for Hurricane Wilma is deter-
mined as shown in Eq. (7).

Resiliency index RIð Þ ¼
1

2

0:35ð Þ2

0:12�1:758ð Þ=0:258
12, 960�60ð Þ=60

� �

0

@

1

A ¼ 16:07 (21)

The study region had a SAIDI of 57 minutes and a protracted outage duration of
12,960 minutes. Therefore, the resiliency index (RI) for Hurricane Irma is
determined as shown in Eq. (22) based on EIA data [24] (Tables 3 and 4).

Resiliency index RIð Þ ¼
1

2

0:64ð Þ2

0:11�2:175ð Þ=0:56
12, 960�57ð Þ=57

� �

0

@

1

A ¼ 89:14 (22)

Figure 8.
Hurricane Irma restoration plot.

Figure 7.
Hurricane Wilma restoration plot.
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Change in resiliency is found by Eq. (3).

∆ RI ¼
RIfinal � RIinitial

RIinitial
¼

89:14� 16:07

16:07
¼ 4:55 (23)

Day. % Out of service (Hurricane Wilma 2005) Area

0 0 0.085

0.5 0.34 0.173

1 0.35 0.173

1.5 0.34 0.163

2 0.31 0.295

3 0.28 0.245

4 0.21 0.195

5 0.18 0.150

6 0.12 0.110

7 0.10 0.095

8 0.09 0.075

9 0.06

Total area under curve 1.758

Area under curve to nonlinearity 0.258

Maximum % of customers out 0.350

Table 3.
Resiliency index calculation for Hurricane Wilma.

Day. % Out of service (Hurricane Irma 2017) Area

0 0 0.050

0.5 0.20 0.150

1 0.40 0.260

1.5 0.64 0.300

2 0.56 0.480

3 0.40 0.355

4 0.31 0.255

5 0.20 0.155

6 0.11 0.090

7 0.07 0.055

8 0.04 0.025

9 0.01

Total area under curve 2.175

Area under curve to nonlinearity 0.560

Maximum % of customers out 0.640

Table 4.
Resiliency index calculation for Hurricane Irma.
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The determination of a change in resiliency allows for a quantitative measure-
ment related subsystem response. The use of resiliency indices can aid in quantify-
ing the efficacy of resiliency investment.

6. Conclusions

In this chapter, a comparison to mean-based reliability was contrasted with the
use of resiliency calculations for HILP events. Resiliency calculations are required,
given the infrequent nature of protracted subsystem disturbances. Following a
review of resiliency computations, a gap analysis was used to identify the opportu-
nities for ensuring a resiliency calculation can capture the nonlinearities observed in
empirical data. Parallels are provided between the modulus of resilience construct
from materials science and an isomorphic application defined. In conclusion, an
example is presented for the power utility sector demonstrating the methods of
collecting the inputs and completing the computations. These inputs include defin-
ing the aim of the system and failure point, data collection, determination of
bifurcation point, and the use of reliability data for calculating a change in length.

The ability to calculate resiliency regardless of the subsystem or scenario can
assist in the evaluation of resiliency actions already taken or planning for new
investment. The ability to compute resiliency on a common base may also offer
opportunities to optimize investment based on interconnectedness to the subsys-
tems which yield the greatest improvement. A more integrated approach may lead
to increased systemic resiliency as opposed to more common heuristics-based
subsystem specific approaches. The proposed method more closely adheres to the
ontological and conceptual frameworks associated with initial references of resil-
iency. Furthermore, subjective inputs are avoided increasing the replicability and
repeatability of associated research. By acknowledging a yield point specific to the
aim of the subsystem, results from the resiliency index better represent the out-
comes of real-world subsystems. Lastly, bifurcating the event curve allows the onset
characteristics of the disruptive event to normalize the resiliency performance
metric.

Further research on the distribution of events by type will be conducted to
validate the anecdotal evidence regarding common cause and special cause events.
This additional data will assist in the development of statistics for assessing the
correlation between increasing interdependence and HILP events for critical sub-
systems. In order to test a wider array of empirical data sets, resiliency indexes will
be calculated using both historical and future HILP event data. The results of these
analyses will be used to continually evaluate the efficacy of the metrics and identify
opportunities for enhancements.

Acronyms

HILP high impact, low probability
MTBF mean time between failure
MTTF mean time to failure
MTTR mean time to repair
DOE department of energy
FEMA Federal Emergency Management Agency
EIA energy information administration
SAIDI system average interruption duration index
RI resiliency index
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