We are IntechOpen, the world's leading publisher of Open Access books
 Built by scientists, for scientists

6,900

Open access books available

154
Countries delivered to

186,000

International authors and editors

Our authors are among the

most cited scientists

Downloads

Contributors from top 500 universities

WEB OF SCIENCE ${ }^{\text {N }}$
Selection of our books indexed in the Book Citation Index in Web of Science ${ }^{\text {TM }}$ Core Collection (BKCI)

Interested in publishing with us? Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Prime Numbers Distribution Line

Shcherbakov Aleksandr Gennadiyevich

Abstract

During the analysis of the fractal-primorial periodicity of the natural series of numbers, presented in the form of an alternation (sequence) of prime numbers (1 smallest prime factor >1 of any integer), the regularity of prime numbers distribution was revealed. That is, the theorem is proved that for any integer $=\mathrm{N}$ on the segment of the natural series of numbers from 1 to $N+2 \sqrt{N}$: (1) prime numbers are arranged in groups, by exactly three consecutive prime numbers of the form: ($P_{1}-P_{2}-P_{3}$). In this case, the distance from the first to the third prime number of any group is less than $2 \sqrt{N}$ integers, that is, $P_{3}-P_{1}<2 \sqrt{N}$ integers. (2) These same prime numbers are redistributed in a line in groups, by exactly two consecutive prime numbers, on all segments of the natural series of numbers shorter than $2 \sqrt{N}$ integers.

Keywords: residue groups, prime numbers, primorial, sieve of Eratosthenes, alternations, fractal

1. Introduction

1.1 Line-symmetrical primary-repeatable fractals of the positive integers

In the scientific works [$7 \mathrm{pp} .142-147,8 \mathrm{pp}$. 77-84, $9 \mathrm{pp} .109-116$], positive integers are analyzed, hereinafter the P.I. is represented only as the alternance (array) of primes (according to the 1st least prime factor >1 from every whole number). Type: 12.3.5.7.3.11.13.3.17.19.3.23.5.3.29 ... 3.p.p.3.p ... 3.p.p.3.p with for every recurrent prime $=P_{1}$, sieve of Eratosthenes formats the P.I., represented by alternance (array) of the first primes $\leq P_{1}$, in the form line-symmetrical repeating fractal-like structure, situated in the section of P.I. from 1 to $P_{1} \#$, with "eliminated" sections of P.I. and $\varphi\left(P_{1} \#\right)$ not eliminated odd numbers are line-symmetrical to the number $=P_{1} \# / 2$ and are repeated without rearrangement of their position with the period $=P_{1} \#$, on the basis of rhythmical repeating of two even numbers. Every recurrent prime has its own line-symmetrical primary-repeatable fractal $=P_{1}$, then goes fractal $=P_{1} \#$ (see line 1 Table 1).

Every recurrent line-symmetrical fractal $-P_{1} \#$ is situated on the section of P.I. from 1 to $P_{1} \#$ and contains $\varphi\left(P_{1} \#\right)$ of the not eliminated odd numbers that are $\varphi\left(P_{1} \#\right)$ of the least residue, belonging to the indicated residue system (I.R.S) according to $\bmod \left(P_{1} \#\right)$, type: C_{n} to the left from the number $=P_{1} \# / 2$ and $\left(P_{1} \#-\mathrm{C}_{\mathrm{n}}\right)$ to the right from the number $=P_{1} \# / 2$, with $\mathrm{C}_{\mathrm{n}}-$ is residue according to $\bmod \left(P_{1} \#\right)$. Hereinafter with the term $\bmod \left(P_{1} \#\right)$, we shall indicate the period of fractal $P_{1} \#$ repetition (I.R.S, sieve of Eratosthenes), equal to product of all first primes $\leq P_{1}$ (primorial = $P_{1} \#$) [1-6].

$\mathrm{C}_{1}=1$	3,5,7..	$\mathrm{C}_{2}=P_{2}$	ррр	.. C_{3}..	ррр	.. Cn ..	Ррр	$\boldsymbol{P}_{1} \#-\mathrm{Cn}$	Ррр	$P_{1} \#-\mathrm{C}_{2}$	$\ldots 7,5.3$	$\left(P_{1} \#-1\right)$
$1+P_{1} \#$	3,5,7..	$\mathrm{C}_{2}+\mathrm{P}_{1} \#$	PPP	$\mathrm{C}_{3}+P_{1} \#$	PPp	$\mathrm{Cn}+\mathrm{P}_{1} \#$	PPp	$2 P_{1} \#$-Cn	PPp	$2 P_{1} \#-\mathrm{C}_{2}$..7,5.3	($2 P_{1} \#-1$)
$1+2 P_{1} \#$	3,5,7..	$\mathrm{C}_{2}+2 \mathrm{P}_{1} \#$	РPp	$\mathrm{C}_{3}+2 P_{1}{ }^{\text {\# }}$	РРр	$\mathrm{Cn}+2 P_{1}$ \#	РРр	$3 P_{1} \#-\mathrm{Cn}$	РРр	$3 P_{1} \#-\mathrm{C}_{2}$..7,5.3	$\left(3 P_{1} \#-1\right)$
...	3,5,7..	\ldots	Ррр	\ldots	ррр	...	ррр	\cdots	ррр7,5.3	...
...	3,5,7.	...	Ррр	...	Ррр	\cdots	Ррр	$P_{2} \#-\mathrm{Cn}$	Ррр	$P_{2} \#-\mathrm{C}_{2}$..7,5.3	($P_{2} \#-1$)
$1+\mathrm{P}_{2} \#$	3,5,7.	$\mathrm{C}_{2}+P_{2} \#$	РРР	$\mathrm{C}_{3}+P_{2} \#$	РРр	$\mathrm{Cn}+\mathrm{P}_{2} \#$	РРР		Ррр		.7,5.3	

And so on, repeating of fractal $=P_{1} \#$ with the period $=P_{1} \#$, with: ppp is alternance of $\leq P_{1}$

Table 1.
P_{2} repeating of periodical fractal $=\mathbf{P}_{\mathbf{1}} \#$, including I.R.S. according to the $\bmod \left(\mathrm{P}_{1} \#\right)$.

By term residue according to $\bmod \left(P_{1} \#\right)$, we shall indicate every number, NOT eliminated by Sieve of Eratosthenes, not aliquot to the first primes $\leq P_{1}$.

Alternance $\leq P_{1}$ is the section of P.I. in the form of array of primes - NOT residues of $\bmod \left(P_{1} \#\right)$, (for the 1 least common factor >1 from every NOT residue).

Eliminating (according to diagonals) 1 number multiple to P_{2} in every column $=\mathrm{Cn}$, we'll get in P_{2} lines of Table 1: $\varphi\left(\mathrm{P}_{1} \#\right)^{*}\left(\mathrm{P}_{2}\right.$ lines $)-\varphi\left(\mathrm{P}_{1} \#\right)_{\text {multiple }}$ $P_{2}=\varphi\left(P_{2} \#\right)$ residue of $\bmod \left(P_{2} \#\right)$. Representing the section of P.I. from 1 to $P_{2} \#$ as one line, we'll get the fractal $=\mathrm{P}_{2} \#$ with the period of repeating $=\mathrm{P}_{2} \#$. And so on: every recurrent prime $=\mathrm{P}_{\mathrm{n}}$ has got its periodical fractal $=\mathrm{P}_{\mathrm{n}} \#$ with n is the whole. The numerical illustration is indicated in the scientific works [7-10].

Fractal $\left(\mathrm{P}_{1} \#\right)$-I.R.S. $\bmod \left(\mathrm{P}_{1} \#\right)=($ first line of Table 1$)$.
Fractal $\left(P_{2} \#\right)$-I.R.S. $\bmod \left(P_{2} \#\right)=P_{2}$ lines in Table 1. $-\varphi\left(P_{1} \#\right)$ numbers multiple to P_{2}.

Fractal $\left(P_{3} \#\right)$ I.R.S. $\bmod \left(P_{3} \#\right)=P_{3}$ lines in Table 2.- $\varphi\left(P_{2} \#\right)$ numbers multiple to P_{3}.

Fractal $\left(P_{4} \#\right)$ I.R.S. $\bmod \left(P_{4} \#\right)=\left(P_{4}\right.$ repeating of fractal $\left.P_{3} \#\right)-\varphi\left(P_{3} \#\right)$ numbers multiple to P_{4}.

Fractal $\left(P_{5} \#\right)$ I.R.S. $\bmod \left(P_{5} \#\right)=\left(P_{5}\right.$ repeating of fractal $\left.P_{4} \#\right)-\varphi\left(P_{4} \#\right)$ numbers multiple to P_{5}.
and so on according to cumulative primes.

1.2 Purpose and role of the overall length of the of alternance (array) of the all first primes $\leq \mathbf{P n}$

It is quite obvious that $\varphi\left(P_{\mathrm{n}} \#\right)$ of the least residues of $\bmod \left(P_{\mathrm{n}} \#\right)$ type $=\mathrm{C}$ and ($P_{\mathrm{n}} \#-\mathrm{C}$), of every recurrent fractal $=P_{\mathrm{n}} \#$, gradate P.I. as $\varphi\left(P_{\mathrm{n}} \#\right)$ "eliminated" sections of P.I. with different lengths of the type: $C . .3 \mathrm{pp3} . C .3 \mathrm{pp} 3 . C$ Зрр3 C., with ..3pp3.. "eliminated" sections of P.I. represented as array of "eliminated" NOT residues of $\bmod \left(P_{\mathrm{n}} \#\right)$, or un the form of alternance (array) of the first primes $\leq P_{\mathrm{n}}$, (according to the 1st least prime factor >1 from every NOT residue of $\bmod \left(P_{\mathrm{n}} \#\right)$), hereinafter the alternance $\leq P_{\mathrm{n}}$. $\mathrm{C}-$ residue of $\bmod \left(P_{\mathrm{n}} \#\right)$ (according to the 1st least $>P_{\mathrm{n}}$ from every residue of $\bmod \left(P_{\mathrm{n}} \#\right)$), location from 1 to $P_{\mathrm{n}} \#$ is line symmetrical relating to number $=P_{\mathrm{n}} \# / 2$. And further, repeated without rearrangement of their position with the period $=P_{\mathrm{n}} \#$. Then, after we define the overall - maximal length of alternance that we can form using the fist primes $\mathrm{p} \leq P_{\mathbf{n}}$, (NOT residues of mod $\left(P_{\mathbf{n}} \#\right)$), type $\mathrm{C}_{1} \ldots 3 \mathrm{pp} 3 \mathrm{pp} 3 \mathrm{pp} 3 \ldots \mathrm{C}_{2}$ that is maximal amount of consequent odd numbers = maximal length of alternance $-\mathrm{p} \leq P_{\mathbf{n}}$ (one least NOT residue of mod $\left(P_{\mathbf{n}} \#\right)>1$ from the number), we can evaluate the distance between every two consequent residues of $\bmod \left(P_{\mathbf{n}} \#\right)$ that is between two primes $<\left(P_{\mathbf{n}+1}\right)^{2}$, according to formula: $\left(C_{2}-C_{1}\right)-2 / 2$ of the odd numbers \leq maximal length of the alternance, (maximal amount of NOT residue of $\bmod \left(P_{\mathbf{n}} \#\right)$).

In the scientific works [$7 \mathrm{pp} .142-147,8 \mathrm{pp} .77-84,9 \mathrm{pp} .109-116$], the distribution of groups of 4 consequent residues in the form of "pairs of residues every two residue" is analyzed. But we have no information on distribution of groups of 4, 3, and 2 consequent residues of $\bmod \left(P_{\mathrm{n}} \#\right)$ for every fractal $P_{\mathbf{n}} \#$.

In this scientific work, the $\varphi\left(P_{\mathrm{n}} \#\right)$ of the least residue of $\bmod \left(P_{\mathrm{n}} \#\right)$ of every recurrent fractal $-P_{\mathrm{n}} \#$ is indexed as continuous sequence of groups: (a) No 4 has got 4 residues, or (b) No 3 has got 3 residues or (c) No 2 has got 2 consequent residues $\bmod \left(P_{\mathrm{n}} \#\right)$. These groups No 4-3-2 are analyzed as subgroups with No 4-3-2 consequent residues of $\bmod \left(P_{\mathbf{n}} \#\right)$ that are surrounded by the maximal permissible amount of consequent NOT residues of $\bmod \left(P_{\mathbf{n}} \#\right)$.

We used the mathematical induction method to define the overall - maximal length of every kind of subgroups No 4, No 3, No 2 and overall maximal length of P.

$\mathrm{C}_{1}=1$	3,5,7,",	$\mathrm{C}_{2}=P_{3}$	ррр	.. C_{3}..	ррр	.. Cn ..	ррр	$P_{2} \#-\mathrm{Cn}$	Ррр	$P_{2} \#-\mathrm{C}_{2}$.7,5.3	($P_{2} \#-1$)
$1+\mathrm{P}_{2} \#$	3,5,7,\%	$\mathrm{C}_{2}+\mathrm{P}_{2} \#$	PPp	$\mathrm{C}_{3}+P_{2} \#$	ррр	$\mathrm{Cn}+\mathrm{P}_{2} \#$	ррр	$2 P_{2} \#-\mathrm{Cn}$	РРр	$2 P_{2} \#-\mathrm{C}_{2}$..7,5.3	($2 P_{2} \#-1$)
$1+2 P_{2} \#$	3,5,7,\%	$\mathrm{C}_{2}+2 \mathrm{P}_{2} \#$	PPp	$\mathrm{C}_{3}+2 \mathrm{P}_{2} \#$	ррр	$\mathrm{Cn}+2 \mathrm{P}_{2} \#$	ррр	$3 P_{2} \#-\mathrm{Cn}$	PPp	$3 \mathrm{P}_{2} \#-\mathrm{C}_{2}$..7,5.3	(3P ${ }_{2} \#-1$)
...	3,5,7,\%	...	Ppp	...	ppp	...	Ppp	...	Ppp7,5.3	...
...	3,5,7,"	...	Ррр	...	ррр	\cdots	ррр	$P_{3} \#-\mathrm{Cn}$	ррр	$P_{3} \#-\mathrm{C}_{2}$..7,5.3	($P_{3} \#-1$)
$1+P_{3} \#$	3,5,7,"	$\mathrm{C}_{2}+P_{3} \#$	ррр	$\mathrm{C}_{3}+P_{3} \#$	ррр	$\mathrm{Cn}+\mathrm{P}_{3} \#$	ррр	...	Ррр7,5.3	...

And so on, repeating of fractal $=P_{2} \#$ with the period $=P_{2} \#$, with: ppp is alternance of $\leq P_{2}$.
Representing the section of P.I. as line from 1 to $P_{3} \#$ we'll get the fractal $P_{3} \#$ and so on.

Table 2.

P_{3} repeating of periodical fractal $=\mathbf{P}_{\mathbf{2}} \#$, including I.R.S. according to the $\bmod \left(\mathrm{P}_{2} \#\right)$.
I. sections in the form of maximal long alternances of all first primes $\leq \mathrm{P}_{\mathrm{n}}$, (that is maximal permissible amount of all NOT residues of $\left.\bmod \left(P_{\mathbf{n}} \#\right)\right)$, situated between two residues from C_{A} to C_{B}, between which, as subgroups are situated the groups of residues of $\bmod \left(P_{\mathrm{n}} \#\right)$. Type:
a. $-\mathrm{No} 4: \mathrm{C}_{\mathrm{A} . .3 \mathrm{pp3} 3 .} P_{1 . .} P_{2 . .} P_{3 . .} P_{4 . .3 \mathrm{pp3} 3 . .} \mathrm{C}_{\mathrm{B}}$.
b. No 3: $\mathrm{C}_{\mathrm{A} . .3 \mathrm{pp3} 3 . .} P_{1 . .} P_{2 . .} P_{3.3 \mathrm{ppp} 3 . .} \mathrm{C}_{\mathrm{B}}$.
c. No 2: $\mathrm{C}_{\mathrm{A} .3}{ }_{\text {pp3.. }} P_{1 . .} P_{2 . .3 \mathrm{pp3} 3 . .} C_{\mathrm{B}}$.

As a result, we detected the loopback of these groups rearrangement from No 4 to No 3 up to No 2 according to the growing amount of the modulus, and the primes order distribution is defined.

2. Three groups of "eliminated" sections of every next fractal

It is quite obvious and requires no proof that indexing $\varphi\left(P_{1} \#\right)$ of the least residues of $\bmod \left(P_{1} \#\right)$ of every recurrent fractal- $P_{1} \#$, or I.R.S $\bmod \left(P_{1} \#\right)$, is by groups, containing strictly 4 elements; three; two consequent residues of $\bmod \left(P_{1} \#\right)$, we have, that every recurrent fractal- $P_{1} \#$ would be represented as array of three groups of the residues of $\bmod \left(P_{1} \#\right)$, between are situated the alternances $\leq P_{1}$ (with different lengths) - the consequent NOT residues of $\bmod \left(P_{1} \#\right)$, of types (a), (b), (c) repeated without changes with period $=P_{1} \#$.
a. $\varphi\left(P_{1} \#\right)$ groups No 4 containing strictly FOUR consequent residues of mod $\left(P_{1} \#\right)_{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}} \mathbf{C}$, between which the alternances of different amounts of different first primes $\leq P_{1}$, NOT residues of $\bmod \left(P_{1} \#\right)$, type: ${ }_{A} C . .3 \mathrm{pp} 3 .{ }_{. B} C . .3 \mathrm{pp} 3 .{ }_{.} C$.. $3 \mathrm{pp} 3 .{ }_{\text {. }} C$. with: ..3pp3.. are alternances of the first primes $\leq P_{1}$ according to the 1st least common factor >1 from every NOT residue of $\bmod \left(P_{1} \#\right) .\left({ }_{1-4} \mathrm{C}\right)$ - Four consequent residue of $\bmod \left(P_{1} \#\right)$, including the consequent primes of P.I. section from P_{1} to $\left(P_{2}\right)^{2}$ of ${ }_{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}} \boldsymbol{P}$ type. Further, the fractal $=P_{1} \#$ represented as $\varphi\left(P_{1} \#\right)$ of No 4 groups (4 residues) of mod $\left(P_{1} \#\right)$. Three adjoined groups No 4 for every residue $=\mathrm{C}($ Table 3$)$.

The length of group No 4, which means amount odd numbers, restricted by every group No 4 from ${ }_{A} P$ to ${ }_{\mathrm{D}} P$ and from C_{1} to C_{4}, for the $\bmod \left(P_{1} \#\right)$, is ($\mathrm{R}_{4}{ }^{-}$ $2) / 2 \leq\left(P_{2}-1\right)$ of the odd numbers with: $\mathrm{R}_{4}=\left({ }_{\mathrm{D}} P_{-} P\right), \mathrm{R}_{4}=\left({ }_{4} \mathrm{C}{ }_{-1} \mathrm{C}\right), \mathrm{R}_{4} \leq 2 P_{2}$ (including 1 group of $\mathrm{R}_{4}=2 P_{2}$, detailed information is indicated in Section 5) (Table 4).
b. $\varphi\left(P_{1} \#\right)$ groups No 3 containing strictly THREE consequent residues of mod $\left(P_{1} \#\right) .{ }_{\mathrm{A}, \mathrm{B}, \mathrm{C}} \mathbf{C}$, between which the alternances of different amounts of

1,3,5,7 ...	${ }_{\text {A }} P$..3pp3..В $P . .3 \mathrm{pp} 3 . .{ }_{\text {C }} P . .3 \mathrm{pp} 3 . .{ }_{\text {D }} P .3 \mathrm{Pp} 3 . .$.	$P_{2}{ }^{2}$	${ }_{1} \mathrm{C} .3 \mathrm{pp} 3.4 \mathrm{C} .3 \mathrm{pp} 3 .$.	$P_{1} \#$
3,5,7 ...	——— ${ }_{\text {B }} P . .3 \mathrm{pp} 3 . .{ }_{\mathrm{C}} P . .3 \mathrm{pp} 3 .{ }_{\mathrm{D}} P$..3pp3..A P...	$P_{2}{ }^{2}$	$-{ }_{2} \mathrm{C} . .3 \mathrm{pp} 3 .{ }_{5} \mathrm{C} \cdot .{ }_{2} \mathrm{C}$	$P_{1} \#$
5,7...	- - С P..3pp3.. ${ }_{\text {D }} P .3 \mathrm{pp} 3 . .{ }_{\text {A }} P . .3 \mathrm{pp} 3 .$. в P	$P_{2}{ }^{2}$	--3C..3pp3...6C..3C	$P_{1} \#$

And so on, repeating of fractal $=P_{1} \#$ with the period $=P_{1} \#$, ppp - is alternance of $\leq P_{1}$.

Table 3.
Fractal $=\mathrm{P}_{1} \#$, represented as $\varphi\left(\mathrm{P}_{1} \#\right)$ of No 4 groups (containing 4 residues) of $\bmod \left(\mathrm{P}_{1} \#\right)$. Three adjoined groups No 4 for every residue $=C$.

Type-(a)	$\mathbf{C}_{\mathbf{1}}=\mathbf{1}$	7	11	$\mathbf{C}_{\mathbf{4}}=\mathbf{1 3}$	17	19	$\mathbf{C}_{\mathbf{7}}=23$	29	31	$\mathrm{C}=37$	
Type-(b)	$\mathbf{C}_{\mathbf{2}}=\mathbf{7}$	11	13	$\mathbf{C}_{5}=\mathbf{1 7}$	19	23	$\mathbf{C}_{\mathbf{8}}=\mathbf{2 9}$	31	37	$\mathrm{C}=41$	
Type-(c)	$\mathbf{C}_{\mathbf{3}}=\mathbf{1 1}$	13	17	$\mathbf{C}_{\mathbf{6}}=\mathbf{1 9}$	23	29	$\mathrm{C}=31$				
And so on, repeating of fractal $=5 \#$ with the period $=\bmod (5 \#)$											

Table 4.
The numerical illustration of the fractal $=5 \#$ in the form of $\varphi(5 \#)=8$ groups No 4 (containing four residues). The three adjoined groups No 4 for every residue $=C$ with $R_{4} \leq 2 P_{2}=2^{*} 7$ (consult Section 5).
different first prime $\leq P_{1}$, NOT residues of $\bmod \left(P_{1} \#\right)$, type:
${ }_{A} C . .3 \mathrm{pp} 3 . .{ }_{B} C . .3 \mathrm{pp} 3 . .{ }_{C} C$. with: ..3pp3.. are alternances of the first primes $\leq P_{1}$ according to the 1 st least common factor >1 from every NOT residue of mod $\left(P_{1} \#\right) .\left({ }_{1-3} \mathrm{C}\right)$ - three consequent residues of $\bmod \left(P_{1} \#\right)$, including the consequent primes of P.I. section from P_{1} to $\left(P_{2}\right)^{2}$ of ${ }_{\mathrm{A}, \mathrm{B}, \mathrm{C}} \boldsymbol{P}$ type. Further, the fractal $=P_{1} \#$ represented as $\varphi\left(P_{1} \#\right)$ of No 3 groups (3 residues) of $\bmod \left(P_{1} \#\right)$. Two adjoined groups No 3 for every residue $=\mathrm{C}$ (Table 5).

With the unknown to us length of the group No 3 from ${ }_{A} P$ to ${ }_{C} P$ and from C_{1} to C_{3}, for the $\bmod \left(P_{1} \#\right)$, is $\left(\mathrm{R}_{3}-2\right) / 2$ of the odd numbers with: $\mathrm{R}_{3}=\left({ }_{\mathrm{C}}{ }^{P}-{ }_{\mathrm{A}} P\right)$., $\mathrm{R}_{3}=\left({ }_{3} \mathrm{C}-{ }_{1} \mathrm{C}\right) ., \mathrm{R}_{3}=$? (it is quite obvious that for $\left.\bmod \left(P_{1} \#\right) \mathrm{R}_{3} \ll \mathrm{R}_{4}\right)$ (Table 6).
c. $\varphi\left(P_{1} \#\right)$ groups No 2 containing strictly TWO consequent residues of mod $\left(P_{1} \#\right)_{\mathrm{A}, \mathbf{B}} \mathbf{C}$, between which the alternances of different amounts of different first prime $\leq P_{1}$, NOT residues of $\bmod \left(P_{1} \#\right)$, type: ${ }_{A} C . .3 \mathrm{pp} 3 . .{ }_{B} C$. with: ..3pp3.. are alternances of the first primes $\leq P_{1}$ according to the 1st least common factor >1 from every NOT residue of $\bmod \left(P_{1} \#\right) .\left({ }_{1-2} \mathrm{C}\right)$ - two consequent residue of $\bmod \left(P_{1} \#\right)$, including the consequent primes of P.I. section from P_{1} to $\left(P_{2}\right)^{2}$ of $\mathrm{A}, \mathrm{B} \boldsymbol{P}$ type. Further, the fractal $=P_{1} \#$ represented as $\varphi\left(P_{1} \#\right)$ of No 2 groups (2 residues) of $\bmod \left(P_{1} \#\right)$ (Tables 7-9).

1.,3.,5.,7..	${ }_{A} P$..3pp3.. ${ }_{B}$ P ..3pp3.. ${ }_{C}$ P	$P_{2}{ }^{2}$	${ }_{1} \mathrm{C}$..3pp3...3 ${ }^{\text {C }}$... 3pp3.. ${ }_{1} \mathrm{C}$... ${ }_{3} \mathrm{C}$	$P_{1}{ }^{\#}$
3.,5.,7...	-. ${ }^{\text {P }}$..3pp3.. ${ }_{\text {C }} P$..3pp3.		[-_- ${ }_{2} \mathrm{C} . .3 \mathrm{pp} 3 . .4 \mathrm{C} . .{ }_{2} \mathrm{C} . .{ }_{4} \mathrm{C}$	$P_{1} \#$

And so on, repeating of fractal $=P_{1} \#$ with the period $=P_{1} \#$, with: ppp is alternance of $\leq P_{1}$.

Table 5.
Fractal $=\mathrm{P}_{1} \#$, represented as $\varphi\left(\mathrm{P}_{1} \#\right)$ of No 3 groups (containing 3 residues) of $\bmod \left(\mathrm{P}_{1} \#\right)$. Two adjoined groups No 3 for every residue $=C$.

| Type-(a) | $\mathbf{C}_{\mathbf{1}}=\mathbf{1}$ | 7 | $\mathbf{C}_{3}=11$ | 13 | $\mathbf{C}_{5}=\mathbf{1 7}$ | 19 | $\mathbf{C}_{7}=23$ | 29 | $\mathrm{C}=31$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type-(b) | | $\mathbf{C}_{2}=7$ | 11 | $\mathbf{C}_{4}=\mathbf{1 3}$ | 17 | $\mathbf{C}_{6}=19$ | 23 | $\mathbf{C}_{8}=\mathbf{2 9}$ | 31 | $\mathrm{C}=37$ |

And so on, repeating of fractal $=5 \#$ with the period $=5 \#$.

Table 6.
The numerical illustration of the fractal $=5 \#$ in the form of $\varphi(5 \#)=8$ groups No 3 (containing two residues). The two adjoined groups No 3 for every residue $=C$ with $R_{3}=$? $\left(=2^{*} 5\right.$ consult Section 6).

$$
\text { 1.,3.,5.,7.. } \quad{ }_{A} P . .3 p p 3 . .{ }_{B} P . .3 p p 3 . .{ }_{A} P .3 p p 3 . . \quad P_{2}{ }^{2} \quad{ }_{1} \mathrm{C} . .3 \mathrm{pp} 3 .{ }_{2} \mathrm{C} . .3 \mathrm{pp} 3 . .{ }_{1} \mathrm{C} . .3 \mathrm{pp} 3 .{ }_{2} \mathrm{C} . ._{1} \mathrm{C} . .{ }_{2} \mathrm{C} . . . \quad P_{1} \#
$$

And so on, repeating of fractal $=P_{1} \#$ with the period $=P_{1} \#$, ppp - is alternance of $\leq P_{1}$.

Table 7.
Fractal $=\mathrm{P}_{1} \#$, represented as $\varphi\left(\mathrm{P}_{1} \#\right)$ of No 2 groups of $\bmod \left(\mathrm{P}_{1} \#\right)$.

```
    1.,3.,5.,7.. \({ }_{A} P . .3 p p 3 .{ }_{B} P . .3 p p 3 .{ }_{A} P .3 p p 3 . . \quad P_{3}{ }^{2} \quad{ }_{1} \mathrm{C} . .3 \mathrm{pp} 3 . ._{2} \mathrm{C} . .3 \mathrm{pp} 3 .{ }_{1} \mathrm{C} . .3 \mathrm{pp} 3 .{ }_{2} \mathrm{C} . ._{1} \mathrm{C} . ._{2} \mathrm{C} . . . \quad P_{2} \#\)
```

 And so on, repeating of fractal \(=P_{2} \#\) with the period \(=P_{2} \#\), ppp - is alternance of \(\leq P_{2}\).
 Table 8.
Fractal $=\mathrm{P}_{2} \#$, represented as $\varphi\left(\mathrm{P}_{2} \#\right)$ of No 2 groups of $\bmod \left(\mathrm{P}_{2} \#\right)$.

And so on, repeating of fractal $=P_{3} \#$ with the period $=P_{3} \#$, ppp - is alternance of $\leq P_{3}$.

Table 9.
Fractal $=\mathrm{P}_{3} \#$, represented as $\varphi\left(\mathrm{P}_{3} \#\right)$ of No 2 groups of $\bmod \left(\mathrm{P}_{3} \#\right)$.
With the unknown to us, length of the group No 2 from ${ }_{A} P$ to ${ }_{B} P$ and from C_{1} to C_{2}, for the $\bmod \left(P_{1} \#\right)$, is $\left(\mathrm{R}_{2}-2\right) / 2$ of the odd numbers with: $\mathrm{R}_{2}=\left({ }_{\mathrm{B}} P{ }_{-1} P\right)$., $\mathrm{R}_{2}=\left({ }_{2} \mathrm{C}-{ }_{1} \mathrm{C}\right), \mathrm{R}_{2}=$? (it is quite obvious that for $\left.\bmod \left(P_{1} \#\right) \mathrm{R}_{2} \ll \mathrm{R}_{3}\right)$.

Herewith for each group No 4-3-2 according to $\bmod \left(P_{1} \#\right)$, there are two residues of $\bmod \left(P_{1} \#\right): \mathrm{C}_{\mathrm{A}}$ - to the left and C_{B} - to the right, that is every group No 4-3-2 is the subgroup on the P.I. sections of the length unknown to us from C_{A} to C_{B} : $(\mathrm{a}) \mathrm{C}_{\mathrm{A}^{-}}$ $\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}\right)-\mathrm{C}_{\mathrm{B}}$. (b) $\mathrm{C}_{\mathrm{A}}-\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)-\mathrm{C}_{\mathrm{B}}$. (c) $\mathrm{C}_{\mathrm{A}}-\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)-\mathrm{C}_{\mathrm{B}}$.

3. Correlations of length limits of the subgroups No 4, No 3, No 2

In the scientific works [$7 \mathrm{pp}$. 142-147, 8 pp. 77-84, 9 p. 109-116, 10 p. 1805], including Section 5 of this work, the overall - maximal length of the subgroup No 4 (containing 4 residual for every recurrent fractal $-P_{\mathrm{n}} \#$), of type is defined:
$\max \mathrm{R}_{4}=\left(\mathrm{C}_{4}-\mathrm{C}_{1}\right)=2 P_{\mathrm{n}+1}$ of whole numbers.
Herewith, it is quite obvious and it is beyond argument that relations of limits, unknown to us of groups No 4-3-2 length according to the increasing modulus are indicated in Table 10.

Prime value P_{n}	Fractal $-\boldsymbol{P}_{\mathbf{n}} \#$	Period of fractal repetition $=\bmod$ ($\boldsymbol{P}_{\mathrm{n}} \#$).	Max length of $\varphi\left(P_{n} \#\right)$ of the subgroups No 4 $\max _{4}=\left(C_{4}-C_{1}\right)$	>>	Max length $\varphi\left(P_{\mathrm{n}} \#\right)$ of the subgroups No 3 $\max _{3}=\left(C_{3}-C_{1}\right)$	>>	Max length $\varphi\left(P_{\mathrm{n}} \#\right)$ of the subgroups No 2 $\max _{2}=\left(\mathrm{C}_{2}-\mathrm{C}_{1}\right)$
P_{1}	$P_{1} \#$	$\bmod \left(P_{1} \#\right)$.	$\begin{gathered} \max \mathrm{R}_{4}= \\ \left(\mathrm{C}_{4}-\mathrm{C}_{1}\right)=2 P_{2} \end{gathered}$		$\begin{gathered} \max \mathrm{R}_{3}= \\ \left(\mathrm{C}_{3}-\mathrm{C}_{1}\right)=? \end{gathered}$	>>	$\begin{gathered} \max \mathrm{R}_{2}= \\ \left(\mathrm{C}_{2}-\mathrm{C}_{1}\right)=? \end{gathered}$
P_{2}	$P_{2} \#$	$\bmod \left(P_{2} \#\right)$.	$\begin{gathered} \max \mathrm{R}_{4}= \\ \left(\mathrm{C}_{4}-\mathrm{C}_{1}\right)=2 P_{3} \end{gathered}$	>>	$\begin{gathered} \max \mathrm{R}_{3}= \\ \left(\mathrm{C}_{3}-\mathrm{C}_{1}\right)=? \end{gathered}$	>>	$\begin{gathered} \max \mathrm{R}_{2}= \\ \left(\mathrm{C}_{2}-\mathrm{C}_{1}\right)=? \end{gathered}$
P_{4}	$P_{4} \#$	$\bmod \left(P_{4} \#\right)$.	$\begin{gathered} \max \mathrm{R}_{4}= \\ \left(\mathrm{C}_{4}-\mathrm{C}_{1}\right)=2 P_{5} \end{gathered}$	>>	$\begin{gathered} \max \mathrm{R}_{3}= \\ \left(\mathrm{C}_{3}-\mathrm{C}_{1}\right)=? \end{gathered}$	>>	$\begin{gathered} \max \mathrm{R}_{2}= \\ \left(\mathrm{C}_{2}-\mathrm{C}_{1}\right)=? \end{gathered}$
P_{5}	$P_{5} \#$	$\bmod \left(P_{5} \#\right)$.	$\begin{gathered} \max \mathrm{R}_{4}= \\ \left(\mathrm{C}_{4}-\mathrm{C}_{1}\right)=2 P_{6} \end{gathered}$	>>	$\begin{gathered} \max \mathrm{R}_{3}= \\ \left(\mathrm{C}_{3}-\mathrm{C}_{1}\right)=? \end{gathered}$	>>	$\begin{gathered} \max \mathrm{R}_{2}= \\ \left(\mathrm{C}_{2}-\mathrm{C}_{1}\right)=? \end{gathered}$
...	>>	...	>>	...
P_{n}	$P_{\mathrm{n}} \#$	$\bmod \left(P_{\mathrm{n}} \#\right)$.	$\begin{gathered} \max \mathrm{R}_{4}= \\ \left(\mathrm{C}_{4}-\mathrm{C}_{1}\right)=2 P_{\mathrm{n}+1} \end{gathered}$	>>	$\begin{gathered} \max \mathrm{R}_{3}= \\ \left(\mathrm{C}_{3}-\mathrm{C}_{1}\right)=? \end{gathered}$	>>	$\begin{gathered} \max \mathrm{R}_{2}= \\ \left(\mathrm{C}_{2}-\mathrm{C}_{1}\right)=? \end{gathered}$

And so on, repeating of fractal $=P_{\mathrm{n}} \#$ with the period $=P_{\mathrm{n}} \# . \mathrm{C}_{1-4}-\operatorname{residue}$ of $\bmod \left(P_{\mathrm{n}} \#\right)$.

Table 10.
The relation of length limits of the subgroups according to the increasing modulus.

4. Distribution of prime number

Correlation of length limits of the subgroups in Table 10 and distribution of groups of the indexed residues No 4-3-2, in every respective fractal $-P_{\mathrm{n}} \#$ according to the increasing modulus is defined by theorem 1.

Theorem 1. The loopback of prime number distribution.
Every prescribed prime number squared $=\left(P_{2}\right)^{2}$ defines the distribution of all previous prime numbers $<\left(P_{2}\right)^{2}$, as all first prime numbers are less than every prescribed prime number squared $=\left(P_{2}\right)^{2}$, are situated in the P.I. as part of fractal $P_{1} \#$, where they are distributed by subgroups of (a), (b), (c) types.
a. $\varphi\left(P_{1} \#\right)$ of subgroups No 4 having pure FOUR consequent prime number (${ }_{\mathrm{A}, \mathrm{B}}$, $\mathrm{C}, \mathrm{D} \mathrm{C})$ of $P_{1}<\left({ }_{\mathrm{A}} \mathrm{C}-{ }_{\mathrm{B}} \mathrm{C}-\mathrm{C}_{\mathrm{C}}{ }_{-\mathrm{D}} \mathrm{C}\right)<P_{2}^{2} ; P_{3}^{2}$ type. At the P.I. section from P_{1} to P_{2}^{2} (including from $\left(P_{2}-2\right)^{2}$ to $\left.P_{2}^{2}\right)$, and further, from $P_{2}{ }^{2}$ to $P_{1} \#$ pure FOUR consequent residues of $\bmod \left(P_{1} \#\right)$ on all P.I. sections with length not exceeding $2 P_{3}$ of whole numbers with length of every subgroup No 4 at every section is:

$$
\mathrm{R}_{4}=\left({ }_{\mathrm{D}} \mathrm{C}-{ }_{\mathrm{A}} \mathrm{C}\right) \leq 2 \mathrm{P}_{2}
$$

In that case, these primes of fractal $=\boldsymbol{P}_{\boldsymbol{1}} \boldsymbol{\#}$, by loopback, are distributed by groups:
b. $\varphi\left(P_{1} \#\right)$ of subgroups No 3 having pure THREE consequent prime number $(\mathrm{A}, \mathrm{B}, \mathrm{C} \mathrm{C})$ of $P_{1}<\left({ }_{\mathrm{A}} \mathrm{C}-{ }_{\mathrm{B}} \mathrm{C}-{ }_{\mathrm{C}} \mathrm{C}\right)<P_{2}^{2}$ type. At the P.I. section from P_{1} to P_{2}^{2} and further, from $P_{2}{ }^{2}$ to $P_{1} \#$ pure THREE consequent residues of $\bmod \left(P_{1} \#\right)$ on all P.I. sections with length not exceeding $2 P_{2}$ of whole numbers with length of every subgroup No 3 at every section is: $\mathrm{R}_{3}=\left({ }_{C} \mathrm{C}-{ }_{\mathrm{A}} \mathrm{C}\right) \leq 2 P_{1}$.
c. $\varphi\left(P_{1} \#\right)$ of subgroups No 2 having pure TWO consequent prime number $\left({ }_{\mathrm{A}, \mathrm{B}} \mathrm{C}\right)$ of $P_{0}, P_{1}<\left({ }_{\mathrm{A}} \mathrm{C}-\mathrm{B} \mathrm{C}\right)<P_{2}^{2}$ type. At the P.I. section from P_{1} to P_{2}^{2} and further, from P_{2}^{2} to $P_{1} \#$ pure TWO consequent residues of $\bmod \left(P_{1} \#\right)$ on all P. I. sections with length not exceeding $2 P_{1}$ of whole numbers with length of every subgroup No 2 at every section is: $\mathrm{R}_{2}=\left({ }_{\mathrm{B}} \mathrm{C}-{ }_{-} \mathrm{C}\right) \leq 2 P_{0}$.

With: ${ }_{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}} \mathrm{C}$ are consequent residues of $\bmod \left(P_{1} \#\right)$ including the primes $<\left(P_{2}\right)^{2}$. R_{4-3-2} is the remainder of the first and the last number of every group No 4-3-2 (of the fractal $P_{1} \#$). Further, the length of the subgroup No 4-3-2 as the amount of odd numbers, restricted by every group from ${ }_{A} \mathrm{C}$ to ${ }_{\text {B-C-D }} \mathrm{C}$, from ${ }_{\mathrm{A}} P$ to B-C-D P are ($\mathrm{R}_{4,3,2}-2$)/2 odd numbers.

The order of groups (a), (b), (c) rearrangement according to the increasing modulus for visual clarity is indicated in Table 11.

5. Proof of theorem

5.1 Proof of section a of the Theorem 1

It is feasible that in P.I. using the first prime number $\leq P_{n}$ (NOT residues of mod $\left(P_{n} \#\right)$), by the only single way, we can form the maximal long P.I. section as the maximal long alternance - array for the 1 least common factor >1 from every NOT residue of $\bmod \left(P_{\mathbf{n}} \#\right)$. That is that maximal amount of NOT residues of $\bmod \left(P_{n} \#\right)$, maximal long alternance $\leq P_{\mathbf{n}}$.

1	2	3		4		5	
Fractal from 1 to $P_{n} \#$ Composition and its repeating $=\bmod \left(P_{n} \#\right)$	Length of P.I. section which defines values of primes number of this fractal including on the P.I section: $\left(P_{\mathrm{n}+1}\right)^{2}-\left(P_{\mathrm{n}+1}-2\right)^{2}=$ $4 P_{\mathrm{n}+1}$ of whole numbers	$\begin{aligned} & \varphi\left(P_{\mathrm{n}} \#\right) \text { groups No } 4 \text { for } 4 \text { residues of mod } \\ & \left(P_{n} \#\right) \text { (containing } 4 \text { simple) }{ }_{\mathrm{A}} \mathrm{C}-{ }_{\mathrm{B}} \mathrm{C}-\mathrm{C} \mathrm{C}-\mathrm{D} \mathrm{C} \\ & <P_{n+1} \end{aligned}$		$\begin{gathered} \varphi\left(P_{n} \#\right) \text { groups No } 3 \text { for } 3 \text { residues of } \bmod \\ \left(P_{n} \#\right) \text { (containing } 3 \text { simple) }{ }_{\mathrm{A}} \mathrm{C}-{ }_{\mathrm{B}} \mathrm{C}-{ }_{\mathrm{C}} \mathrm{C} \\ <P_{n+1} \end{gathered}$		$\begin{aligned} & \varphi\left(P_{n} \#\right) \text { groups No } 2 \text { for } 2 \text { residues of mod } \\ & \left(P_{n} \#\right)\left(\text { containing } 2 \text { simple) }\left({ }_{\mathrm{A}} \mathrm{C}-\mathrm{B} \mathrm{C}\right)\right. \\ & <P_{n+1} \end{aligned}$	
		Subgroup No 4 length. $R_{4}={ }_{D} C-{ }_{A} C$	Length of every section for the group No 4	Subgroup No 3 length. $R_{3}={ }_{C} C-{ }_{A} C$	Length of every section for the group No 3	Subgroup No 2 length. $R_{2}={ }_{B} C-{ }_{A} C$	Length of every section for the group No 2
$1 \div P_{n} \# \bmod \left(P_{n} \#\right)$	from $\left(P_{n}\right)^{2} \quad \geq 4 P_{n+1}$ to $\left(P_{n+1}\right)^{2}$ number	$\begin{gathered} R_{4} \leq 2 P_{n+1} \\ <\left(P_{\mathrm{n}} \# \pm P_{n+1}\right) \end{gathered}$	$\begin{gathered} \leq 2 P_{n+2}< \\ \left(P_{\mathrm{n}} \# \pm P_{n+2}\right) \end{gathered}$	$R_{3} \leq 2 P_{\mathrm{n}}$ (Table 12)	$\leq 2 P_{\mathrm{n}+1}$ number	$R_{2} \leq 2 P_{n-1}$ (Table 13)	$\leq 2 P_{n}$ number
...
$1 \div P_{1} \# \bmod \left(P_{1} \#\right)$	from $\left(P_{1}\right)^{2} \quad \geq 4 P_{2}$ to $\left(P_{2}\right)^{2} \quad$ number	$R_{4} \leq 2 P_{2}$	$\leq 2 P_{3}$ number	$R_{3} \leq 2 P_{1}$	$\leq 2 P_{2}$ number	$R_{2} \leq 2 P_{0}$	$\leq 2 P_{1}$ number
$1 \div P_{2} \# \bmod \left(P_{2} \#\right)$	$\begin{array}{cc} \text { from }\left(P_{2}\right)^{2} & \geq 4 P_{3} \\ \text { to }\left(P_{3}\right)^{2} & \text { number } \end{array}$	$R_{4} \leq 2 P_{3}$	$\leq 2 P_{4}$ number	$R_{3} \leq 2 P_{2}$	$\leq 2 P_{3}$ number	$R_{2} \leq 2 P_{1}$	$\leq 2 P_{2}$ number
$1 \div P_{3} \# \bmod \left(P_{3} \#\right)$	from $\left(P_{3}\right)^{2} \quad \geq 4 P_{4}$ to $\left(P_{4}\right)^{2}$ number	$R_{4} \leq 2 P_{4}$	$\leq 2 P_{5}$ number	$R_{3} \leq 2 P_{3}$	$\leq 2 P_{4}$ number	$R_{2} \leq 2 P_{2}$	$\leq 2 P_{3}$ number
$1 \div P_{4} \# \bmod \left(P_{4} \#\right)$	from $\left(P_{4}\right)^{2} \quad \geq 4 P_{5}$ to $\left(P_{5}\right)^{2} \quad$ number	$R_{4} \leq 2 P_{5}$	$\leq 2 \mathrm{P}_{6}$ number	$R_{3} \leq 2 P_{4}$	$\leq 2 P_{5}$ number	$R_{2} \leq 2 P_{3}$	$\leq 2 P_{4}$ number
$1 \div P_{5} \# \bmod \left(P_{5} \#\right)$	from $\left(P_{5}\right)^{2} \quad \geq 4 P_{6}$ to $\left(P_{6}\right)^{2}$ number	$R_{4} \leq 2 P_{6}$	$\leq 2 P_{7}$ number	$R_{3} \leq 2 P_{5}$	$\leq 2 P_{6}$ number	$R_{2} \leq 2 P_{4}$	$\leq 2 P_{5}$ number

... and so on according to the increasing meanings of the modulus ...

Table 11.
Loopback of primes number subgroups distribution according to the increasing meanings of the modulus.

Then for every recurrent prime number $P_{n}=P_{1}$ at the P.I., formed as recurrent line symmetrical, primary-repeatable periodical fractal $=\mathrm{P}_{1} \#$ or I.R.S. according to $\bmod \left(\mathrm{P}_{1} \#\right)$, (see the first line of Table 1), the maximal long P.I. section, formed as the alternance of the all first primes number $\leq P_{1}$, (NOT residues of $\bmod \left(P_{n} \#\right)$), shall be situated within the P.I. section from C_{A} to C_{B}, with as the subgroup is the only maximal long maximal subgroup No $4\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}\right)$ with the 4 consequent residue of $\bmod \left(P_{1} \#\right)$: Type: $\mathrm{C}_{\mathrm{A}}=\left(P_{1} \#-P_{3}\right) . . \mathrm{C}_{1}=\left(P_{1} \#-P_{2}\right)$.
$\ldots \mathrm{C}_{2}=\left(P_{1} \#-1\right), \mathrm{C}_{3}=\left(P_{1} \#+1\right) \ldots \mathrm{C}_{4}=\left(P_{1} \#+P_{2}\right) \ldots \mathrm{C}_{\mathrm{B}}=\left(P_{1} \#+P_{3}\right)$. The length of such maximally long subgroup No 4 of $\bmod \left(P_{1} \#\right)$, is: max $\mathrm{R}_{4}=\left(\mathrm{C}_{4}-\mathrm{C}_{1}\right)=\left(P_{1} \#+P_{2}\right)-\left(P_{1} \#-P_{2}\right)=2 P_{2}$ of the whole numbers.

The limit of length of the P.I. section within which from C_{A} to C_{B} would be situated maximal as well as all the other $\varphi\left(P_{1} \#\right)$ subgroups No 4 (with 4 residues) of $\bmod \left(P_{1} \#\right)$, is: $\left(\mathrm{C}_{\mathrm{B}}-\mathrm{C}_{\mathrm{A}}\right)=\left(P_{1} \#+P_{3}\right)-\left(P_{1} \#-P_{3}\right)=2 P_{3}$ of the whole numbers.

It is genuinely:
At the line-symmetrical, primary-repeatable fractal- $P_{1} \#$ or I.R.S. according to $\bmod \left(P_{1} \#\right), \varphi\left(P_{1} \#\right)$ of the least residue (indexed in the form of $\varphi\left(P_{1} \#\right)$ groups No 4 of $\bmod \left(P_{1} \#\right)$, with the alternances $\leq P_{1}$ with different lengths), are situated linesymmetrically relating to the center of symmetry of the fractal $-P_{1} \#$, of the number $=\left(P_{1} \# / 2\right)$. That is they are situated reflecting in pairs and are formed by two different ways: (the left and the right sieve of Eratosthenes), to the left and to the right from the symmetry center of the fractal $=P_{1} \#$ of number $=P_{1} \# / 2$. To the right - for the increasing values numbers of the P.I. from $P_{1} \# / 2$ to $P_{1} \#$ to the left for the decreasing values of the P.I. $P_{1} \# / 2$ up to 1 .

To every left group No 4 of $\bmod \left(P_{1} \#\right)$, with the remainder $\mathrm{R}_{4}=\left(\mathrm{C}_{4}-\mathrm{C}_{1}\right)$, is matched by line-symmetrical right group No $4 \bmod \left(P_{1} \#\right)$, with reflecting location of the same first primes number in the same amount and of the same length of the alternance $\leq P_{1}: \mathrm{R}_{4}=\left(P_{1} \#-\mathrm{C}_{1}\right)-\left(P_{1} \#-\mathrm{C}_{4}\right)=\left(\mathrm{C}_{4}-\mathrm{C}_{1}\right)$ consult [7 pp. 142-147, 8 pp. 77-84, 9 pp. 109-116].

Besides two not reflecting that is formed solely subgroup of group No 4: with constant reminder for every P_{n} of type: $\mathrm{R}_{4}=\left(P_{1} \# / 2+4\right)-\left(P_{1} \# / 2-4\right)=8$.

And the section of P.I. fractal $P_{1} \#$ (I.R.S. of $\bmod \left(P_{1} \#\right)$ from C_{A} to $\left.\mathrm{C}_{\mathrm{B}}\right)$, represented by alternance $\leq P_{1}$ with using of all NOT residues of $\bmod \left(P_{1} \#\right)$, (according to the 1 the least >1), with the subgroup is situated the only maximally long - maximal group No 4 with 4 residues of $\bmod \left(P_{1} \#\right)\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}\right)$. Type: $\mathrm{C}_{\mathrm{A}}=\left(P_{1} \#-P_{3}\right) \ldots 3 \mathrm{pp3} \ldots \mathrm{C}_{1}=\left(P_{1} \#-P_{2}\right) \ldots 3 \mathrm{pp3} \ldots \mathrm{C}_{2}=\left(P_{1} \#-1\right), \mathrm{C}_{3}=\left(P_{1} \#+1\right) \ldots 3 \mathrm{pp} 3 \ldots$ $\mathrm{C}_{4}=\left(P_{1} \#+P_{2}\right) \ldots \ldots 3 \mathrm{pp} 3 \ldots \mathrm{C}_{\mathrm{B}}=\left(P_{1} \#+P_{3}\right)$.

Thus in the fractal- $P_{1} \#-$ I.R.S. of the $\bmod \left(P_{1} \#\right)$, there is only one maximally long subgroup No 4 , situated within the maximally long alternance $\leq P_{1}$, using all NOT residues of $\bmod \left(P_{1} \#\right)$, at the P.I. section ($P_{1} \# \pm P_{2}$) with length maximal $R_{4}=2 P_{2}$ restricting $\left(R_{4}-2\right) / 2=\left(2 P_{2}-2\right) / 2=\left(P_{2}-1\right)$ of the odd numbers, situated within the P . I. section, formed solely from $\left(P_{1} \#-P_{3}\right)$ to $\left(P_{1} \#+P_{3}\right)$ with length of $\left(P_{3}-1\right)$ of odd numbers.

It is quite obvious that all the other, line-symmetrical subgroups No 4 of mod ($P_{1} \#$), situated within the alternances $\leq P_{1}$ with different lengths or NOT residues, of $\bmod \left(P_{1} \#\right)$, cannot have the maximal length as they are formed by two different ways, that is they would be shorter than $R_{4}<2 P_{2}$, and situated within the P.I. sections from C_{A} to C_{B} with length not exceeding the maximal long P.I. section $\left(\mathrm{C}_{\mathrm{B}}-\mathrm{C}_{\mathrm{A}}\right) \leq 2 P_{3}$ of the whole numbers, not exceeding $\left(P_{3}-1\right)$ of the odd numbers.

And so on, for all posterior prime numbers $=P_{\mathrm{n}}$, at the increasing fractals $-P_{\mathrm{n}} \#$ with n - as the whole number and proves the reality of the values of column No 3 of Table 11 and item (a) of Theorem 1.

It is feasible that there is such a prime number $P_{n}=P_{(1)}$, for which the P.I. is the line-symmetrical fractal $P_{(1)} \#$, situated at the P.I. section from 1 to $P_{(1)} \#$ with
subgroup No 4 (containing 4 residues) of $\bmod \left(P_{(1) \#}\right)$ with length $=\mathrm{R}_{4}>2^{*} P_{(2)}$, situated within the alternance of all first primes number $\leq P_{(1)}$ within the P.I. section with length $>2^{*} P_{(3)},>\left(P_{(3)}-1\right)$ of the odd numbers. Then every subgroup No 4 would be line-symmetrical to the left and to the right from the center of the fractal $P_{(1)} \#$ symmetry of the number $P_{(1)} \# / 2$. That is, in the result, we'll get in fractal $P_{(1)} \#$ using all primes number $\leq P_{(1)}$, - we can by more than by one way from the maximally long alternance of all the prime numbers $\leq P_{(1)}$, that is by the sieve of Eratosthenes, focused to the left and to the right (to the left and to the right from the number $\left.=P_{(1)} \# / 2\right)$, that is contrary to the taken axiom.

6. The maximal length of P.I. section with maximal long subgroups No 3 (with 3 residues) for the $\bmod \left(P_{2} \#\right)$

At the fractal - $P_{1} \#$, there are $\varphi\left(P_{1} \#\right)$ subgroups No 4 of $\bmod \left(P_{1} \#\right)$, with length $\mathrm{R}_{4} \leq 2 P_{2}$ of the whole numbers including one maximal long subgroup No 4 of mod $\left(P_{1} \#\right)$ with length max $\mathrm{R}_{4}=2 P_{2}$ of the whole numbers. At the transition from mod $\left(P_{1} \#\right)$ to $\bmod \left(P_{2} \#\right)$, the fractal $P_{1} \#$ and $\varphi\left(P_{1} \#\right)$ of groups No 4 repeat P_{2} times. Then at the P.I. section from 1 to $P_{2} \#$ (at P_{2} lines of Table 1), we'll get $\varphi\left(P_{1} \#\right.$) columns of groups No 4 of $\bmod \left(P_{1} \#\right)$, with length $\mathrm{R}_{4} \leq 2 P_{2}$, (P_{2} lines at the column No 4).

It is quite obvious that in Section 8.1, it is proved that if by number P_{2}, "eliminate," that is moved to $\bmod \left(P_{2} \#\right) 1$ time every elimination C_{2} and C_{3}, in the column of every $\varphi\left(P_{1} \#\right)$ group No 4 of $\bmod \left(P_{1} \#\right)$, than at the P.I. section from 1 to $P_{2} \#$, (that is at the fractal $\left.P_{2} \#\right)$, we'll get $=2 \varphi\left(P_{1} \#\right)$ groups No 3 of $\bmod \left(P_{2} \#\right)$ of the same length, that is $\mathrm{R}_{4} \leq 2 P_{2}$ of $\bmod \left(P_{1} \#\right)$ would become $=\mathrm{R}_{3} \leq 2 P_{2}$ of $\bmod \left(P_{2} \#\right)$ with changing of the alternances composition from $\leq P_{1}$ to $\leq P_{2}$.

As all one by one eliminated residues C_{2} or C_{3}, at rearrangement of the groups from No 4 to $\operatorname{No3}$ for the $\bmod \left(P_{2} \#\right)$, cannot change the length of none of the subgroups, that is all R_{3} would permanently be $\leq 2 P_{2}$, included in $2 \varphi\left(P_{1} \#\right)$ groups No 3 of $\bmod \left(P_{2} \#\right)$ there is only one P_{2} times repeated, maximally long subgroup No 4 of $\bmod \left(P_{1} \#\right)$ with the alternance $\leq P_{1}$, with length $\max \mathrm{R}_{4}=2 P_{2}$, that would be
(a) Fractal $=P_{2} \#, \varphi\left(P_{2} \#\right)$ group No 3 of $\bmod \left(P_{2} \#\right)$, alternance $\leq P_{2}, \operatorname{maxR}_{3}=2 P_{2}$, with $\mathrm{n}=$ (multiple $\left.P_{2} \pm 1\right) / P_{1} \#=$ the whole. At the P.I. sections $\left(\mathrm{n} P_{1} \# \pm P_{2}\right)$ and $\left(P_{2}-\mathrm{n}\right) P_{1} \# \pm P_{2}$. Within the limits of P.I. section ($\mathrm{n} P_{1} \# \pm P_{3}$) with: n and $\left(P_{2}-\mathrm{n}\right)$ is line number in Table 1

(b) Fractal $=P_{3} \#, \varphi\left(P_{3} \#\right)$ group No 3 of $\bmod \left(P_{3} \#\right)$, alternance $\leq P_{3}, \operatorname{maxR}_{3}=2 P_{3}$, with $\mathrm{n}=$ (multiple $\left.P_{3} \pm 1\right) / P_{2} \#=$ the whole. At the P.I. sections $\left(\mathrm{n} P_{2} \# \pm P_{3}\right)$ and $\left(P_{3}-\mathrm{n}\right) P_{2} \# \pm P_{3}$.
Within the limits of P.I. section ($\mathrm{n} P_{2} \# \pm P_{4}$) with: n and $\left(P_{3}-\mathrm{n}\right)$ is line number on Table 2

Table 12.
Type and formula for indexing of two line-symmetrical, maximally long subgroups No 3 (having 3 residues) at the increasing fractal according to the increasing modulus (Tables 11 and 14).

> (b) Fractal $=P_{3} \#, \varphi\left(P_{3} \#\right)$ group No 2 of $\bmod \left(P_{3} \#\right)$, alternance $\leq P_{3}, \max _{2}=2 P_{2}$, with $\mathrm{n}=($ multiple $\left.P_{2} * P_{3} \pm 1\right) / P_{1} \#=$ the whole. At the P.I. sections $\left(\mathrm{n} P_{1} \# \pm P_{2}\right)$ and $\left(P_{2} * P_{3}-\mathrm{n}\right) P_{1} \# \pm P_{2}$.
> Within the limits of P.I. section $\left(\mathrm{n} P_{1} \# \pm P_{3}\right)$., with: n and $\left(P_{2} * P_{3}-\mathrm{n}\right)$ is line number on Table 1

(c) Fractal $=P_{4} \#, \varphi\left(P_{4} \#\right)$ group No 2 of $\bmod \left(P_{4} \#\right)$, alternance $\leq P_{4}, \operatorname{maxR}_{2}=2 P_{3}$, with n $=$ (multiple $\left.P_{4} * P_{3} \pm 1\right) / P_{2} \#=$ the whole. At the P.I. sections $\left(\mathrm{n} P_{2} \# \pm P_{3}\right)$ and $\left(P_{4} P_{3}-\mathrm{n}\right) P_{2} \# \pm P_{3}$. Within the limits of P.I. section $\left(\mathrm{n} P_{2} \# \pm P_{4}\right)$., with: n -and $\left(P_{4}{ }^{*} P_{3}-\mathrm{n}\right)$ is line number on Table 2

$\ldots \ldots \mathrm{C}_{\text {A }} . .$.	$\ldots . . . \mathrm{C}_{1} \ldots$		(кр. P_{4}) (кр. $\left.P_{3}\right)$	3 ,	$\ldots \ldots \mathrm{C}_{2} \ldots$	$\ldots . \mathrm{C}_{\mathrm{B}} \ldots \ldots$
$=\mathrm{n} P_{2} \#-P_{4}$	$=\mathrm{n} P_{2} \#-P_{3}$..	$=\mathrm{n} P_{2} \#$. $\pm .1$	5,	$=\mathrm{n} P_{2} \#+P_{3}$	$=\mathrm{n} P_{2} \#+P_{4}$
${ }_{\mathrm{A}} \mathrm{C}=P_{4} \#-\mathrm{C}_{\mathrm{B}}$	${ }_{1} \mathrm{C}=P_{4} \#-\mathrm{C}_{3}$	7,	(кр. P_{3}) (кр. P_{4})	7.	$\underline{2}$	${ }_{\mathrm{B}} \mathrm{C}=P_{4} \#-\mathrm{C}_{\mathrm{A}}$
$\left(P_{4} P_{3}-\mathrm{n}\right) P_{2} \#-$	$\left(P_{4} P_{3}-\mathrm{n}\right) P_{2} \#-$	5,	$\left(P_{4} P_{3}\right.$..	$\left(P_{4} P_{3}{ }^{-}\right.$	$\left(P_{4} P_{3}\right.$
P_{4}	P_{3}	3	n) $P_{2} \# \pm 1$..	n) $P_{2} \#+P_{3}$	n) $P_{2} \#+P_{4}$

(d) And so on for every $\bmod \left(P_{\mathrm{n}+1} \#\right), \operatorname{maxR}_{2}=2 P_{\mathrm{n}}, \mathrm{n}=\left(P_{n+1^{*}} P_{\mathrm{n}} \pm 1\right) / P_{\mathrm{n}-1} \#=$ the whole, P_{n}-primes

Table 13.
Type and formula for indexing of two line-symmetrical, maximally long subgroups No 2 (having 2 residues) at the increasing fractal according to the increasing modulus (Tables 11 and 14).
restructured into two maximally long line-symmetrical groups No 3 of $\bmod \left(P_{2} \#\right)$ by "eliminating" the residues C_{2} and C_{3} by number multiple to P_{2}, (1 time at P_{2} lines). As all the other $2 \varphi\left(P_{1} \#\right)-2$ subgroups, changed from No 4 to No 3 for $\bmod \left(P_{2} \#\right)$ are shorter than $\left(P_{2}-1\right)$ of the odd numbers that is: $\mathrm{R}_{3}<2 P_{2}$. In Sections 8.1 and 8.3, there are no other ways of making or changing the subgroups No 3 of $\bmod \left(P_{2} \#\right)$ with length $\mathrm{R}_{3}>2 P_{2}$.

Order, type, and formula of indexing of two subgroups No 3 according to the increasing modulus are represented in Table $12 \mathrm{a}, \mathrm{b}, \mathrm{c}$.

The length of these two line-symmetrical subgroups No 3 of $\bmod \left(P_{2} \#\right)$, that is the length of alternance $\leq P_{2}$ from C_{1} to C_{3}, is maximal $\mathrm{R}_{3}=\left(\mathrm{C}_{3}-\mathrm{C}_{1}\right)=\left(\mathrm{n} P_{1} \# . \pm P_{2}\right)-$ $\left(\mathrm{n} P_{1} \# .-P_{2}\right)=2 P_{2} ;\left(P_{2}-1\right)$ of the odd numbers. Two of these subgroups No 3 are situated within P.I. section ($\mathrm{n} P_{1} \# . \pm P_{3}$) with length $\left(\mathrm{C}_{B}-\mathrm{C}_{\mathrm{A}}\right)=2 P_{3} ;\left(P_{3}-1\right)$ of the odd numbers from C_{A} to C_{B}. Numerical values of these two maximal subgroups No 3 are defined according to the formula (multiple P_{2} and $\mathrm{C}_{2}=$ multiple $P_{2} \pm 2$) is $\left(\mathrm{n} P_{1} \# . \pm .1\right)$ and $\left(P_{2}-\mathrm{n}\right) P_{1} \# \pm 1$, with n and $\left(P_{2}-\mathrm{n}\right)$ define the number of the line for the group No 3 of $\bmod \left(P_{2} \#\right)$ in column P_{2} and the repeated maximal of the group No 4 of $\bmod \left(P_{1} \#\right)$ with the period $=P_{1} \#$ (consult Table 1). That is $\mathrm{n}=$ (multiple $\left.P_{2} . \pm 1\right) / P_{1} \#=$ the whole $<P_{2} / 2$.

Whereas, it is quite obvious that in and proved in Section 8.2, the other subgroups No 3 of $\bmod \left(P_{2} \#\right)$, with different lengths, changed from groups No 4 would be within P.I. section, with limit length $=2 P_{3}$ of the whole numbers.

And so on, for every of all posterior primes $=P_{\mathrm{n}}$, at the increasing fractals $P_{\mathrm{n}} \#$, with n is the whole, represented in Tables 11 and 14 (the proof is indicated in Section 10). (Numerical illustrations are in Table 15).

7. The maximal length of the P.I. section, where two maximally long subgroups No 2 (with 2 residues) for the $\bmod \left(P_{3} \#\right)$

Representing as one line, the first P_{2} lines in Table 1 we'll get the fractal $P_{2} \#$ according to the $\bmod \left(P_{2} \#\right)-$ I.R.S. at $\bmod \left(P_{2} \#\right)$, that is situated at the P.I. section

1	2	3	4
Fractal composition $P_{n} \#$	$\varphi\left(P_{n} \#\right)$ groups No 4 of $\bmod \left(P_{n} \#\right)$. Including 1 group $=\operatorname{maxR}_{4}$ Proof in Section 5	$\begin{gathered} \text { Loopback }\left(P_{n}-3\right) \varphi\left(P_{n-1} \#\right) \\ \text { groups No } 3+\text { loopback } \\ 2 \varphi\left(P_{n-1} \#\right) \text { group No } 4 \\ {\left[\bmod P_{\mathrm{n}-1} \#\right]=} \\ =\varphi\left(P_{n} \#\right) \text { groups No } 3 \text { of } \bmod \left(P_{n} \#\right) \\ \text { including } \\ 2 \text { groups No } 3 \\ =\max \mathrm{R}_{3} \text { of mod }\left(P_{\mathrm{n}} \#\right) \\ \text { Proved in Sections } 6 \text { and } 8 \end{gathered}$	$\begin{gathered} \text { Loopback }\left(P_{n}-2\right) \varphi\left(P_{n-1} \#\right) \\ \text { Groups No } 2+\operatorname{loopback} \\ \varphi\left(P_{n-1} \#\right) \text { groups No } 3 \\ {\left[\bmod P_{\mathrm{n}-1} \#\right]=} \\ =\varphi\left(P_{n} \#\right) \text { groups No } 2 \text { of } \bmod \left(P_{n} \#\right) \\ \text { including } \\ 2 \operatorname{groups} \text { No } 2 \\ =\max \mathrm{R}_{2} \bmod \left(P_{\mathrm{n}} \#\right) \end{gathered}$ $\text { Proved in Sections } 7 \text { and } 9$
By repeating P_{1} times the line of fractal - $P_{0} \#$ and group No 4-3-2, we'll get $\varphi\left(P_{0} \#\right)$ columns of groups No 4-3-2 of mod $\left(P_{0} \#\right)$ within the alternances $\leq \mathrm{P}_{0}$ (P_{1} line in the column). By "eliminating" 1 number multiple $-P_{1}$ (in line of every column No 4-3-2), that is by transiting this group for $\bmod \left(P_{1} \#\right)$ with changing of its length from $\mathrm{R}_{(4,3)}$ to $\mathrm{R}_{3,2}$ and alternances composition from $\leq \mathrm{P}_{0}$ to $\leq \mathrm{P}_{1}$. At the P.I. section from 1 to $P_{1} \#$ we'll get the fractal $-P_{1} \#$ of $\bmod \left(P_{1} \#\right) . \varphi\left(P_{1} \#\right)$ groups No 4-3-2			
Amount of groups of Length and location	$\varphi\left(P_{1} \#\right)$ groups No 4. $\mathrm{R}_{4} . \leq 2 \mathrm{P}_{2}$ at every sectione $<2 P_{3}$ is group No 4	$\begin{array}{ccc} \varphi\left(P_{0} \#\right)^{*} \\ { }^{*}\left(\mathrm{P}_{1}-3\right) & +2 \varphi\left(P_{\mathbf{0}} \#\right) & = \\ \mathrm{R}_{(4)} \leq 2 \mathrm{P}_{1} & \text { group } \\ \left.\mathrm{R}_{(3)} \leq 2 \mathrm{P}_{\mathbf{1}} \#\right) \\ & & \text { No } 3 \\ & & \mathrm{R}_{3} \leq 2 \mathrm{P}_{1} \end{array}$	$\begin{array}{ccc} \varphi\left(P_{0} \#\right)^{*} & +{ }_{c}^{\varphi\left(P_{0} \#\right)}= & \varphi\left(P_{1} \#\right) \\ { }^{*}\left(\mathrm{P}_{1}-2\right) \\ \mathrm{R}_{(2)} \leq 2 \mathrm{P} . . & & \mathrm{R}_{(3)} \leq 2 \mathrm{P}_{0} \end{array} \quad \text { group } 0 \text { No 2 }$
		At every section $<2 P_{2}$ is group No 3	At every section $<2 P_{1}$ is group No 2
Formula $=\mathrm{n}$ Type max R Groups and location	$\begin{gathered} \left(P_{1} \# \pm P_{2}\right) \\ \max \mathrm{R}_{4}=2 \mathrm{P}_{2} \end{gathered}$ At the section with length $=\left(P_{1} \# \pm P_{3}\right)$	$\begin{gathered} \mathrm{n}=\left(\text { multiple } P_{1} \pm 1\right) / P_{0} \#=\text { the whole } \\ \left(\mathrm{n} P_{0 \#} \pm . \pm P_{1}\right) \text { and }\left(P_{1}-\mathrm{n}\right) P_{0} \# . \pm . P_{1} \\ 2 \text { groups No } 3-\max \mathrm{R}_{3}=2 P_{1} . \\ \text { On the segment of length }=\left(\mathrm{n} P_{0} \# \pm P_{2}\right) \end{gathered}$	$\mathrm{n}=\left(\right.$ multiple $\left.P_{0}{ }^{*} P_{1} \pm 1\right) / P_{(.)} \#=$ the whole $\left(\mathrm{n} P_{(.)} \# \pm P_{0}\right) \text { and }\left(P_{0} P_{1}-\mathrm{n}\right) P_{(.)} \# \pm P_{0}$ 2 groups No2- max $\mathrm{R}_{2}=2 P_{0}$. On the segment of length $=\left(\mathrm{n} P_{(. .)} \# \pm P_{1}\right)$

By repeating P_{2} times the line of fractal $-P_{1} \#$ and group No 4-3-2, we'll get $\varphi\left(P_{1} \#\right)$ columns of groups No 4-3-2 of $\bmod \left(P_{1} \#\right)$ within the alternances $\leq \mathrm{P}_{1}$ (P_{2} line in the column).
By "eliminating" 1 number multiple $-P_{2}$ (in line of every column No 4-3-2), that is by transiting this group for $\bmod \left(P_{2} \#\right)$ with changing of its length from $\mathrm{R}_{(4,3)}$ to $\mathrm{R}_{3,2}$ and alternances composition from $\leq \mathrm{P}_{1}$ to $\leq \mathrm{P}_{2}$. At the P.I. section from 1 to $P_{2} \#$ we'll get the fractal $-P_{2} \#$ of $\bmod \left(P_{2} \#\right) . \varphi\left(P_{2} \#\right)$ groups No 4-3-2

Amount of groups of length and location	$\varphi\left(P_{2} \#\right)$ groups No 4. $\mathrm{R}_{4} . \leq 2 \mathrm{P}_{3}$ at every sectione < $2 P_{4}$ is group No 4	$\begin{array}{ccc} \varphi\left(P_{1} \#\right)^{*} & +2 \varphi\left(P_{1} \#\right) & = \\ { }^{*}\left(\mathrm{P}_{2}-3\right) & \varphi\left(P_{2} \#\right) \\ \mathrm{R}_{(3)} \leq 2 \mathrm{P}_{1} & \mathrm{R}_{(4)} \leq 2 \mathrm{P}_{2} & \text { group } \\ & & \text { No } 3 \\ & & \mathrm{R}_{3} \leq 2 \mathrm{P}_{2} \end{array}$	$\begin{array}{ccc} \varphi\left(P_{1} \#\right)^{*} & +\varphi\left(P_{1} \#\right) & = \\ { }^{*}\left(\mathrm{P}_{2}-2\right) & \varphi\left(P_{2} \#\right) \\ \mathrm{R}_{(2)} \leq 2 \mathrm{P}_{0} & & \mathrm{R}_{(3)} \leq 2 \mathrm{P}_{1} \end{array} \quad \text { group } 0 \text { No 2 }$
		At every section $<2 P_{3}$ is group No 3	At every section $<2 P_{2}$ is group No 2
Formula $=\mathrm{n}$ Type max R Groups and location	$\begin{gathered} \left(P_{2} \# \pm P_{3}\right) \\ \max \mathrm{R}_{4}=2 \mathrm{P}_{3} \end{gathered}$ At the section with length $=\left(P_{2} \# \pm P_{4}\right)$	$\begin{array}{cc} \mathrm{n}=\left(\text { multiple } P_{2} \pm 1\right) / P_{1} \#=\text { the whole } & \mathrm{n}=\left(\text { multiple } P_{2}{ }^{*} P_{1} \pm 1\right) / P_{0} \#=\text { the whole } \\ \left(\mathrm{n} P_{1} \# . \pm . P_{2}\right) \text { and }\left(P_{2}-\mathrm{n}\right) P_{1} \# . \pm . P_{2} & \left(\mathrm{n} P_{0 \#} \pm P_{1}\right) \text { and }\left(P_{2} P_{1}-\mathrm{n}\right) P_{0} \# \pm P_{1} \\ 2 \text { groups No 3- } \max \mathrm{R}_{3}=2 P_{2} . & 2 \text { groups No2-max } \mathrm{R}_{2}=2 P_{1} . \\ \text { On the segment of length }=\left(\mathrm{n} P_{1} \# \pm P_{3}\right) & \text { On the segment of length }=\left(\mathrm{n} P_{0} \# \pm P_{2}\right) \end{array}$	
By repeating P_{3} times the line of fractal - $P_{2} \#$ and group No 4-3-2, we'll get $\varphi\left(P_{2} \#\right)$ columns of groups No 4-3-2 of mod $\left(P_{2} \#\right)$ within the alternances $\leq \mathrm{P}_{2}$ (P_{3} line in the column). By "eliminating" 1 number multiple- P_{3} (in line of every column No 4-3-2), that is by transiting this group for $\bmod \left(P_{3} \#\right)$ with changing of its length from $\mathrm{R}_{(4,3)}$ to $\mathrm{R}_{3,2}$ and alternances composition from $\leq \mathrm{P}_{2}$ to $\leq \mathrm{P}_{3}$. At the P.I. section from 1 to P_{3} \# we'll get the fractal $-P_{3} \#$ of $\bmod \left(P_{3} \#\right) . \varphi\left(P_{3} \#\right)$ groups No 4-3-2:			
Amount of groups of length and location	$\varphi\left(P_{3} \#\right)$ groups No 4. $\mathrm{R}_{4} \leq 2 \mathrm{P}_{4}$ at every section $<2 P_{5}$ is group No 4	$\varphi\left(P_{2} \#\right)^{*}$${ }^{*}\left(\mathrm{P}_{3}-3\right)$$\mathrm{R}_{(3)} \leq 2 \mathrm{P}_{2}$$\quad$$2 \varphi\left(P_{2} \#\right)$ 	$\begin{array}{cc} \varphi\left(P_{2} \#\right)^{*} \\ { }^{*}\left(\mathrm{P}_{3}-2\right) \\ \mathrm{R}_{(2)} \leq 2 \mathrm{P}_{1} & \\ & \left.\mathrm{R}_{(3)} \leq 2 P_{2} \#\right) \end{array} \quad \begin{gathered} \varphi\left(P_{3} \#\right) \\ \text { group } \\ \\ \\ \\ \\ \\ \\ \mathrm{R}_{2} \leq 2 \mathrm{P}_{2} \end{gathered}$
		At every section $<2 P_{4}$ is group No 3	At every section $<2 P_{3}$ is group No 2
Formula $=\mathrm{n}$ Type max R Groups and location	$\begin{gathered} \left(P_{3} \# \pm P_{4}\right) \\ \max \mathrm{R}_{4}=2 \mathrm{P}_{4} \end{gathered}$ At the section with length $=\left(P_{3} \# \pm P_{5}\right)$	$\begin{array}{cc} \mathrm{n}=\left(\text { multiple } P_{3} \pm 1\right) / P_{2} \#+\text { the whole } & \mathrm{n}=\left(\text { multiple } P_{2}{ }^{*} P_{3} \pm 1\right) / P_{1} \#=\text { the whole } \\ \left(\mathrm{n} P_{2} \# . \pm . P_{3}\right) \text { and }\left(P_{3}-\mathrm{n}\right) P_{2} \# . \pm . P_{3} & \left(\mathrm{n} P_{1} \# \pm P_{2}\right) \text { and }\left(P_{2} P_{3}-\mathrm{n}\right) P_{1} \# \pm P_{2} \\ 2 \text { groups No 3-max } \mathrm{R}_{3}=2 P_{3} . & 2 \text { groups No 2- max } \mathrm{R}_{2}=2 P_{2} . \\ \text { On the segment of length }=\left(\mathrm{n} P_{2} \# \pm P_{4}\right) & \text { On the segment of length }=\left(\mathrm{n} P_{1} \# \pm P_{3}\right) \end{array}$	
\ldots
And so on for the increasing meanings of modulus $=\bmod P_{n} \#$. with: $P_{\mathrm{n}} \#-$ primorial. $\mathrm{P}_{(\ldots)}<\mathrm{P}_{0}<\mathrm{P}_{1}<\mathrm{P}_{2} \ldots<P_{\mathrm{n}}$ are the consequent primes. $\mathrm{C}_{1-2-3-4}$ are primes and residues of $\bmod \left(P_{n} \#\right) \mathrm{R}_{4-3-2}=\left(\mathrm{C}_{4-3-2}-\mathrm{C}_{1}\right)$ that is length of the group $=\left(\mathrm{R}_{4-3-2}-2\right) / 2$ of odd numbers.			

Table 14.
The loopback of prime's groups and residues rearrangement according to the increasing modulus. With max $R=$ const from $\bmod \left(\mathrm{P}_{1} \#\right)$ to $\bmod \left(\mathrm{P}_{3} \#\right)$.
from 1 to $P_{2} \#$ and represented in 1 line of Table 2 where $\varphi\left(P_{2} \#\right)$ of groups No 3 of $\bmod \left(P_{2} \#\right)$ are situated with length $\mathrm{R}_{3} \leq 2 P_{2}$ of the whole numbers. In this number, the two maximally long groups No 3 of $\bmod \left(P_{2} \#\right)$ with length max $\mathrm{R}_{3}=2 P_{2}$ of the whole numbers are represented. Then on the P.I. section from 1 to $P_{3} \#$ (at P_{3} lines of Table 2), we'll get $\varphi\left(P_{2} \#\right)$ columns of group No 3 of $\bmod \left(P_{2} \#\right)$, with length $\mathrm{R}_{3} \leq 2 P_{2}$, (P_{3} lines in columns of groups No 3).

It is quite obvious, that in Section 9.1, it is proved that if by number P_{3}, "eliminate," that is to change for the model $\bmod \left(P_{3} \#\right)$ residue C_{2} in the column of every $\varphi\left(P_{2} \#\right)$ group No 3 of $\bmod \left(P_{2} \#\right)$, then at the P.I. section from 1 to $P_{3} \#$, that is at the fractal $P_{3} \#$, we'll get $\varphi\left(P_{2} \#\right)$ groups No 2 of $\bmod \left(P_{3} \#\right)$ of the same length, that is $\mathrm{R}_{3} \leq 2 P_{2} \bmod \left(P_{2} \#\right)$, would become $\mathrm{R}_{2} \leq 2 P_{2}$ of $\bmod \left(P_{3} \#\right)$ with changing the structure of alternance from $\leq P_{2}$ to $\leq P_{3}$.

As any eliminated residue C_{2}, during the rearrangement of groups from No 3 to No 2 for the $\bmod \left(P_{3} \#\right)$ cannot change the length on no subgroup that is all R_{2} would permanently $\leq 2 P_{2}$, and included in $\varphi\left(P_{2} \#\right)$ groups No 3 of $\bmod \left(P_{2} \#\right)$ there are two uncial, repeated P_{3} times maximally long subgroups No 3 of $\bmod \left(P_{2} \#\right)$ with the alternance $\leq P_{2}$ with length maximal $\mathrm{R}_{3}=2 P_{2}$, that would be rearranged into two maximally long line-symmetrical groups No 2 of $\bmod \left(P_{3} \#\right)$ by "eliminating" the residues C_{2} with the number multiple P_{3}, (1 time in P_{3} lines). As all the other $\varphi\left(P_{2} \#\right)-2$ subgroups, rearranged from No 3 to No 2 for the $\bmod \left(P_{3} \#\right)$, are shorter than ($P_{2}-1$) of the off numbers, that is: $\mathrm{R}_{2}<2 P_{2}$, and in Sections 9.1 and 9.3, it is proved that there are no other ways of comparing or rearranging of the subgroups No 2 of $\bmod \left(P_{2} \#\right)$ with length $\mathrm{R}_{3}>2 P_{2}$. The order, type, and formula of indexing of two subgroups No 2 according to the increasing modulus are represented in Table $13 \mathrm{~b}, \mathrm{c}$, d.

The length of these two line-symmetrical subgroups No 2 of $\bmod \left(P_{3} \#\right)$, the length of alternance $\leq P_{3}$, from C_{1} to C_{2}, that is max $\mathrm{R}_{2}=\left(\mathrm{C}_{2}-\mathrm{C}_{1}\right)=\left(\mathrm{n} P_{1} \#+P_{2}\right)-$ ($\left.\mathrm{n} P_{1} \#-P_{2}\right)=2 P_{2} ;\left(P_{2}-1\right)$ of odd numbers. Two of these subgroups No 2 are situated within the P.I. section ($\mathrm{n} P_{1} \# . \pm P_{3}$) with length $\left(\mathrm{C}_{B}-\mathrm{C}_{\mathrm{A}}\right)=2 P_{3} ;\left(P_{3}-1\right)$ of odd numbers from C_{A} to C_{B}. The numerical values of these maximal groups No 2 is defined according to the formula: (multiple P_{2} and multiple P_{3}) is ($\mathrm{n} P_{1} \neq . \pm .1$) and $\left(P_{2} P_{3}-\mathrm{n}\right) P_{1} \#$. \pm. 1., with n and ($P_{2} P_{3}-\mathrm{n}$) define the line number for the group No 2 of $\bmod \left(P_{3} \#\right)$ in the column $-P_{2}{ }^{*} P_{3}$ of the duplication of the max group No 4 of \bmod $\left(P_{1} \#\right)$ with the period $=P_{1} \#$ (Table 1). That is $\mathrm{n}=\left(\right.$ multiple $\left.P_{2}{ }^{*} P_{3} . \pm 1\right) / P_{1} \#=$ the whole $<P_{2}{ }^{*} P_{3} / 2$.

Herewith, it is quite obvious, and proved in Section 9.3, that all the other subgroups No 2 of $\bmod \left(P_{3} \#\right)$, with different lengths, rearranges from groups No 3 would be within the P.I., with length not exceeding the limit $=2 P_{3}$ of the wholes.

And so on, for every of all posterior primes $=P_{\mathrm{n}}$, at the increasing fractals $P_{\mathrm{n}} \#$, with n is the whole, represented in Tables 11 and 14 (the proof is indicated in Section 10) (numerical illustrations are in Table 16).

8. The loopback of rearrangement for $\varphi\left(P_{\mathbf{n}} \#\right)$ groups No 3 (with 3 residues) from $\bmod \left(P_{\mathrm{n}-1} \#\right)$ for $\bmod \left(P_{\mathrm{n}} \#\right)$

The loopback order of rearrangement of $\varphi\left(P_{\mathrm{n}} \#\right)$ groups No 3, according to the increasing modulus, that are represented in column No 3 of Table 14 at Section 8 are examined by steps, for every recurrent increasing fractal $-P_{\mathrm{n}} \#$:

During the transition from $\bmod \left(P_{1} \#\right)$ to $\bmod \left(P_{2} \#\right)$ of the fractal $-P_{1} \#$ (1 line of Table 1) and every from $\varphi\left(P_{1} \#\right)$ groups No 4-3-2 of $\bmod \left(P_{1} \#\right)$ are repeated P_{2} times. That at the P.I. section from 1 to $P_{2} \#$, we'll get $\varphi\left(P_{1} \#\right)$ columns of No 4-3-2 groups (P_{2} limes at the column). Number P_{2} according to diagonals of P_{2} lines

for the fractal $-7 \#=210, \bmod (7 \#), \operatorname{maxR}_{3}=2^{*} 7$, at the P.I. section $\left(C_{B}-C_{A}\right)=2^{*} 11, n=3$								
$\begin{aligned} & C_{A}=79 \\ & { }_{A} C=109 \end{aligned}$...	$\begin{aligned} & \mathrm{C}_{\mathbf{1}}=83 . \\ & { }_{1} \mathrm{C}=113 \end{aligned}$	$5,3$	$\begin{aligned} & C_{2}=89 \text { и }\left(7^{*} 13\right) \\ & \left(7^{*} 17\right) \text { и }_{2} C=121 \end{aligned}$	3,5	$\begin{gathered} C_{3}=97 \\ { }_{3} C=127 \end{gathered}$.	$\begin{aligned} & C_{B}=101 \\ & { }_{B} C=131 \end{aligned}$
for the fractal $-11 \#=2310, \bmod (11 \#), \operatorname{maxR}_{3}=2^{*} 11$, at the P.I. section $\left(\mathrm{C}_{B}-\mathrm{C}_{\mathrm{A}}\right)=2^{*} 13, \mathrm{n}=1$								
$\begin{aligned} & \frac{. \mathrm{C}_{\mathrm{A}}}{}=197 . \\ & =\mathrm{n} 7 \#-13 \\ & .{ }_{\mathrm{A}} \mathrm{C}=2087 . \\ & =11 \#-\mathrm{C}_{\mathrm{B}} \end{aligned}$...	$\begin{aligned} & \frac{. \mathrm{C}_{1}}{=n}=199 . \\ & \frac{\mathrm{n} 7 \#-11}{} \\ & \frac{\mathrm{C}=2089 .}{=11 \#-\mathrm{C}_{3}} \end{aligned}$	$\begin{aligned} & 3,7 \\ & 5,3 \end{aligned}$	$\begin{gathered} \frac{\left(11^{*} 19\right), \mathrm{C}_{2}}{=}=211 \\ =\mathrm{n} 7 \# . \pm .1 \\ \frac{{ }_{2} \mathrm{C}=2099,\left(11^{*} 191\right)}{=(11-\mathrm{n}) 7 \# \pm 1} \end{gathered}$	$\begin{aligned} & 3,5, \\ & 7,3 \end{aligned}$	$\begin{aligned} & \frac{. . C_{3}}{=n} \frac{221 \ldots}{=n+11} \\ & (\ldots 3-2111 \\ & (11-n) 7 \#+11 \end{aligned}$.	$\begin{gathered} \frac{. C_{B}=223}{=n 7 \#+13} \\ (11-n) 7 \#+13 \end{gathered}$
for the fractal $-13 \#=30,030, \bmod (13 \#), \operatorname{maxR}_{3}=2^{*} 13$, at the P.I. section $\left(\mathrm{C}_{B}-\mathrm{C}_{\mathrm{A}}\right)=2^{*} 17, \mathrm{n}=3$								
$\begin{aligned} & \frac{. C_{A}=6913 .}{=n 11 \#-17} \\ & =\frac{. \mathrm{C}=23,083 .}{=13 \#-C_{B}} \end{aligned}$...	$\begin{array}{r} \frac{. . \mathrm{C}_{1}}{=\mathrm{n}}=6917 . \\ \frac{{ }_{1} \mathrm{C}=23,087 .}{} \\ =13 \#-\mathrm{C}_{3} \end{array}$	$\begin{gathered} 11 \\ 3,7 \\ 5,3 \end{gathered}$	$\begin{gathered} \frac{\left(13^{*} 533\right), \mathrm{C}_{2}}{}=6931 \\ =\mathrm{n} 11 \# . \pm .1 \\ \frac{{ }_{2} \mathrm{C}=23,099,\left(13^{*} 1777\right)}{=(13-\mathrm{n}) 11 \# \pm 1} \end{gathered}$	$\begin{gathered} 3,5 \\ 7,3, \\ 11, \end{gathered}$	$\begin{gathered} \frac{\mathrm{C}_{3}}{=}=6943 \\ =\mathrm{n} 11 \#+13 \\ \ldots{ }_{3} \mathrm{C}=23,113 \\ (13-\mathrm{n}) 11 \#+13 \end{gathered}$..	$\begin{gathered} \frac{. C_{B}}{=n} 11 \#+17 \\ =6947 \\ (13-n) 11 \#+17 \end{gathered}$
for the fractal $-17 \#=510,510, \bmod (17 \#), \operatorname{maxR}_{3}=2^{*} 17$, at the P.I. section $\left(C_{B}-C_{A}\right)=2 * 19, n=2$								
$\begin{aligned} & \frac{. \mathrm{C}_{\mathrm{A}}=60,041}{=\mathrm{n} 13 \#-19} \\ & \frac{. \mathrm{A} C=450,431 .}{=17 \#-C_{B}} \end{aligned}$...		$\begin{gathered} 13 \\ 11, \\ 3,7, \\ 5,3 \end{gathered}$	$\begin{gathered} \underline{C_{2}}=\frac{60,059,\left(17^{*} 3533\right)}{=n 13 \# . \pm .1} \\ \frac{\left(17^{*} 26497\right),{ }_{2} C=450,451}{=(17-n) 13 \# \pm 1} \end{gathered}$	$\begin{gathered} 3,5, \\ 7,3, \\ 11, \\ 13 \end{gathered}$	$\begin{gathered} \frac{\mathrm{C}_{3}}{=}=\frac{60,077 . .}{\mathrm{n} 13 \#+17} \\ \ldots{ }_{3} \mathrm{C}=450,467(17-\mathrm{n}) 13 \#+17 \end{gathered}$..	$\begin{gathered} \frac{C_{B}}{=}=60,079 \\ =n 13 \#+19 \\ \frac{{ }_{B} C=450,469}{(17-n) 13 \#+19} \end{gathered}$
for the fractal $-19 \#=9,699,690, \bmod (19 \#), \operatorname{maxR}_{3}=2^{*} 19$, at the P.I. section $\left(C_{B}-C_{A}\right)=2 * 23, n=1$								
$\begin{aligned} & C_{A}=510,487 \\ & { }_{A} \mathrm{C}=9,189,157 \end{aligned}$...	$\begin{gathered} \mathrm{C}_{1}=510,491 \\ { }_{1} \mathrm{C}=9,189,161 \end{gathered}$	$\begin{aligned} & 17 . . \\ & 5,3 \end{aligned}$	$\begin{gathered} C_{2}=510,509 \text { и кр. } 19 . \\ \text { Кр. } 19 \text { и }{ }_{2} \mathrm{C}=9,189,181 \end{gathered}$	$\begin{gathered} 3,5 \\ \text {...17, } \end{gathered}$	$. . C_{3}=510,529 \ldots 3-9,189,199$..	$\begin{gathered} . C_{B}=510,533 \\ { }_{\mathrm{B}} \mathrm{C}=9,189,203 \end{gathered}$

Table 15.

The numerical examples of the two line-symmetrical maximally long subgroups No 3 (containing 3 residues $=C_{1-2-3}$), according to the increasing modulus.
"eliminates," that is rearranges to the $\bmod \left(P_{2} \#\right)$ one time every of P_{2} repeated numbers of the P.I. section from 1 to $\mathrm{P}_{1} \#$ (1 number at every P_{2} line of every column No 4 and No 3), "eliminating" the residues $\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}$ in the groups No 4 (consult Section 8.1), and ALL numbers, besides the residues $\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}$ in the groups No 3 (consult Section 8.3).
8.1

It is quite obvious, that after "elimination" from every $\varphi\left(P_{1} \#\right)$ column of the group No 4 of $\bmod \left(P_{1} \#\right)$ one time every residue C_{2} and C_{3}, we'll get at P_{2} lines of every column of the No 4 groups of $\bmod \left(P_{1} \#\right),-$ TWO groups No 3 of $\bmod \left(P_{2} \#\right)$

That is, we'll get $2 \varphi\left(P_{1} \#\right)$ subgroups No 3 of $\bmod \left(P_{2} \#\right)$ with invariance length of the previous groups, that is $R_{4} \varphi\left(P_{1} \#\right)$ groups of No $4 \bmod \left(P_{1} \#\right)$, would become $=R_{3}$ for $2 \varphi\left(P_{1} \#\right)$ groups No 3 of $\bmod \left(P_{2} \#\right)$, with changing the alternance structure from $\leq P_{1}$ to $\leq P_{2}$, that are situated at the P.I section from 1 to $P_{2} \#$ that is at the fractal $-P_{2} \#$.

Herewith within the $2 \varphi\left(P_{1} \#\right)$ groups No 3 of $\bmod \left(P_{2} \#\right)$, there are accounted all residues $=\mathrm{C}_{1}$ and $=\mathrm{C}_{4}$ of $\bmod \left(P_{1} \#\right)$ and alternances $\leq P_{2}$ of such rearranged groups from No 4 of $\bmod \left(P_{1} \#\right)$ to No 3 of $\bmod \left(P_{2} \#\right)$. As along of P_{2} duplication of the three adjoined groups No 4 of $\bmod \left(P_{1} \#\right)$, represented in Table 3, we'll get Table 17, with every residue $=\mathrm{C}_{2}$ or $=\mathrm{C}_{3}$, situated at one of the 3 lines of Table 3 (for example, at line a of Table 17), is accounted as residue C_{1} or C_{4} at the other two adjoined groups No 4 (at lines: b or c of Table 17), where they are situated within 4 consequent residues, going as the second or the third, that is they are "excluded" as C_{2} or 3 in these adjoined groups (lines):

- for line (b) $\mathrm{C}_{2}, \mathrm{C}_{3}$. ($\mathrm{C}_{4}=$ multiple to P_{2}), C_{3} we'll get the alternance $\leq P_{2}$. R_{3} $<2 P_{2}$.
- for line (c) $\mathrm{C}_{2},\left(\mathrm{C}_{1}=\right.$ multiple to $\left.P_{2}\right), \mathrm{C}_{2}, \mathrm{C}_{3}$ we'll get the alternance $\leq P_{2}$. R_{3} $<2 P_{2}$.

Thus, "eliminating" that means transition to $\bmod \left(P_{2} \#\right)$, one time every 4 residue in $\varphi\left(P_{1} \#\right)$ groups No 4 of $\bmod \left(P_{1} \#\right)$, at the P.I. sections from 1 to $P_{2} \#$, that is at the fractal - $P_{2} \#$, we'll, get the loopback, represented as $2 \varphi\left(P_{1} \#\right)$ groups No 3 of mod ($P_{2} \#$) type: $\mathrm{C}_{1 \text { pp }} \mathrm{C}_{2_{\text {pp }}}\left(\mathrm{C}_{2-3}=\text { multiple } P_{2}\right)_{\mathrm{pP}} \mathrm{C}_{3}$, with the alternances $\leq P_{2}$, length $R_{3} \leq 2 P_{2}$. Including, pure 2 subgroups No 3 of $\bmod \left(P_{2} \#\right)$ with length maximal $\mathrm{R}_{3}=2 P_{2}$.
8.2

Herewith, it is quite obvious that every three consequent residues of every subgroup No 3 according to the increasing group of $\bmod \left(\mathrm{P}_{\mathrm{n}} \#\right)$, represented in Table 17, are still within the P.I. section with length not exceeding $-2 P_{n+1}$ of the whole numbers, as "eliminated" residues $\mathrm{C}_{2 ; 3}$ and $\mathrm{C}_{1 ; 4}$ of $\bmod \left(\mathrm{P}_{\mathrm{n}} \#\right)$ doesn't change the location of every subgroup No 3 . That is, we'll get at the three adjoined groups No 3 lines of Table 17 for the $\bmod \left(P_{2} \#\right)$: type $(\mathrm{a})=\left(\mathrm{C}_{\mathrm{B}}-\mathrm{C}_{\mathrm{A}}\right)<2 P_{3}$; type $(\mathrm{b})=$ $\left(\mathrm{C}_{2}-\mathrm{C}_{1}\right)<2 P_{3}$; type $(\mathrm{c})=\left(\mathrm{C}_{4}-\mathrm{C}_{3}\right)<2_{3}$.

Including pure two subgroups No 3 max $\mathrm{R}_{3}=2 P_{2}$, located within the maximally long section with length $=2 P_{3}$ of the whole numbers. (The rearrangement is studied in Section 6).
8.3

Within the P_{2} duplications $\varphi\left(P_{1} \#\right)$ of the groups No 3 of $\bmod \left(P_{1} \#\right)$, number P_{2} "eliminated," that is rearranges to the $\bmod \left(P_{2} \#\right) 1$ time every of all previously eliminated numbers of group No 3, except three residues $\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}$. That is, transits to the $\bmod \left(P_{2} \#\right)\left(P_{2}-3\right)$ of No 3 groups in every $\varphi\left(P_{1} \#\right)$ column of No 3 groups.

Then at the P.I. section from 1 to $P_{2} \#$, (that is included into fractal $-P_{2} \#$), we'll get the loop back, represented as $\left(P_{2}-3\right) \varphi\left(P_{1} \#\right)$ of No 3 groups repetition for the
$\bmod \left(P_{2} \#\right)$ with "changing" the alternance from $\leq P_{1}$ to $\leq P_{2}$. Without changes the groups No 3 length for the $\bmod \left(P_{2} \#\right), R_{3}=$ const and numbers composition within the alternances $\leq P_{2}$; that is the previously "eliminated" $\leq P_{1}$, according to the 1 least >1 from the number are accounted. Type: $\mathrm{C}_{1 \text { pp }} \mathrm{C}_{2 \text { pp }} \mathrm{C}_{3}$.

With: $R_{3}=$ const $=$? (with to $\bmod \left(P_{2} \#\right) \mathrm{R}_{3} \ll \mathrm{R}_{4}=2 P_{2}$).
8.4

Total at the fractal $-P_{2} \#$ at the P.I. section from 1 to $P_{2} \#$ we'll get the loopback of the rearranged groups No 3 for the $\bmod \left(P_{2} \#\right)$ represented in Sections 8.1 and 8.3.

That is: $2 \varphi\left(\mathrm{P}_{1} \#\right)$ (Section 8.1 with the length $\left.=\mathrm{R}_{3} \leq 2 \mathrm{P}_{2}\right)+\varphi\left(\mathrm{P}_{1} \#\right)\left(\mathrm{P}_{2}-3\right)$ (Section 8.3 with the length $\left.\mathrm{R}_{3} \ll \mathrm{R}_{4}=2 \mathrm{P}_{2}\right)=\mathrm{P}_{2} \varphi\left(\mathrm{P}_{1} \#\right)-3 \varphi\left(\mathrm{P}_{1} \#\right)+2 \varphi\left(\mathrm{P}_{1} \#\right)=P_{2} \varphi\left(P_{1} \#\right)-$ $\varphi\left(P_{1} \#\right)=\varphi\left(P_{1} \#\right)\left(P_{2}-1\right)=\varphi\left(P_{2} \#\right)$ of the subgroups No 3 for the $\bmod \left(P_{2} \#\right)$, included at the alternances $\leq P_{2}$ with length $\mathrm{R}_{3} \leq 2 P_{2}$, including two maximally long subgroups No 3 max $R_{3}=2 P_{2}$.
8.5

As all $\varphi\left(P_{2} \#\right)$ of the subgroups No 3 of $\bmod \left(P_{2} \#\right)$ are examined in Sections 8.1 and 8.3, with all eliminated one time residues C_{2} or C_{3}, examined in Section 8.1, cannot change the length $=\mathrm{R}_{3} \leq 2 P_{2}$, none of the $2 \varphi\left(P_{1} \#\right)$ groups, rearranged from No 4 to No 3 for the $\bmod \left(P_{2} \#\right)$. Herewith the residues C_{1} and C_{4} are also accounted in two adjoining groups of Table 17 as C_{2} or C_{3}. And indiscriminately $\varphi\left(P_{1} \#\right)\left(P_{2}-3\right)$ groups No 3 for the $\bmod \left(P_{2} \#\right)$, examined in Section 8.3 are shorter than limit $\mathrm{R}_{3}=2 P_{2}$.

So, there are no other ways to make groups No 3 of $\bmod \left(P_{2} \#\right)$ with length $\mathrm{R}_{3}>2 P_{2}$, besides the way to form the maximally long subgroups No 3 with length $\max R_{3}=2 P_{2}$, represented in Sections 6 and 8.1.
8.6

Thus we got, that for every recurrent $=P_{2}, \varphi\left(P_{2} \#\right)$ residues of $\bmod \left(P_{2} \#\right)$ situated in the fractal - $P_{2} \#$ (P_{2} lines of Table 1), represented as loop back $\varphi\left(P_{2} \#\right.$) of subgroups No 3 (3 residues of $\bmod \left(P_{2} \#\right)$, represented in Section 8.4), that is pure THREE consequent prime $\left(\begin{array}{c}\mathrm{A}, \mathrm{B}, \mathrm{C}\end{array}\right)$ type: $P_{2}<\left({ }_{\mathrm{A}} \mathrm{C}-{ }_{\mathrm{B}} \mathrm{C}-\mathrm{C}_{\mathrm{C}} \mathrm{C}\right)<P_{3}{ }^{2}$ at the P.I. section from P_{2} to $P_{3}{ }^{2}$. And further, from P_{3}^{2} to $P_{2} \#$, pure THREE consequent residue of $\bmod \left(P_{2} \#\right)$ at every P.I. section, with length not exceeding $2 P_{3}$ of the whole numbers (see Section 8.2), with length of every subgroup No 3 at every section is $\mathrm{R}_{3}=\left({ }_{\mathrm{C}} \mathrm{C}_{-} \mathrm{C}\right.$) $\leq 2 P_{2}$ (consult Sections 8.1 and 8.4).

And so on, for every of all eventual primes $=P_{\mathrm{n}}$, represented as the loopback of groups distribution of the residues No 3 at the increasing fractals $-P_{\mathrm{n}} \#$ according to the increasing meanings of modulus $-\bmod \left(P_{\mathrm{n}} \#\right)$ that proves the validity of section (b) of the Theorem 1 (loopback of groups No 3 is represented in column No 3 of Table 14).

9. The loopback of rearrangement for $\varphi\left(P_{n} \#\right)$ groups No 2 (2 residues) from the $\bmod \left(P_{\mathrm{n}-1} \#\right)$ to $\bmod \left(P_{\mathrm{n}} \#\right)$

The looped back order of rearrangement $\varphi\left(P_{\mathrm{n}} \#\right)$ of No 2 groups, according to the increasing modulus, that are represented in column No 4 of Table 14, in Section 9 are examined by steps for every recurrent increasing fractal $-P_{\mathrm{n}} \#$:

Representing the first P_{2} lines in Table 1 as one line, we'll get the fractal $-P_{2} \#$ according to $\bmod \left(P_{2} \#\right)$-I.R.S of $\bmod \left(P_{2} \#\right)$ at the P.I. sections from 1 to $P_{2} \#$ (1 line of Table 2).

With $\varphi\left(P_{2} \#\right)$ line-symmetrical the least residues of $\bmod \left(P_{2} \#\right)$, which according to Section 2 are indexed according to $\varphi\left(P_{2} \#\right)$ groups of residues No 4-3-2 for the $\bmod \left(P_{2} \#\right)$.

Table 16.
The numerical examples of the two line-symmetrical maximally long subgroups No 2 (containing 2 residues), according to the increasing modulus.

Type-(a) group from 4 to No $3\left(\mathbf{C}_{1}-\mathrm{C}_{4}\right)$	$\mathrm{C}_{\text {A }}$	$\begin{gathered} \mathrm{C}_{1}\left(\mathrm{C}_{2}=\mathrm{mtp} \cdot P_{2}\right)_{u u u} \\ \left(\mathrm{C}_{3}=\mathrm{mtp} . P_{2}\right), \mathrm{C}_{4} \end{gathered}$	$\mathrm{C}_{\text {B }}$	with R_{4} is R_{3} $\left(\mathrm{C}_{4}-\mathrm{C}_{1}\right)<2 \boldsymbol{P}_{2}$	at the P.I. section $\left(\mathrm{C}_{\mathrm{B}}-\mathrm{C}_{\mathrm{A}}\right)<2 \boldsymbol{P}_{3}$
Type-(b) group from 4 to No $3\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)$	C_{1}	$\begin{gathered} \mathrm{C}_{2}, \mathrm{C}_{3},\left(\mathrm{C}_{4}=\right.\text { multiple to } \\ \left.P_{2}\right), \mathrm{C}_{3} \end{gathered}$	C_{2}	with R_{4} is $\mathrm{R}_{3}\left(\mathrm{C}_{3}-\right.$ $\left.\mathrm{C}_{2}\right)<2 P_{2}$	at the P.I. section $\left(\mathrm{C}_{2}-\mathrm{C}_{1}\right)<2 P_{3}$
Type-(c) group from 4 to No $3\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)$	C_{3}	$\begin{gathered} \mathrm{C}_{2},\left(\mathrm{C}_{1}=\right.\text { multiple to } \\ \left.P_{2}\right) \mathrm{C}_{2}, \mathrm{C}_{3} \end{gathered}$	C_{4}	with R_{4} is $\mathrm{R}_{3}\left(\mathrm{C}_{3}-\right.$ $\left.\mathrm{C}_{2}\right)<2 P_{2}$	at the P.I. section $\left(\mathrm{C}_{4}-\mathrm{C}_{3}\right)<2 P_{3}$

Table 17.
The representation of rearrangement of every 3 adjoined subgroups No 4 of $\bmod \left(\mathrm{P}_{1} \#\right)$ (represented in Table 3), while P_{2} duplication of fractal $-\mathrm{P}_{1} \#$ from No 4 groups of $\bmod \left(\mathrm{P}_{1} \#\right)$ to No 3 groups of $\bmod \left(\mathrm{P}_{2} \#\right)$.

At the transition from $\bmod \left(P_{2} \#\right)$ to $\bmod \left(P_{3} \#\right)$, the fractal $-P_{2} \#$ and every from the $\varphi\left(P_{2} \#\right)$ groups No $4-3-2 \bmod \left(P_{2} \#\right)$ are repeated P_{3} times. Then at the P.I. section from 1 to $P_{3} \#$ we'll get $\varphi\left(P_{2} \#\right)$ columns of No 4-3-2 groups (P_{3} lines at the column). Number P_{3} according to diagonals P_{3} lines "eliminates," that is transits for the $\bmod \left(P_{3} \#\right)$ one time every P_{3} of the duplicated numbers of the P.I. section from 1 to $P_{2} \#$. (One number at every P_{3} line of every column No 3 and No 2), "eliminating" the residues $\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}$ at the groups No 3 (consult Section 9.1) and ALL numbers, except the residues $\mathrm{C}_{1}-\mathrm{C}_{2}$ at the groups No 2 (consult Section 9.3).
9.1

It is quite obvious, that after "elimination" in every $\varphi\left(P_{2} \#\right)$ column of group No 3 of $\bmod \left(P_{2} \#\right)$, 1 time the residue $-\mathrm{C}_{2}$, we'll get in P_{3} line of every column of groups No 3 of $\bmod \left(P_{2} \#\right)$, one group No 2 of $\bmod \left(P_{3} \#\right)$, that is totally we'll get $\varphi\left(P_{2} \#\right)$ subgroups No 2 of $\bmod \left(P_{3} \#\right)$ with invariance length of previous groups, that is R_{3} $\varphi\left(P_{2} \#\right)$ groups No 3 of $\bmod \left(P_{2} \#\right)$ would become $=R_{2}$ for $\varphi\left(P_{2} \#\right)$ groups No 2 of $\bmod \left(P_{3} \#\right)$ with changing the alternance composition from $\leq P_{2}$ to $\leq P_{3}$, that are situated at P.I. section from 1 to $P_{3} \#$ that is at the fractal $-P_{3} \#$

Herewith in $\varphi\left(P_{2} \#\right)$ groups No 2 of $\bmod \left(P_{3} \#\right)$ are accounted all residues $=\mathrm{C}_{1}$ and $=\mathrm{C}_{3}$ of $\bmod \left(P_{2} \#\right)$ and alternances $\leq P_{3}$ of such "rearranged" groups from No 3 of $\bmod \left(P_{2} \#\right)$ to No 2 of $\bmod \left(P_{3} \#\right)$. As in the course of P_{3} duplication of two adjoined groups No 3 of $\bmod \left(P_{2} \#\right)$, represented in Table 5, we'll get the table No 11 with each of the residues $=\mathrm{C}_{2}$, situated on one of two lines of Table 5 (for example, the line (a) Table 18, is accounted as the residue C_{1} or C_{3} at the other adjoined group No 3 (in line b). of Table 12), where it is represented in 3 consequent residues as the second one, that is "excluded" as C_{2} at this adjoined group (line):
-for line (b) ${ }_{2} \mathrm{C}$., (${ }_{3} \mathrm{C}=$ multiple P_{3})., C_{2}, we'll get the alternance $\leq P_{3} . \mathrm{R}_{2}<2 P_{2}$
Thus, after "elimination" that is transferring to $\bmod \left(P_{3} \#\right)$, one time for every of 3 residues at $\varphi\left(P_{2} \#\right)$ groups No 3 of $\bmod \left(P_{2} \#\right)$, at the P.I. sections from 1 to $P_{3} \#$, that is in fractal $-P_{3} \#$, we'll get the loop back in the form of $\varphi\left(P_{2} \#\right)$ groups No 2 of $\bmod \left(P_{3} \#\right)$, type: $\mathrm{C}_{1 \text { pp }}\left(\mathrm{C}_{2}=\text { multiple } P_{2}\right)_{\text {甲р }} \mathrm{C}_{3}$, with the alternances $\leq P_{3}$, with length $R_{2} \leq 2 P_{2}$. Including pure 2 subgroups No 2 of $\bmod \left(P_{3} \#\right)$ with length maximal $\mathrm{R}_{2}=2 P_{2}$.
9.2

Herewith it is quite obvious that any two consequent residues of any subgroup No 2 according to the increasing $\bmod \left(\mathrm{P}_{\mathrm{n}} \#\right)$, represented in Table 18 are still within the P.I. section with length not exceeding $-2 P_{\mathrm{n}+1}$ of the whole numbers, as the "eliminated" residues C_{2} and $\mathrm{C}_{1 ; 3}$ of $\bmod \left(\mathrm{P}_{\mathrm{n}} \#\right)$ doesn't change the location of any subgroup No 2. That is, in two adjoined groups No 2 lines of Table 18 for $\bmod \left(P_{3} \#\right)$ we get: type (a) $=\left(\mathrm{C}_{\mathrm{B}}-\mathrm{C}_{\mathrm{A}}\right)<2 P_{3}$; type (b) $=\left(\mathrm{C}_{1}{ }_{1} \mathrm{C}\right)<2 P_{3}$.

Including pure two subgroups No 2 max $\mathrm{R}_{2}=2 P_{2}$, located within the maximally long section with length $=2 P_{3}$ of the whole numbers, two rearrangement is studies in Section 7.
9.3

Along with P_{3} duplications $\varphi\left(P_{2} \#\right)$ of groups No 2 of $\bmod \left(P_{2} \#\right)$, the number P_{3} "eliminates" that is transits to the $\bmod \left(P_{3} \#\right) 1$ time every of all previously eliminated numbers of every group No 2 , except two residues $\mathrm{C}_{1}-\mathrm{C}_{2}$. That it, it transits to $\bmod \left(P_{3} \#\right)\left(P_{3}-2\right)$ of groups No 2 in every $\varphi\left(P_{2} \#\right)$ column of No 2 groups.

Then at the P.I. section from 1 to $P_{3} \#$ that is within the fractal $-P_{3} \#$ we'll get the loopback, represented as $\left(P_{3}-2\right) \varphi\left(P_{2} \#\right)$ duplications of No 2 groups for the mod ($P_{3} \#$) with the alternance "changes" from $\leq P_{2}$ to $\leq P_{3}$. Without changing the length of groups No 2 for $\bmod \left(P_{3} \#\right), R_{2}=$ const and numbers composition at the alternances $\leq P_{3}$ (as previously eliminated $\leq P_{2}$, for the 1 least >1 from the number is accounted). Type: $\mathrm{C}_{1 \text { pppp }} \mathrm{C}_{2}$. With: $R_{2}=$ const $=$? (with to $\bmod \left(P_{3} \#\right) \mathrm{R}_{2} \ll$ $\mathrm{R}_{3}=2 P_{2}$).
9.4

Totally at the fractal $P_{3} \#$ at P.I. section from 1 to $P_{3} \#$ we'll get the loopback of the rearranged groups No 2 for $\bmod \left(\mathrm{P}_{3} \#\right)$ represented in Sections 9.1 and 9.3. That is: $\varphi\left(\mathrm{P}_{2} \#\right)$ (Section 9.1 with length $\left.=\mathrm{R}_{2} \leq 2 \mathrm{P}_{2}\right)+\varphi\left(\mathrm{P}_{2} \#\right)\left(\mathrm{P}_{3}-2\right)$ (Section 9.3 with length $\left.\mathrm{R}_{2} \ll \mathrm{R}_{3}=2 \mathrm{P}_{2}\right)=\mathrm{P}_{3} \varphi\left(\mathrm{P}_{2} \#\right)-2 \varphi\left(\mathrm{P}_{2} \#\right)+\varphi\left(\mathrm{P}_{2} \#\right)=\mathrm{P}_{3} \varphi\left(\mathrm{P}_{2} \#\right)-\varphi\left(\mathrm{P}_{2} \#\right)=\varphi\left(\mathrm{P}_{2} \#\right)\left(\mathrm{P}_{3}-\right.$ $1)=\varphi\left(P_{3} \#\right)$ of the subgroups No 2 for $\bmod \left(P_{3} \#\right)$, located within the alternances $\leq P_{3}$ with length $\mathrm{R}_{2} \leq 2 \mathrm{P}_{2}$, including two maximally long subgroups $\mathrm{No} 2 \max \mathrm{R}_{2}=2 \mathrm{P}_{2}$.
9.5

As all $\varphi\left(P_{3} \#\right)$ of the subgroups No 2 of $\bmod \left(P_{3} \#\right)$ are examines in Sections 9.1 and 9.3, with every eliminated one time in the column residue C_{2} examined in Section 9.1, can change the length $=\mathrm{R}_{2} \leq 2 P_{2}$, of none of $\varphi\left(P_{2} \#\right)$ groups, rearranged from No 3 to No 2 for $\bmod \left(P_{3} \#\right)$, herewith residues C_{1} and C_{3} are excluded at the adjoined group of Table 18 as C_{2} and indiscriminately $\left(P_{3}-2\right) \varphi\left(P_{2} \#\right)$ groups No 2 of $\bmod \left(P_{2} \#\right)$, examined in Section 9.3 are shorter than limit $\mathrm{R}=2 P_{2}$.

Thus, there are no other ways of making groups No 2 of $\bmod \left(P_{3} \#\right)$ with length $\mathrm{R}_{2}>2 P_{2}$, but constructing two maximally long subgroups No 2 with length max $\mathrm{R}_{2}=2 P_{2}$, as examined in Sections 7 and 9.1.
9.6

And so we get, that for every recurrent prime $=P_{3}, \varphi\left(P_{3} \#\right)$ residues of mod $\left(P_{3} \#\right)$ are in the fractal - $P_{3} \#$ (in P_{3} lines of Table 2), represented as loopback $\varphi\left(P_{3} \#\right)$ of the subgroups No 2 (2 residues of $\bmod \left(P_{3} \#\right)$ are indicated in Section 9.4). Thus, pure TWO consequent primes ($\left.{ }_{\mathrm{A}, \mathrm{B}} \mathrm{C}\right)$ of type: $P_{1}, P_{2}<\left({ }_{\mathrm{A}} \mathrm{C}-{ }_{-\mathrm{B}} \mathrm{C}\right)<P_{3}{ }^{2}$ at the P.I. section from P_{2} to $P_{3}{ }^{2}$, and further, from P_{3}^{2} to $P_{3} \#$ pure TWO consequent residues of $\bmod \left(P_{3} \#\right)$, at every P.I. sections with length not exceeding $2 P_{3}$ of the whole numbers (consult Section 9.2), with length of every subgroup No 2 at every section is: $\mathrm{R}_{2}=\left({ }_{\mathrm{B}} \mathrm{C}-{ }_{-} \mathrm{C}\right) \leq 2 P_{2}$ (consult Sections 9.1 and 9.4).

And so on, for every from all eventual primes $=P_{\mathrm{n}}$, in the form of loopback of residues of groups No 2 distribution at the increasing fractals $-P_{\mathrm{n}} \#$, with the increasing values of modulus of $\bmod \left(P_{\mathrm{n}} \#\right)$, that proofs the validity of section (c) of Theorem 1 (loopback of groups No 2 is represented in column No 4 of Table 14).

Type-(a) group from 3 to No $2\left(\mathbf{C}_{1}-\mathrm{C}_{3}\right)$	$\mathrm{C}_{\text {A }}$	$\begin{gathered} \mathrm{C}_{1},\left(\mathrm{C}_{2}=\right.\text { multiple } \\ \left.P_{3}\right) ., \mathrm{C}_{3} \end{gathered}$	С ${ }_{\text {B }}$	with R_{3} is R_{2} $\left(\mathrm{C}_{3}-\mathrm{C}_{1}\right)<2 P_{2}$	at the P.I. section $\left(\mathrm{C}_{\mathrm{B}}-\mathrm{C}_{\mathrm{A}}\right)<2 P_{3}$
Type (a) group from 3 to No $2\left({ }_{2} \mathrm{C}-\mathrm{C}_{2}\right)$	${ }_{1} \mathrm{C}$	$\begin{gathered} { }_{2} \mathrm{C} ., \\ \left({ }_{3} \mathrm{C}_{1}=\right.\text { multiple } \\ \left.P_{3}\right),, \mathrm{C}_{2} \end{gathered}$	C_{1}	with R_{3} is R_{2} $\left(\mathrm{C}_{2}-2 \mathrm{C}\right)<2 P_{2}$	At the P.I. section $\left(\mathrm{C}_{1}-1 \mathrm{C}\right)<2 P_{3}$

Table 18.
Representation of rearrangement of any 2 adjoined subgroups No 3 of $\bmod \left(\mathrm{P}_{2} \#\right)$ (represented in Table 5), within P_{3} duplications of fractal $-\mathrm{P}_{2} \#$. From groups $\operatorname{No} 3$ of $\bmod \left(\mathrm{P}_{2} \#\right)$ to the groups $N o 2$ of $\bmod \left(\mathrm{P}_{3} \#\right)$.

10. Proof of section (b) and section (c) of Theorem 1

While examining the P.I., represented in the form of alternance (array) of primes (according to the 1 least prime factor >1 from every whole number), we'll get that for every recurrent prime $-P_{n}$; the P.I. is the line-symmetrical primaryrepeated fractal $-P_{\mathrm{n}} \#$, located at the P.I. section from 1 to $P_{n} \#$, represented as $\varphi\left(P_{n} \#\right)$ of the I.R.S. residue of $\bmod \left(P_{n} \#\right)$, between which the P.I. sections are situated (with different length), represented as the alternances (array) of different amounts of different first primes $\leq P_{\mathrm{n}}-$ NOT residues $\bmod \left(P_{n} \#\right)$.

By indexing $\varphi\left(P_{n} \#\right)$ of the least residues of every recurrent fractal - $P_{n} \#$, groups pure with 4,3 , and 2 consequent residue of $\bmod \left(P_{n} \#\right)$ (analogously as in Section 2). We'll get that every recurrent fractal $-P_{n} \#$ has got three types of arrays of the subgroups of residues of $\bmod \left(P_{n} \#\right)$: with $\varphi\left(P_{n} \#\right)$ groups: No 4 (with 4 residues), No 3 (with 3 residues), and No 2 (with 2 residues, repeated without changes with the period $=P_{\mathrm{n}} \#$).

At every recurrent transition, for example, from $\bmod \left(P_{2} \#\right)$ to $\bmod \left(P_{3} \#\right)$, the first line of fractal - $P_{2} \#$ and group No 4-3-2 of $\bmod \left(P_{2} \#\right)$ are repeated P_{3} times (consult P_{3} lines of Table 2). At the P.I. section from 1 to $P_{3} \#$ we'll get $\varphi\left(P_{2} \#\right)$ columns of groups No 4-3-2 of $\bmod \left(P_{2} \#\right)$ within the alternances $\leq \mathrm{P}_{2}$ (P_{3} lines in column), "eliminating" 1 number multiple to $-P_{3}$ (in line of every column No 4-3-2), that is by transition of this group to $\bmod \left(P_{3} \#\right)$ with changing of its length: from $\mathrm{R}_{(4,3)}$ to $\mathrm{R}_{3,2}$ and the alternance composition from $\leq \mathrm{P}_{2}$ to $\leq \mathrm{P}_{3}$, we'll get $\varphi\left(P_{3} \#\right)$ groups No 4-3-2 of $\bmod \left(P_{3} \#\right)$.

The rearrangement order of these subgroups No 4-3-2 at the increasing modulus is proved in Sections 5, 6, 7, 8, and 9. Representing as one line of the P.I. section from 1 to $P_{3} \#$ we'll get the fractal $-P_{3} \#$ of $\bmod \left(P_{3} \#\right)$, with $\varphi\left(P_{3} \#\right)$ groups No 4-3-2 of $\bmod \left(P_{3} \#\right)$.

And so on for every recurrent prime $=P_{n}$, the results of proof are demonstrated in Sections from 5 to 9 and for visualization they are grouped together in Table 14.

As far as we know that for every recurrent prime $-P_{n}=P_{(1)}$, the P.I. is the linesymmetrical primordial repeated fractal $-P_{(1)} \#$, located at the P.I. section from 1 to $P_{(1)} \#$. There are $\varphi\left(\boldsymbol{P}_{(1)} \#\right)$ residues of $\bmod \left(\boldsymbol{P}_{(1)} \#\right)$ between which are located the alternances (arrays) of primes $\leq P_{(1)}$ (1 the least >1 from every NOT residue of mod $\left(P_{(1)} \#\right)$).

According to Section 5, there is the only maximally long subgroup No 4 (with 4 residues) of $\bmod \left(P_{(1)} \#\right)$ with length $\operatorname{maxR}_{4}=2 P_{(2)}$.

Let us assume that there are such primes $P_{(2)}$ or $P_{(3)}$, for which at the P.I., represented as alternance $\leq P_{(2)}$, in the form of fractal $-P_{(2)} \#$ we can form more than two maximally long subgroups No 3 of $\bmod \left(P_{(2)} \#\right)$, with: (or) $\mathrm{R}_{3}>2 P_{(2)}$ or at the fractal $-P_{(3)} \#$ with P.I. is represented by alternances $\leq P_{(3)}$, we can compare more than maximally long subgroups No 2 of $\bmod \left(P_{(3)} \#\right.$), with: (or) $\mathrm{R}_{2}>2 P_{(2)}$.

Then, in the course of the opposite reduction of the modulus, that is at the result of $P_{(2)}{ }^{*} P_{(3)}$ repetition of such subgroups as No 3 or No 2 with the repetition period $P_{(1)} \#$ (for the downward meanings of numbers) and backing up the $P_{(2)}$ and $P_{(3)}$ numbers as residues (according to the decreased moduli) ${ }^{* *}$, that are situated in $P_{(2)}{ }^{*} P_{(3)}$ lines analogues to Table 1. At the upper lines of such columns, consisting of $P_{(2)}{ }^{*} P_{(3)}$ lines, we'll get the P.I as fractal- $P_{(1)} \#$, represented by alternances $\leq P_{(1)}$, where at the P.I. section from 1 to $P_{(1)} \#$ would be located more than one subgroup No 4 (with 4 residues) of $\bmod \left(P_{(1)} \#\right)$ or subgroups No 4 , with $\mathrm{R}_{4}>2 P_{(2)}$. It is quite obvious, that any such group No 4 according to the reestablished $\bmod \left(P_{(1)} \#\right)$ would be line-symmetrical to the left and to the right from the symmetry center of number $=P_{(1)} \# / 2$, that means formed by two different ways, that contradicts to the axiom set.
${ }^{* *}$ Number $P_{(3)}$ of the fractal $-P_{(3)} \#-$ NOT residue of $\bmod \left(P_{3} \#\right)$, located in the group No 2 of $\bmod \left(P_{(3)} \#\right)$ within the alternance $\leq P_{(3)}$ with length $\mathrm{R}_{(2)}>2 P_{(2)}$, and for $\bmod \left(P_{(2)} \#\right)$ would be accounted as the third residue in the group No 3 within the alternance $\leq P_{(2)}$, without changing the length of this group No 3 with $\mathrm{R}_{(2)}$ is $\mathrm{R}_{3}>2 P_{(2)}$.

Number $P_{(2)}$ of the fractal $-P_{(2)} \#-$ NOT residue of $\bmod \left(P_{2} \#\right)$ is located in the group No 3 of $\bmod \left(P_{(2)} \#\right)$ within the alternance $\leq P_{(2)}$, with length $\mathrm{R}_{3}>2 P_{(2)}$, and for mod
$\left(_{(1)} \#\right)$, would be accounted as the fourth residue in the group No 4 within the alternance $\leq P_{(1)}$, without changing the length of this group No 4 with $\mathrm{R}_{(3)}$ is $\mathrm{R}_{4}>2 P_{(2)}$.

11. Conclusion

Thus, Theorem 1 allowed us to prove the existence of a new law in mathematics - "on the plume distribution of Prime numbers." Since the methods used in number theory do not allow us to approach the problem of the distribution of prime numbers, it means that further expansion of the method proposed in the article for studying the natural series of numbers will simplify and solve many other problems that are not solved in mathematics.

So from Theorem 1 "Loopback of primes distribution" follows:
Theorem No 2. For every whole number $=\mathrm{N}$ at the P.I. section from 1 to $\mathrm{N}+$ $2 \sqrt{N}$:

1. Primes are located as groups, pure three consequent primes of $\left(P_{1}-P_{2}-P_{3}\right)$ type. Herewith the distance from the first to the third prime of every group is less than $2 \sqrt{N}$ of the whole numbers, that is $\left(P_{3}-P_{1}\right)<2 \sqrt{N}$ whole numbers.
2. The same primes are distributed as the loopback, pure two consequent primes at every P.I. sections, shorter than $2 \sqrt{N}$ whole numbers.

Proof. Every whole number $=\mathrm{N}$ is located within the squared two consequent primes: $P_{1}^{2}<\mathrm{N} \leq P_{2}^{2}$ with: $2 \sqrt{N}>2 P_{1}$.

That means every N is located within the fractal $-P_{1} \#$. Then:

1. From the section (b) of the theorem "Loopback of primes distribution" follows, that at fractal $-P_{1} \#$ of $\bmod \left(P_{1} \#\right)$ at the P.I. section from 1 to $P_{2}{ }^{2} \geq(\mathrm{N}+$ $2 \sqrt{N}$), at every P.I. section with length not exceeding $2 P_{2}$ of the whole numbers is located at the subgroup from three consequent primes of ($P_{1}-P_{2^{-}}$ P_{3}) type, with length of every subgroup, that is distance from the first to the third prime of every subgroup doesn't exceed $2 P_{1}$ whole numbers, that is $\left(P_{3}-P_{1}\right)<2 P_{1}$ whole numbers. As length of every section $2 \sqrt{N}>$ length of the section $=2 P_{1}$. Then from 1 to $\mathrm{N}+2 \sqrt{N}-$ every:
$\left(P_{3}-P_{1}\right)<2 \sqrt{N}$ of the whole numbers.
2. From the section (c) of the Theorem "Loopback of primes distribution" it follows, that at the fractal $-P_{1} \#$ of $\bmod \left(P_{1} \#\right)$ at the P.I. section from 1 to $P_{2}{ }^{2} \geq(\mathrm{N}+2 \sqrt{N})$ at every I.P. section with length not exceeding $2 P_{1}$ of the
whole numbers, there is the subgroup from two consequent primes P_{1} and P_{2}. As $2 \sqrt{N}$ whole numbers $>2 P_{1}$ whole numbers, that means, that at the P.I. section from 1 to $\mathrm{N}+2 \sqrt{N}$ at every P.I. section with length not exceeding $2 \sqrt{N}$ whole numbers, there is the loopback of primes, represented as the subgroup for two consequent primes.

Genuinely: Every P.I. section with length $=2 \sqrt{N}$ of the whole numbers is located at the fractal $-P_{1} \#$ at the P.I. section. $<P_{2}{ }^{2}$ as, $P_{1}{ }^{2}<(\mathrm{N}+2 \sqrt{N}) \leq P_{2}{ }^{2}$, with: $2 \sqrt{N}>2 P_{1}$.

It is feasible, that there is a P.I. section with length $=2 \sqrt{N}$ of the whole numbers, where there are no two primes, that is, two consequent primes are located at the P.I. section with length exceeding $-2 \sqrt{N}$ of the whole numbers $>2 P_{1}$, but this contradicts to section (c) of the Theorem "Loopback of primes distribution," that states, that is every fractal $-P_{1} \#$ according to $\bmod \left(P_{1} \#\right)$, on every P.I. sections with length not exceeding $2 P_{1}$ of the whole numbers, there is a subgroup No 2 with 2 residues of $\bmod \left(P_{1} \#\right)$, that is two primes $<P_{2}{ }^{2}$.

Author details

Shcherbakov Aleksandr Gennadiyevich
Independent Researcher, Russia

*Address all correspondence to: ag_ask@mail.ru

IntechOpen

[^0]
References

[1] Bergman GN. Chislo i nauka o nem. [9] Shherbakov AG. Dokazatel'stvo [A Number and A Theory of Numbers]. Gipotezy Brokara (O chetyreh prostyh Moscow: Gostekhizdat; 1949. [in Russian]
[2] Vinogradov IM. Osnovy teorii chisel. [Fundamentals of A Theory of Numbers]. Moscow: Gostekhizdat; 1952. [in Russian]
[3] Ozhigova YP. Razvitie teorii chisel v Rossii. [Development of A Theory of Numbers in Russia]. 2nd ed. Moscow: Directory of the Ukrainian SSR; Vol. 38. 2003. pp. 270-275
[4] Serpinsky V. Chto my znaem i chego ne znaem o prostyh chislah. [What Do We Know and What We Don't Know About Simple Numbers]. Moscow: State Publishing House for physical and mathematical Literature; 1963. [in Russian]
[5] Aleksandrov PS. Jenciklopedija jelementarnoj matematiki/ kniga pervaja arifmetika// [Encyclopedia of Elementary Mathematics. Volume 1 Arithmetic]. Izdatel'stvo tehnikoteoreticheskoj literatury; Moscow. 1951. pp. 255-282. [in Russian]
[6] Prahar K. Raspredelenie prostyh chisel. Izdatel'stvo"MIR"; Moscow. 1967. p. 511
[7] Shherbakov AG. O raspredelenii prostyh chisel. [On Distribution of Prime Numbers]. Vol. 10. Perspektivy nauki. - Tambov, Izdatel'stvo MOO Fond razvitija nauki i kul'tury; 2013. pp. S142-S147. [in Russian]
[8] Shcherbakov AG. Chetyre prostykh chisla mezhdu kvadratami dvukh posledovatelnykh prostykh chisel. In: NAUKA SEGODNYa globalnyye vyzovy i mekhanizmy razvitiya: materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii. Vologda: Disput; 2018. pp. 77-84

[^0]: © 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/ by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (c) BY

