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Chapter

Construction of Forward-Looking
Distributions Using Limited
Historical Data and Scenario
Assessments

Riaan de Jongh, Helgard Raubenheimer
and Mentje Gericke

Abstract

Financial institutions are concerned about various forms of risk that might
impact them. The management of these institutions has to demonstrate to share-
holders and regulators that they manage these risks in a pro-active way. Often the
main risks are caused by excessive claims on insurance policies or losses that occur
due to defaults on loan payments or by operations failing. In an attempt to quantify
these risks, the estimation of extreme quantiles of loss distributions is of interest.
Since financial companies have limited historical data available in order to estimate
these extreme quantiles, they often use scenario assessments by experts to augment
the historical data by providing a forward-looking view. In this chapter, we will
provide an exposition of statistical methods that may be used to combine historical
data and scenario assessments in order to estimate extreme quantiles. In particular,
we will illustrate their use by means of practical examples. This method has been
implemented by major international banks and based on what we have learnt in the
process, we include some practical suggestions for implementing the recommended
method.

Keywords: operational risk, loss distribution approach, aggregate loss distribution,
historical data, measures of agreement, scenario assessments

1. Introduction

Financial institutions need to carefully manage financial losses. For example, the
claims made against short-term insurance policies need to be analysed in order to
enable an insurance company to determine the reserves needed to meet their obli-
gations and to determine the adequacy of their pricing strategies. Similarly, banks
are required in terms of regulation to set aside risk capital to absorb unexpected
losses that may occur. Of course, financial institutions are more interested in the
total amount of claims or the aggregate loss occurring over one year in the future,
than the individual claims or losses. For this reason, their focus will be on what may
happen in the year ahead rather than what has happened in the past. Popular
modelling methods involve the construction of annual aggregate claim or loss dis-
tributions using the so-called loss distribution approach (LDA) or random sums
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method. Such a distribution is assumed to be an adequate reflection of the past but
need to be forward looking in the sense that anticipated future losses are taken into
account. The constructed distribution may then be used to answer questions like
‘What aggregate loss level will be exceeded only once in c years?’ or ‘What is the
expected annual aggregate loss level?’ or ‘If we want to guard ourselves against a
one in a thousand-year aggregate loss, how much capital should we hold next year?’
The aggregate loss distribution and its quantiles will provide answers to these
questions and it is therefore paramount that this distribution is modelled and
estimated as accurately as possible. Often it is the extreme quantiles of this distri-
bution that is of interest.

Under Basel II's advanced measurement approach, banks may use their own
internal models to calculate their operational risk capital, and the LDA is known to be
a popular method for this. A bank must be able to demonstrate that their approach
captures potentially severe ‘tail’ events and they must hold capital to protect them
against a one-in-a-thousand-year aggregate loss. To determine this capital amount,
the 99.9% Value-at-Risk (VaR) of the aggregate distribution is calculated [1]. In
order to estimate a one-in-a-thousand-year loss, one would hope that at least a
thousand years of historical data is available. However, in reality only between five
and ten years of internal data is available and scenario assessments by experts are
often used to augment the historical data and to provide a forward-looking view.

The much anticipated implementation of Basel III will require banks to calculate
operational risk capital on a new standardised approach, which is simple, risk-
sensitive and comparable between different banks [2]. Although the more sophisti-
cated internal models described above will no longer be allowed in determining
minimum regulatory capital, these models will remain relevant for the determina-
tion of economic capital and decision making within banks and other financial
institutions. It is also suggested that LDA models would form an integral part of the
supervisory review of a bank’s internal operational risk management process [3].
For this reason, we believe the LDA remains relevant and will continue to be
studied and improved on.

In this chapter we provide an exposition of statistical methods that may be used
to estimate VaR using historical data in combination with quantile assessments by
experts. The proposed approach has been discussed and studied elsewhere (see
[4]), but specifically in the context of operational risk and economic capital esti-
mation. In this chapter we concentrate on the estimation of the VaR of the aggregate
loss or claims distribution and strive to make the approach more accessible to a
wider audience. Also, based on the implementation done for major banks, we
include some practical guidelines for the use and implementation of the method in
practice. In the next section we discuss two approaches, Monte Carlo and Single
Loss Approximation, that may be used for the approximation of VaR assuming
known distributions and parameters. Then, in the third section (Historical data and
scenario modelling), we will discuss the available sources of data and formulate the
scenario approach and how these may be created and assessed by experts. This is
followed, in section four (Estimating VaR), by the estimation of VaR using three
modelling approaches. In the fifth section (Implementation recommendations)
some guidelines on the implementation of the preferred approach are given. Some
concluding remarks are made in the last section.

2. Approximating VaR

Let the random variable N denotes the annual number of loss events and that
N is distributed according to a Poisson distribution with parameter lambda,
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i.e.N ~ Poi(4). Note that one could use other frequency distributions like the nega-
tive binomial, but we found that the Poisson is by far the most popular in practice
since it fits the data well. Furthermore, assume that the random variables X1, ..., Xy
denote the loss severities of these loss events and that they are independently and
identically distributed according to a severity distribution T, i.e. X3, ..., Xn ~iid T.

Then the annual aggregate loss is A = > . X,, and the distribution of A is the
aggregate loss distribution, which is a compound Poisson distribution that depends
on Aand T and is denoted by CoP(T, 4). Of course, in practice we do not know T and
A and have to estimate it. First we have to decide on a model for T, which can be a
class of distributions F(x, ). Then 0 and 1 have to be estimated using statistical
estimates.

The compound Poisson distribution CoP(T, 1) and its VaR are difficult to calcu-
late analytically so that in practice Monte Carlo (MC) simulation is often used. This
is done by generating N according to the assumed frequency distribution and then
by generating Xj, ..., Xy independent and identically distributed according to the

true severity distribution T and calculating A = ZnNlen. The previous process is
repeated I times independently to obtain A;,i = 1,2, ..., I and then the 99.9% VaR is
approximated by A (9 999 1+1) Where A ;) denotes the i-th order statistic and [k] the
largest integer contained in k. Note that three input items are required to perform
this, namely the number of repetitions I as well as the frequency and loss severity
distributions. The number of repetitions determines the accuracy of the approxi-
mation and the larger it is, the higher its accuracy. In order to illustrate the Monte
Carlo approximation method, we assume that the Burr is the true underlying
severity distribution and we use six parameter sets corresponding to an extreme
value index (EVI) of 0.33, 0.83, 1.0, 1.33, 1.85 and 2.35 as indicated in Table 1
below. See Appendix A for a discussion of the characteristics of this distribution
and its properties. We take the number of repetitions as I = 1 000 000 and repeat
the calculation of VaR 1000 times. The 90% band containing the VaR values are
shown in Figure 1 below. Here the lower (upper) bound has been determined

as the 5% (95%) percentile of the 1000 VaR values, divided by its median,

and by subtracting 1. In mathematical terms the 90% band is defined as

VaRs VaRios) - 1] , where VaR ;) denotes the k-th

Median(VaR;, ..., VaR100) - 1’ Median(VaR;, ..., VaR1000)
order statistic. From Figure 1 it is clear that the spread, as measured by the 90%
band, declines with increasing lambda, but increases with increasing EVI.

In principle, infinitely many repetitions are required to get the exact true VaR.
The large number of simulation repetitions involved in the MC approaches above
motivates the use of other numerical methods such as Panjer recursion, methods
based on fast Fourier transforms [5] and the single loss approximation (SLA)
method (see e.g. [6]). For a detailed comparison of numerical approximation

n o T EVI
1.00 5.00 0.60 0.33
1.00 2.00 0.60 0.83
1.00 1.00 1.00 1.00
1.00 1.50 0.50 1.33
1.00 0.30 1.80 1.85
1.00 0.17 2.50 2.35
Table 1.

Parameter sets of Burr distribution.
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Figure 1.
Variation obtained in the VaR estimates for different values of EVI and frequency.

methods, the interested reader is referred to [7]. The SLA has become very popular
in the financial industry due to its simplicity and can be stated as follows: If T is the
true underlying severity distribution function of the individual losses and 4 the
true annual frequency then the 100(1 — y)% VaR of the compound loss distribution
may be approximated by T~!(1 — y/1) or, as modified by [8] for large 4, by

T (1 —y/4) + Au, where p is the finite mean of the true underlying severity
distribution. The first order approximation by [6]

CoP ' (1—y)=T '(1—y/4), (1)

states that the 100(1 — y)% VaR of the aggregate loss distribution may be
approximated by the 100(1 — y/1)% VaR of the severity distribution, if the latter
is part of the sub-exponential class of distributions. This follows from a theorem

from extreme value theory (EVT) which states that P(A =y X, >x> R~

P(max {X1, ...,Xn} >x) asx — oo (see e.g. [9]). The result is quite remarkable in
that a quantile of the aggregate loss distribution may be approximated by a more
extreme quantile (if 4> 1) of the underlying severity distribution. EVT is all about
modelling extremal events and is especially concerned about modelling the tail of a
distribution (see e.g. [10]), i.e. that part of the distribution we are most interested
in. Bearing this in mind we might consider modelling the body and tail of the
severity distribution separately as follows.

Let g be a quantile of the severity distribution T. We use ¢q as a threshold that
splice T in such a way that the interval below g is the expected part and the interval
above g the unexpected part of the severity distribution. Define two distribution
functions

T.(x) =T(x)/T(q) forx <q and
Tu(x) = [T(x) — T(q)]/[1 = T(q)] for x >4, (2)
i.e. T,(x) is the conditional distribution function of a random loss X ~ T given

that X <q and T, (x) is the conditional distribution function given that X >g.
Note that we then have the identity
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T(x) =T(q)Te(x)+ [1 —T(q)]Tu(x) for all x. (3)

This identity represents T'(x) as a mixture of the two conditional distributions.
Instead of modelling T'(x) with a class of distributions F(x, §) we may now consider
modelling T, (x) with F,(x, 0) and T, (x), with F, (x, ). Borrowing from EVT a
popular choice for F,(x, 0) could be the generalised Pareto distribution (GPD),
whilst a host of choices are available for F,(x, ), the obvious being the empirical
distribution. Note that the Pickands-Balkema-de Haan limit theorem (see e.g. [11]),
states that the conditional tail of all distributions in the domain of attraction of the
Generalised Extreme Value distribution (GEV), tends to a GPD distribution. The
distributions in the domain of attraction of the GEV are a wide class of distribu-
tions, which includes most distributions of interest to us. Although one could
consider alternative distributions to the GPD for modelling the tail of a severity
distribution, this theorem, and the limiting conditions that we are interested in,
suggest that the GPD is a good choice. In the fourth section (Estimating VaR) we
will discuss this in more detail.

3. Historical data and scenario modelling

It is practice in operational risk management to use different data sources for
modelling future losses. Banks have been collecting their own data, but realistically,
most banks only have between five and ten years of reliable loss data. To address
this shortcoming, loss data from external sources and scenario data can be used by
banks in addition to their own internal loss data and controls [12]. Certain external
loss databases exist, including publicly available data, insurance data and consor-
tium data. The process of incorporating data from external sources requires due
consideration because of biases in the external data. One method of combining
operational losses collected from various banks of different sizes and loss reporting
thresholds, is discussed in [13]. In the remainder of our discussion we will only refer
to historical data, which may be a combination of internal and external loss data.

Three types of scenario assessments are also suggested to improve the estimation
of the severity distribution, namely the individual scenario approach, the interval
approach, and the percentile approach. In the remainder of the chapter we discuss
the percentile approach as we believe it is the most practical of the existing
approaches available in the literature [4]. That being said, it should be noted that
probability assessments by experts are notoriously difficult and unreliable as
discussed in [14]. We mentioned previously that it is often an extreme quantile of
the aggregate loss distribution that is of interest. In the case of operational risk, the
regulator requires that the one-in-a-thousand-year quantile of this distribution be
estimated, in other words the aggregate loss level that will be exceeded once in a
thousand years. Considering that banks’ only have limited historical data available,
i.e. maximum of ten years of internal data, the estimation of such a quantile, using
historical data only, is a near impossible task. So modellers have suggested the use of
scenarios and experts’ assessments thereof.

We advocate the use of the so-called 1-in-c year scenario approach as discussed
in [4]. In the 1-in-c years scenario approach, the experts are asked to answer the
question: “What loss level g, is expected to be exceeded once every ¢ years?’. Popular
choices for ¢ vary between 5 and 100 and often 3 values for ¢ are used. As an
example, the bank alluded to at the start of this chapter, used ¢ = 7,20 and 100 and
motivated the first choice as the number of years of reliable historical data available
to them. In this case the largest loss in the historical data may serve as a guide for
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choosing ¢, since this loss level has been reached once in 7 years. If the experts judge
that the future will be better than the past, they may want to provide a lower
assessment for g, than the largest loss experienced so far. If they foresee deteriora-
tion, they may judge that a higher assessment is more appropriate. The other
choices of ¢ are selected in order to obtain a scenario spread within the range that
one can expect reasonable improvement in accuracy from the experts’ inputs.
Of course, the choice of ¢ = 100 may be questionable because judgements on a 1-in-
100 years loss level are likely to fall outside many of the experts’ experience. In the
banking environment, they may also take additional guidance from external data of
similar banks which in effect amplifies the number of years for which historical data
are available. It is argued that this is an essential input into scenario analysis [12]. Of
course requiring that the other banks are similar to the bank in question may be a
difficult issue and the scaling of external data in an effort to make it comparable to
the bank’s own internal data raises further problems (see e.g. [15]). We will not
dwell on this issue here and henceforth assume that we do have the 1-in-c years
scenario assessments for a range of c-values, but have to keep in mind that
subjective elements may have affected the reliability of the assessments.

If the annual loss frequency is Poi(4) distributed and the true underlying severity
distribution is T, and if the experts are of oracle quality in the sense of actually
knowing 4 and T, then the assessments provided should be

g

To see this, let N, denote the number of loss events experienced in ¢ years and let
M, denote the number of these that are actually greater than g.. Then N, ~ Poi(c4)
and the conditional distribution of M, given N, is binomial with parameters N, and
1-p,=P(X>q,)=1-T(q,) withX ~ Tandp, = T(q,) =1 — Z. Therefore
EM, = E[E(M.|N,)] = E[N.(1—p,)] =cA(1—T(q,)). Requiring that EM, = 1,
yields (4).

As illustration of the complexity of the experts’ task, take 1 = 50 then g, =

T71(0.99714), ¢,, = T~1(0.999) and q,,, = T *(0.9998) which implies that the
quantiles that have to be estimated are very extreme.

Returning to the SLA i.e. CoP (1 — y) ~T"}(1 — y/4), and by taking y = 0.001,
which implies ¢ = 1000, we could ask the oracle the question “What loss level g, s
expected to be exceeded once every 1000 years?’. The oracle will then produce an
answer that can be used directly as an approximation for the 99.9% VaR of the
aggregate loss distribution. Of course, the experts we are dealing with are not of
oracle quality.

In the light of the above arguments one has to take in consideration: (a) the SLA
gives only an approximation to the VaR we are trying to estimate, and (b) experts
are very unlikely to have the experience or the information at their disposal to assess
a 1-in-1000 year event reliably. One can realistically only expect them to assess
events occurring more frequently such as once in 30 years.

Returning to the oracle’s answer in (4), the expert has to consider both the true
severity distribution and the annual frequency when an assessment is provided. In
order to simplify the task of the expert, consider the mixed model in (3) discussed
in the previous section. This model will assist us in formulating an easier question
for the expert to answer. Note that the oracle’s answer to the question in the
previous setting can be stated as T(q,) = 1 — 2 (from (4)) and therefore depends on
the annual frequency. However using the definition of T, and taking g = ¢,,b <c; it

follows that T, (q,) = 1 — 2 which does not depend on the annual frequency. This
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fact thatq, = T~'(1—21) = T, (1 — ©) has interesting suggestions about the for-
mulation of the basic question of the 1-in-c years approach. For example, if we take
b =1 then q, would be the experts’ answer to the question “What loss level is
expected to be exceeded once annually?’. Unless we are dealing with only rare loss
events, a reasonably accurate assessment of g, should be possible. Then

Tu(q,) =1—1/cor1—T,(q,) = 1/c. Keeping in mind the conditional probability
meaning of T, this tells us that g, would be the answer to the question: ‘Amongst
those losses that are larger than ¢,, what level is expected to be exceeded only once
in ¢ years?’. Conditioning on the losses larger than ¢, has the effect that the annual
frequency of all losses drops out of consideration when an answer is sought. In the
remainder of the chapter we will assume that this question is posed to the experts to
make their assessments.

4. Estimating VaR

Suppose we have available 4 years of historical loss data x1,x2, ..., Xk and scenario
assessments ¢, 4,, and g,,, provided by the experts. In the previous sections two
modelling options have been suggested for modelling the true severity distribution T
and a third will follow below. The estimation of the 99.9% VaR of the aggregate loss
distribution is of interest and we will consider three approaches to estimate it, namely
the naive approach, the GPD approach and Venter’s approach. The naive approach
will make use of historical data only, the GPD approach (which is based on the mixed
model formulation) and Venter’s approach will make use of both historical data and
scenario assessments. Below we demonstrate that, as far as estimating VaR is
concerned, that Venter’s approach is preferred to the GPD and naive approaches.

4.1 Naive approach

Assume that we have available only historical data and that we collected the loss
severities of a total of K loss events spread over 4 years and denote these observed or

historical losses by x1, ..., xx. Then the annual frequency is estimated by 1 = K /a. Let
F(x;0) denote a suitable family of distributions to model the true loss severity distri-

bution T The fitted distribution is denoted by F (x; @) , with 0 denoting the (maximum

likelihood) estimate of the parameter(s) 0. In order to estimate VaR a small adjustment
of the Monte Carlo approximation approach, discussed earlier, is necessary.

4.1.1 Naive VaR estimation algorithm
i. Generate N from the Poisson distribution with parameter /;
ii. Generate X, ..., Xy ~ iid F(x; 9) calculate A = Z;V:an;
iii. Repeat i and ii I times independently to obtain A;,i = 1,2, ..., I. Then the
99.9% VaR is estimated by A (9999 1+1) Where A(;) denotes the i-th order

statistic and [k] the largest integer contained in k.

4.1.2 Remarks

The estimation of VaR using the above-mentioned naive approach has been
discussed in several books and papers (see e.g. [11]). [16] stated that heavy-tailed
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data sets are hard to model and require much caution when interpreting the
resulting VaR estimates. For example, a single extreme loss can cause drastic
changes in the estimate of the means and variances of severity distributions even if
a large amount of loss data is available. Annual aggregate losses will typically be
driven by the value of the most extreme losses and the high quantiles of the
aggregate annual loss distribution are primarily determined by the high quantiles of
the severity distributions containing the extreme losses. Two different severity
distributions for modelling the individual losses may both fit the data well in terms
of goodness-of-fit statistics yet may provide capital estimates which may differ by
billions. Certain deficiencies of the naive estimation approach, in particular, the
estimation of the severity distribution and the subsequent estimation of an extreme
VaR of the aggregate loss distribution, are highlighted in [15].

In Figure 2 below we used the naive approach to illustrate the effect of some of
the above-mentioned claims. In Figure 2(a) we assumed a Burr distribution, i.e.
T_Burr(1, 0.6, 2), as our true underlying severity distribution. In the top panel we
show the distribution function and in the middle the log of 1 minus the distribution
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Hllustration of the effects of VaR estimation using the naive approach. (a) True Burr distvibution, T_Burr(1,
0.6, 2), (b) simulated observations from the T_Burr(1, 0.6, 2) distribution with fitted distribution F_Burr
(1.07, 0.56, 2.2), (c) augmented simulated observations with fitted distribution F_Burr(1.01, 0.52, 2.26).
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function. This gives us more accentuated view of the tail of the distribution. Then in
the bottom panel the Monte Carlo results of the VaR approximations are given by
means of a box plot using the 5% and 95% percentiles for the box. As before, one
million simulations were used to approximate VaR and the VaR calculations were
repeated a 1000 times. In Figure 2(b) we assume 4 = 10, = 10 and generated 100
observations from the T_Burr(1, 0.6, 2) distribution. The observations generated is
plotted in the top panel and in the middle panel the fitted distribution and the
maximum likelihood estimates of the parameters are depicted as F_Burr(1.07, 0.56,
2.2). In the bottom panel the results of the VaR estimates using the naive approach
is provided. Note how the distribution of the VaR estimates differ from those
obtained using the true underlying severity distribution. Of course, sampling error
is present, and the generation of another sample will result in a different box plot.
Let us illustrate this by studying the effect of extreme observations. In order to do
this, we moved the maximum value further into the tail of the distribution and
repeat the fitting process. The data set is depicted in the top panel of Figure 2(c)
and the fitted distribution in the middle as F_Burr(1.01, 0.52, 2.26). Again, the
resulting VaR estimates are shown in the bottom panel. In this case the
introduction of the extreme loss has a profound boosting effect on the resulting VaR
estimates.

In practice, and due to imprecise loss definitions, risk managers may incorrectly
group two losses into one extreme loss that has a profound boosting effect on VaR
estimates. In the light of this, it is important that the manager is aware of the
process generating the data and the importance of clear definitions of loss events.

4.2 The GPD approach

This modelling approach is based on the mixed model formulation (3). As
before, we have available a years of historical loss data x1,x3, ..., xx and scenario
assessments ¢, 4,, and g,,,. Then the annual frequency A can again be estimated as
4 = K/a. Next b and the threshold g = ¢, must be specified. One possibility is to
take b as the smallest of the scenario c-year multiples and to estimate g, as the
corresponding smallest of the scenario assessments g, provided by the experts, in
this case g,. T, (x) can be estimated by fitting a parametric family F,(x, #) (such as
the Burr) to the data x1,x,, ..., xg or by calculating the empirical distribution and
then conditioning it to the interval (O, qb}. Either of these estimates is a reasonable
choice especially if K is large and the parametric family is well chosen. Whichever
estimate we use, denote it by F, (x). For the sake of future notational consistency,
we shall also put tildes on all estimates of distribution functions which involve use
of the scenario assessments.

Next, F,(x) can be modelled by the GPD(x; 0, &,¢,,) distribution. See Appendix
A for the characteristics of this distribution. For ease of explanation, suppose we
have actual scenario assessments g, q,, and q,,, and thus take b = 7 and estimate ¢,
by §,. Substituting these scenario assessments into F, (q,) =1 —2% with b =7,
¢ =20, 100 yields two equations.

Fu(450) = GPD (G393 0,£:4;) = 0.65and Fy(q199) = GPD (1003 0,,4,) = 0.93  (5)

that can be solved to obtain estimates & and & of the parameters ¢ and ¢ in the
GPD that are based on the scenario assessments. Some algebra shows that a solution

exists only if % >2.533. This fact should be borne in mind when the experts do

their assessments.
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With more than three scenario assessments, fitting techniques can be based on
(5) which links the quantiles of the GPD to the scenario assessments. An example
would be to minimise >_.|GPD(q,; 0, &,4,) — (1 — b/c)|. Other possibilities include a
weighted version of the sum of deviations in this expression or deviation measures
comparing the GPD quantiles directly to the g, assessments. Whichever route we

follow, we denote the final estimate of F, (x) by F, (x). All these ingredients can now
be substituted into (3) to yield the estimate F(x) of T(x), namely

. m ~ 1\ = 1.
AF(x) = </1 — §)F€(x) + iFu(x) (6)

Returning now to practical use of Eq. (6), the algorithm below summarises the
integration of the historical data with the 1-in-c years scenarios following the MC
approach.

4.2.1 GPD VaR estimation algorithm

i. Generate N, ~ Poi (;1 — 1) and N, ~ Poi(});

ii. Generate X3, ..., Xy, ~ iid F, and XN, 415 s XN, +N, ~ iid F, and calculate
A =N X, where N = N, + N,. Using the identity above it easily follows
that A is distributed as a random sum of N i.i.d. losses from F.

iii. Repeat i and ii I times independently to obtain A;,i = 1,2, ...,I and
estimate the 99.9% VaR by the corresponding empirical quantile of these
A;’s as before.

4.2.2 Remarks

When using the GPD 1-in-c¢ years integration approach to model the severity
distribution, we realised that the 99.9% VaR of the aggregate distribution is almost
exclusively determined by the scenario assessments and their reliability greatly
affects the reliability of the VaR estimate. The SLA supports this conclusion. As
noted above, the SLA implies that we need to estimate g,y = T~ (1 — 5555;) and its

1

estimate would be §,,,, = GPD " (% ,6,&, qb) . Therefore 99.9% VaR largely
72
depends on the GPD fitted with the scenario assessments. In Figure 3 below we
depict the VaR estimation results by fitting F, assuming a Burr distribution and F,
assuming a GPD. The top panel in Figure 3(a) depicts the tail behaviour of the true
severity distribution which is assumed as a Burr and denoted as T_Burr(1,0.6,2).
Using the VaR approximation technique discussed in the second section (Approxi-
mating VaR) and assuming A = 10, =1 000 000 and 1000 repetitions, the VaR
approximations are depicted in the bottom panel in the form of a box plot as before.
Assuming that we were supplied with quantile assessments by the oracle we use the
two samples discussed in Figure 2 and apply the GDP approach. The results are
displayed in Figure 3(b) and (c) below.

The GPD fit to the oracle quantiles produce similar box plots, which in turn is
very similar to the box plot of the VaR approximations. Clearly the fitted Burr has
little effect on the VaR estimates. The VaR estimates obtained through the GPD
approach is clearly dominated by the oracle quantiles. Of course, if the assessments

10
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Hlustration of VaR estimates obtained from a GPD fit on the ovacle quantiles. (a) True Burr distribution,
T _Burr(1, 0.6, 2), (b) fitted distribution F_Burr(1.07, 0.56, 2.2) on simulated data, (c) fitted distribution
F_Burr(1.01, 0.52, 2.26) on augmented simulated data.

are supplied by experts and not oracles the results would differ significantly. This is
illustrated when we compare the GPD with Venter’s approach.

The challenge is therefore to find a way of integrating the historical data and
scenario assessments such that both sets of information are adequately utilised in
the process. In particular, it would be beneficial to have measures indicating
whether the experts’ scenario assessments are in line with the observed historical
data, and if not, to require them to produce reasons why their assessments are so
different. Below we describe Venter’s estimation method that will meet these aims.

4.3 Venter’s approach

A colleague, Hennie Venter suggested that, given the quantiles g, q,,,4,,,; one
may write the distribution function T as follows:

L T(x) for x<4q;

PR Tx)-T or X =qp0
T(x) = - T(d20) = T(4;) [T60) (47)] for 4;<x<q @)
a P100 — Pao B ) )
q100) — T (420) [T(x) = T(g30)] for gy <x<qyq

1-—
P1oo T 1_ TPmo [T(x) = T(g100)] Jor qygq <x <eo.
(9100)

p20+T(

AgainT (¢q,) = p, = 1 — X and it should be clear that the expressions on the right
reduces to T'(x). Also, the definition of T'(x) could easily be extended for more
quantiles. Given the previous discussion we can model T'(x) by F(x, ) and estimate

it by F(x, 0) using the historical data and maximum likelihood and estimate the

11
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annual frequency by A = K /a. Given scenario assessments 47>450 and g0, then

T(q,) can be estimated by F (qc, ¢) andp, byp, =1—-21 The estimated ratios are
then defined by

157 1520 _157
R(7) = ,R(7,20) = —— —,
(47’ ) (q2059) _F(%;g)
P100 — Pao 1—Pigo
R(20,100) = —+10 ) and R(100) = —— +100__ (8)
F(%oo;e) _F(%o;e) 1 _F(%oo;e)

Notice that if our estimates were actually exactly equal to what they are esti-
mating, these ratios would all be equal to 1. For example, we would then have
R(7) =p,/T(q;) = 1 by (4), and similarly for the others. Our new method is to
estimate the true severity distribution function T by an adjusted form of F (x, ),
then Hennie’s distribution H is defined as follows (see de Jongh et al. 2015):

( R(7)F (x; 9) forx<gq,
- + R(7,20)|F(x; — F(§,;0 or g, <x<q
Fi(x) = Py [ ( ) (47 )} forq, 920 9)
P20 +R(20,100) [F( ) F (G35 )} Jor 4,0 <x <4440
[ D100 + R(100) [F (x; ) F(éloo;g)} for qyp9 <x <oo.

Notice again that this estimate is consistent in the sense that it actually reduces
to T if all estimators are exactly equal to what they are estimating.

Also note that H(§,) = p;» H(G0) = Ppo and H(G100) = P1o» i-€- the equivalents
of T(q,) = p, hold for the scenario assessments when estimates are substituted for

the true unknowns. Hence at the estimation level the scenario assessments are
consistent with the probability requirements expressed. Thus, this new estimated

severity distribution estimate H ‘believes’ the scenario quantile information, but
follows the distribution fitted on the historical data to the left of, within and to the
right of the scenario intervals. The ratios R(7),R(7,20), R(20,100) and R(100) in
(9) can be viewed as measures of agreement between the historical data and the
scenario assessments and could be useful for assessing their validities and qualities.
The steps required to estimate VaR using this method are as follows:

4.3.1 Venter’s VaR estimation algorithm
i. Generate N ~ Poi (;1),

ii. Generate X1, ..., Xy ~ iid H and calculate A = ZnNle,,;
iii. Repeat i and ii I times independently to obtain A;,i = 1,2, ...,I and

estimate the 99.9% VaR by the corresponding empirical quantile of these
A;’s as before.

4.3.2 Remarks

The SLA again sheds some light on this method. As noted above the SLA

implies that we need to estimate q,50 = T~ ' (1 — 1555;) and its estimate would be
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10001
F (10005 ¢) = F(@1005¢) + (P1000 — P100) /R(100) needs to be solved for 4,,-
Depending on the choice of the family of distributions F(x, 8), this may be easy (e.g.
when we use the Burr family for which we have an explicit expression for its
quantile function). This clearly shows that a combination of the historical data and
scenario assessments is involved, and not exclusively the latter. In as much as the
SLA provides an approximate to the actual VaR of the aggregate loss distribution,
we may expect the same to hold for Venter’s approach.

In order to illustrate the properties of this approach we assume that the true
underlying severity distribution is the Burr(1.0, 0.6, 2) as before. We then construct
a ‘false’ severity distribution as the fitted distribution to the distorted sample
depicted in Figure 2(c), i.e. the Burr(1.00,0.52,2.26). We refer to the true severity
distribution as Burr_1 and the false one Burr_2. In Figure 4(a) the box plots of the
VaR approximations of the two distributions are given (using the same input for the
MC simulations). We then illustrate the performance of the GPD and Venter
approach in two cases. The first case assumes that the correct (oracle) quantiles of
Burr_1 are supplied, but that the loss data are distributed according to the false
distribution Burr_2. In the second case, the quantiles of the false severity distribu-
tion are supplied, but the loss data follows the true severity distribution. The box
plots of the VaR estimates are given in Figure 4(b) for case 1 and Figure 4(c) for
case 2.

The behaviour of the GPD approach is as expected and the box plots corresponds
to the quantiles supplied. Clearly the quantiles and not the loss data dictates the
results. On the other hand, the Venter approach is affected by both the loss data and
quantiles supplied. In the example studied here it seems as if the method is more
affected by the quantiles than by the data. This role of the data relative to the
quantiles changes positively the more loss data are supplied.

d1000 = i (1 - L) g (P1000)- Some algebra shows that the equation

4.4 GPD and Venter model comparison

In this section we conduct a simulation study to investigate the effect on the two
approaches by perturbing the quantiles of the true underlying severity distribu-
tions. We assume the six parameters sets of Table 1 as the true underlying severity
distributions and then perturb the quantiles in the following way. For each simula-
tion run, choose three perturbation factors 7, 4, and #1909 independently and
uniformly distributed over the interval [1 — €,1 + €] and then take ¢, = u79,,4,, =
%209, and q,,9 = #1004, but truncate these so that the final values are increasing,

(a) (b) (c)

3000 3000 3000

2800 | 2800 2800

600 2600 2600 '
2 - -t
v I ) ‘ v
& 2400 & 2400 & 2400 ——F— -
T ® T |
S2200 —— S 2200 S 2200
o 1 o
= > =

2000 2000 2000

1800 1800 1800

1600 1600 1600

Burr 1 Burr_2 GPD Venter GPD Venter
Figure 4.

Comparison of VaR vesults for the GPD and Venter approaches. (a) Naive approach with correct (T_Burr(1,
0.6, 2)), and false data (F_Burr(1.01, 0.52, 2.26)), (b) Case 1 with correct quantiles and false data, (c) Case
2 with false quantiles and correct data.
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i.e. §; <459 <q,00- Here the fraction e expresses the size or extent of the possible
deviations (or mistakes) inherent in the scenario assessments. If ¢ = 0 then the
assessments are completely correct (within the simulation context) and the experts
are in effect oracles. In practice, choosing ¢ > 0 is more realistic, but how large the
choice should be is not clear and we therefore vary e over a range of values. We
chose the values 0, 0.1, 0.2, 0.3 and 0.4 for this purpose in the results below.
Choosing the perturbation factors to be uniformly distributed over the interval
[1—€,1+ €] implies that on average they have the value 1, i.e. the scenario assess-
ments are about unbiased. This may not be realistic and other choices are possible,
e.g. we could mimic a pessimistic scenario maker by taking the perturbations to be
distributed on the interval [1,1 + ¢] and an optimistic scenario maker by taking
them on the interval [1 — ¢, 1].

For each combination of parameters of the assumed true underlying Poisson
frequency and Burr severity distributions and for each choice of the perturbation
size parameter ¢ the following steps are followed:

i. Use the VaR approximation algorithm in the second section to determine
the 99.9% VaR for the Burr Type XII with the current choice of parameters.
Note that the value obtained here approximately equals the true 99.9%
VaR. We refer to this value as the approximately true (AT) VaR.

ii. Generate a data set of historical losses, i.e. generate K ~ Poi(74) and then
generate x1, X2, ...,Xg ~ iid Burr Type XII with the current choice of
parameters. Here the family F(x, 0) is chosen as the Burr Type XII but it is
refitted to the generated historical data to estimate the parameters as
required.

iii. Add to the historical losses three scenarios g, 7,4, generated by the
quantile perturbation scheme explained above. Estimate the 99.9% VaR
using the GPD approach.

iv. Using the historical losses and the three scenarios of item iii), calculate the

severity distribution estimate H and apply Venter’s approach to estimate
the 99.9% VaR.

v. Repeat items i-iv 1000 times and then summarise and compare the
resulting VaR estimates.

Because we are generally dealing with positively skewed data here, we shall use
the median as the principal summary measure. Denote the median of the 1000 AT

values by MedAT. Then we construct 90% VaR bands as before for the 1000
VﬂR(Sl) . 1 VﬂR(gSl) .
MedAT > MedAT

given in Figure 5. Note that light grey represents the GPD band and dark grey the
Venter band, whilst the overlap between the two bands are even darker.

From Figure 5, we make the following observations:

For small frequencies (1 <10) the GPD approach outperforms the Venter
approach, except for short tailed severity distributions and higher quantile pertur-
bations. When the annual frequency is high (1>50) and for moderate to high
quantile perturbations (¢ > 0.2) the Venter approach is superior, and more so for
higher 4 and e. Even for small quantile perturbations (¢ = 0.1) and high annual

frequencies (1> 50) the Venter approach performs reasonable when compared to
the GPD.

1|. The results are

repeated GPD and Venter VaR estimates, i.e. [
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VaR bands for different Burr parameter sets and frequency combinations.

The above information suggest that provided enough loss data is available the

Venter approach is the best choice to work.

5. Implementation recommendations

As stated in the introduction to this chapter, Venter’s method has been
implemented by major international banks and approved by the local regulator.
Based on this experience, we can share the following implementation guidelines:

i. Study the loss data carefully with respect to the procedures used to collect
the data. Focus should be on the largest losses and one has to establish
whether these losses were recorded and classified correctly according to the

definitions used.

j—yy

ii.

Experts should be presented with an estimate of ¢, (based on the loss data)

and then should answer the question ‘Amongst those losses that are larger
than g, what level is expected to be exceeded only once in ¢ years?” where

¢ =7,20,100.

iii. The assessments by the expert should be checked with the condition

0

assessments are concerned.

15

% >2.533. This bring realism as far as the ratios between the
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iv. The loss data may be fitted by a wide class of severity distributions. We
used SAS PROC SEVERITY in order to identify the five best fitting
distributions.

v. Calculate the ratios R(7),R(7,20), R(20,100) and R(100) of the best fitting
distributions obtained above and then select the best distribution based on
the ratios. Although this is a subjective selection it will lead to more realistic
choices.

vi. For the best fitting distribution, present the ratios that deviate significantly
from one to the experts for possible re-assessment. If new assessments are
provided, repeat guidelines iii to v once or twice.

vii. Different data sources should be considered. The approaches discussed
above assumes one unified dataset for the historical data source. In practice
different datasets are included for example internal, external and mixed
where the latter is scaled. Estimates of 4, and g, based on these different
datasets should inform the scenario process.

viii. Guideline vi may also be repeated on appropriate mixed (scaled) data sets
to select the best distribution type.

6. Some further practical considerations

Data Scaling. It is practice in operational risk management to use different data
sources for modelling future losses. Banks have been collecting their own data, but
realistically, most banks only have between five and ten years of reliable loss data.
To address this shortcoming, loss data from external sources can be used by banks
in addition to their own internal loss data and controls. External loss data comprises
operational risk losses experienced by third parties, including publicly available
data, insurance data and consortium data. [16] investigate whether the size of
operational risk losses is correlated with geographical region and firm size. They use
a quantile matching algorithm to address statistical issues that arise when estimating
loss scaling models when subjecting the data to a loss reporting threshold. [13] uses
regression analysis based on the GAMLSS (generalised additive models for location
scale and shape) framework to model the scaling properties. The severity of opera-
tional losses using the extreme value theory is used to account for the reporting bias
of the external data losses.

No historical data available. In the event of having insufficient historical data
available, the GPD approach as discussed above may be used. T, (x) in (2) can be
estimated by a right truncated distribution, e.g. scaled beta, Pareto type II, etc.
titted to an expected loss scenario and ¢,. In this case the expert should also provide
a scenario for the expected loss EL = E[T|X <g¢,]. T(x) can be estimated by a GPD
distribution as discussed in the GPD approach.

Aggregation. To capture dependencies of potential operational risk losses across
business lines or event types, the notion of copulas may be used (see [15]). Such
dependencies may result from business cycles, bank-specific factors, or cross-
dependence of large events. Banks employing more granular modelling approaches
may incorporate a dependence structure, using copulas to aggregate operational risk
losses across business lines and/or event types for which separate operational risk
models are used.
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7. Conclusion

In this chapter, we motivated the use of Venter’s approach whereby the severity
distribution may be estimated using historical data and experts’ scenario assess-
ments jointly. The way in which historical data and scenario assessments are inte-
grated incorporates measures of agreement between these data sources, which can
be used to evaluate the quality of both. This method has been implemented by
major international banks and we included guidelines for its practical implementa-
tion. As far as future research is concerned, we are investigating the effectiveness of
using the ratios in assisting the experts with their assessments. Also, we are testing
the effect of replacing q,,, with g, in the assessment process.

A. Appendix A
A.1 The generalised Pareto distribution (GPD)

The GPD given by

1= [1+5(—g,)]7 >0

GPD(’“"’%E’%): x—q
1— exp (——b> E=0,
c

(10)

with x > g, , thus taking g, as the so-called EVT threshold and with ¢ and &
respectively scale and shape parameters. Note the Extreme Value Index (EVI) of the
GPD distribution is given by EVI = ¢ and that heavy-tailed distributions have a
positive EVI and larger EVI implies heavier tails. This follows (also) from the fact
that for positive EVI the GPD distribution belongs to the Pareto-type class of
distributions, having a distribution function of the form 1 — F(x) = x~Y¢/g(x), with
Zr(x) a slowly varying function at infinity (see e.g. Embrechts et al., 1997). For
Pareto-type, when the EVI > 1, the expected value does not exist, and when
EVI > 0.5, the variance is infinite. Note also that the GPD distribution is regularly
varying with index —1/¢ and therefore belongs to the class of sub-exponential

distributions. Note that the y-th quantile of the GPD is ¢(y) = GPD™* (v,0,&9q,) =

(qb + M) when & # 0 and GPD™? (y, c,&, qb) =¢q, —oln(1—y) when = 0.

A.2 The Burr distribution
The three parameter Burr type XII distribution function
B(x;n,t,0) =1— (1+ (x/n)") %, forx>0 (11)

with parameters 5, 7,a> 0 (see e.g. [10]). Here 1 is a scale parameter and 7 and a
shape parameters. Note the EVI of the Burr distribution is given by EVI = { = 1/7a
and that heavy-tailed distributions have a positive EVI and larger EVI implies
heavier tails. This follows (also) from the fact that for positive EVI the Burr distri-
bution belongs to the Pareto-type class of distributions, having a distribution func-
tion of the form 1 — F(x) = x~Y¢¢g(x), with £r(x) a slowly varying function at
infinity (see e.g. [9]). For Pareto-type, when the EVI > 1, the expected value does
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not exist, and when EVI > 0.5, the variance is infinite. Note also that the Burr
distribution is regularly varying with index —zaand therefore belongs to the class of
sub-exponential distributions. Note that the y-th quantile of the Burr distribution is

B 1/ 1/z
q(r) =B (s, 1,0) = '7((1 —y) - 1) :
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