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Chapter

Neurological and Neuropsychiatric 
Disorders in Relation to Olfactory 
Dysfunction
Naina Bhatia-Dey and Thomas Heinbockel

Abstract

Olfaction is an underestimated sensory modality in terms of its predictive value 
as an indicator of disorders. It is a well-known phenomenon that a significant 
percentage of people afflicted with certain prevalent disorders causing degenerative 
neuropathology, progressive loss of memory and communication function, normal 
age-based decline of physiological functions, intellectual challenges, depressive and 
anxiety disorders as well as post-traumatic stress disorders, present with a range 
of olfactory deficits. Here, we review our understanding of these deficits and their 
relation to various clinical manifestations such as neurological and neuropsychiatric 
diseases and disorders. At the outset, we will briefly describe the olfactory pathway 
from olfactory sensory neurons in the nasal epithelium to the olfactory bulb and 
on to olfactory cortical and subcortical structures involved in olfaction such as the 
amygdala.

Keywords: aging, Alzheimer’s disease, amygdala, dementia, hippocampus, limbic 
system, mood disorders, olfactory bulb, olfactory cortex, olfactory sensory neuron, 
Parkinson’s disease

1. Introduction

This chapter provides a cursory description of a well-known phenomenon, 
namely that a significant percentage of people afflicted with certain prevalent 
disorders causing degenerative neuropathology, depressive and anxiety disorders, 
progressive loss of memory and communication function such as Autism Spectrum 
Disorder (ASD), intellectual challenges, as well as post-traumatic stress disorders 
present with a range of olfactory deficits. Here, we review our understanding of 
these deficits and their relation to various clinical manifestations such as neuro-
logical and neuropsychiatric diseases and disorders, disorders affecting mood, 
cognition, communication and memory and finally, olfactory deficits as secondary 
outcome of therapeutic drugs. At the outset, we will briefly describe the olfactory 
pathway from olfactory sensory neurons in the nasal epithelium to the olfactory 
bulb and on to olfactory cortical structures and subcortical structures involved in 
olfaction such as the amygdala. Then, we shall discuss olfaction in the context of 
normal age-based decline of physiological functions relating olfactory deficits to 
the onset of neurodegenerative pathology, decline in cognition, memory, ability to 
communicate as well as with episodes of depression and anxiety.
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2. The olfactory system

The main role of the olfactory system is the detection of odors. This function is 
critical for food selection by detecting olfactory and gustatory signals. Moreover, 
our sense of smell plays a role in reproductive and neuroendocrine regulation and 
is relevant for memory, aggression, emotion, social organization, and recognition 
of prey and predators [1]. Social chemical stimuli or semiochemical signals are 
processed by the olfactory system in most mammals. These chemicals differ from 
general odorants and mediate physiological aspects of mating and aggression. These 
chemical signals are processed in the accessory olfactory bulb in the brain which is 
part of the vomeronasal system [1].

The olfactory pathway starts deep in the nasal cavity with an olfactory epithe-
lium that sits on the superior conchae (Figure 1). This pseudostratified ciliated 
columnar epithelium houses olfactory sensory neurons, supporting cells (susten-
tacular cells), and basal stem cells. In addition, Bowman’s glands located in the 
connective tissue under the epithelium (lamina propria) send ducts to the surface 
of the epithelium and secrete a serous fluid that immerses the cilia of olfactory 
receptor neurons in a mucous layer to trap odorant molecules. Odorant molecules 
bind to olfactory receptor proteins in the cilia of olfactory sensory neuron den-
drites. The number of cilia that emerges from the dendrite of an olfactory sensory 
neuron is relatively small, 20 to 30, compared to the ciliated cells that are found in 
the respiratory epithelium (~300 cilia). Air-borne odorant molecules in the air that 
we breathe in activate the olfactory receptor proteins in the olfactory cilia. Odorant 
molecules can find their way to the olfactory sensory neurons either through the 

Figure 1. 
Schematic representation of olfactory pathways. Olfactory sensory neurons in the olfactory epithelium of the 
nasal cavity send their axons to form synapses with secondary sensory neurons in the olfactory bulb. A small 
number of neurons from the olfactory bulb participate in olfactory processing as they exchange information 
with both limbic system components and cortical structures.
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nose (orthonasal stimulation) or from the mouth to the nose (retronasal stimula-
tion) [2]. Often this retronasal olfactory stimulation is confused with taste, which 
takes place in taste buds in the tongue and soft palate of the oral cavity. However, 
food odors and the consistency of the food (‘crunchiness’) together with tastants 
contribute to the flavor or aroma of food. The membrane of olfactory sensory 
neuron cilia houses odorant receptor proteins and thereby activates these neurons 
in the nasal epithelium. The olfactory receptor proteins form a large gene family 
(1000 genes in rodents, 350 in humans, [3, 4]). Each olfactory sensory neuron 
sends an axon through the cribriform plate of the ethmoid bone to the ipsilateral 
main olfactory bulb in the brain (Figure 1). The axons of olfactory sensory neurons 
coalesce to form the olfactory nerve (cranial nerve I) and olfactory nerve layer of 
the main olfactory bulb.

The main olfactory bulb is a cortical structure of the cerebrum. However, the 
main olfactory bulb is not part of the neocortex but part of the allocortex as shown 
by its fetal development and cytoarchitecture. Neocortical structures undergo a 
prenatal phase that results in six layers, whereas allocortical structures have three 
or four layers in the mature brain [5]. While the main olfactory bulb presents itself 
as a small extension of the brain in humans, in rodents, the main olfactory bulb is a 
large structure that fills roughly a quarter of the length of the cranial cavity [6] and 
is dedicated to the processing of odorant information [1, 2, 7].

Several million sensory neurons are present in the olfactory epithelium. A given 
olfactory receptor protein is expressed by several thousand of them. The olfactory 
sensory neurons that express the same olfactory receptor protein send their axon to 
the same one or two glomeruli in the main olfactory bulb to form synaptic contacts 
(Figure 1). The dendrites of interneurons (juxtaglomerular cells) and output 
neurons (mitral and tufted neurons) in the olfactory bulb synapse with olfactory 
sensory neurons. Compared to the large number of olfactory sensory neurons, only 
relatively few output neurons innervate each glomerulus. These output neurons 
send their axons to higher order brain centers for brain processing of olfactory 
signals [8]. The precise sending of olfactory sensory neuron axons to specific glom-
eruli is critical for the discrimination of odorants [2]. The axons of output neurons 
leave the main olfactory bulb through the lateral olfactory tract and terminate in 
various higher order olfactory centers such as the anterior olfactory nucleus (AON), 
piriform cortex, the anterior parahippocampal cortex (entorhinal cortex), and the 
cortico-medial amygdala, all of which belong to limbic system (Figure 1) and are 
on the ipsilateral brain side. In contrast to other sensory modalities, the olfactory 
pathway routes sensory information directly from the olfactory bulb to cortical 
centers and bypasses the thalamus [1, 2].

The amygdala is a collection of nuclei in the limbic system [9]. The basolateral 
nucleus is the largest one and receives input from sensory cortices (vision, hearing) 
as well as direct auditory signals through a subcortical structure, the medial genicu-
late nucleus which is part of the thalamus. The olfactory bulb and piriform cortex 
send sensory information to the cortical and medial nuclei of the amygdala, the 
cortico-medial nucleus [10, 11]. In addition, the amygdala receives input from other 
cortical and subcortical brain systems, such as the prefrontal cortex with the anterior 
cingulate and orbitofrontal cortices. In turn, both piriform cortex and amygdala 
project to the orbitofrontal cortex to regulate emotion and associative learning. 
The amygdala is also connected with the entorhinal and hippocampal system for 
long-term memory [12]. Furthermore, the amygdala is a target for fibers from the 
hippocampus and rhinal (olfactory) cortices [10, 11]. Functionally, it has been 
established that odors have the ability to evoke strong emotions and trigger the recall 
of emotional memories and modulate cognition [11].
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Not only does the olfactory bulb send axons to higher order olfactory centers (affer-
ent fibers), an even larger number of centrifugal axons originating in higher olfactory 
centers innervate the olfactory bulb glomeruli (efferent fibers) [6, 13, 14]. These 
centrifugal neurons have been shown to provide modulatory feedback to neurons 
in the different layers of the main olfactory bulb which is important for experience-
dependent modulation [13]. The origin of the centrifugal fibers is in the locus coeru-
leus (noradrenergic), the horizontal limb of the diagonal band of Broca (cholinergic), 
and the raphe nucleus (serotonergic) [15–18]. The centrifugal fibers travel mainly 
through the anterior olfactory nucleus and the anterior commissure, and very little 
through the lateral olfactory tract [13].

3. Aging effects in the olfactory system

Age-associated impairment in the sense of olfaction has been well documented 
[19–23]. Akin to neurodegenerative pathology, a decline in olfactory acuity and 
olfactory dysfunction are common features of the normal aging process [24–27] 
detectable in over 50% individuals ranging in age from 65 to 80 years and almost 
in 75% of those above 80 years [24, 28–30]. This decline in olfactory function is 
detected using different kinds of tests such as psychophysical, psychophysiological 
and electrophysiological tests that determine odor detection, identification and 
discrimination, odor related physiological changes in cardiac and respiratory system 
as well as odor-event related potentials [29]. However, studies analyzing the mecha-
nism of non-pathological, normal chronological age-related decline of olfactory 
acuity and impaired olfactory function are limited, despite the fact that deficits in 
the olfactory sense are considered as important symptom for early and differential 
diagnosis of neurodegenerative disorders [28]. At the anatomical level, the sense 
of olfaction is affected by age-associated ossification and closure of foramina of 
the cribriform plate [29, 31]. There is evidence of a quantitative reduction in the 
olfactory epithelium and its replacement by respiratory epithelium in normal 
subjects of the aging population which is evident in biopsies of the upper nasal 
septum [32]. It is now clearly evident that in the course of normal aging, subopti-
mal olfaction and olfactory dysfunction are associated with a number of anatomi-
cal and physiological features such as age-associated thinning of the olfactory 
neuroepithelium, altered cellular patterns and regional distribution of nuclei of 
olfactory sensory and sustentacular cells [29], reduction of mucosal metabolizing 
enzymes and sensory loss of olfactory sensory cells to various odorants along with 
a cumulative effect of environmental exposure to the olfactory epithelium [30]. 
An additional causative factor is the parallel loss of olfactory function in direct 
correlation with a clear age-associated decline in the volume of the olfactory bulb 
in adults of both genders [33–35]. Other than the olfactory bulb, a reduction in 
volume of AON, amygdala, hippocampus and piriform cortex in the limbic system 
contribute to a loss of olfaction due to their pivotal role in olfactory processing [36]. 
Testing the sensitivity and response of isolated sensory neurons to odorant mixtures 
indicates a loss of olfactory sensitivity and specificity in neurons derived from 
older subjects [37]. In older individuals, there is evidence of decreased beta-event 
related synchronization in response to certain pleasant odorants and, therefore, 
these individuals rated such odorants as less pleasant, thereby, denoting a decline in 
olfactory processing [38]. A change in olfactory perception represents subtle olfac-
tory dysfunction that appears to precede a number neurodegenerative disorders 
and is presumed due to loss of synaptic function [39, 40]. Subsequent studies have 
shown that loss in olfactory sensitivity and perception is heterogeneous and appears 
to be more specific to heavier molecules [41]. Inherent allelic variations of brain 
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derived neurotrophic factor (BDNF) also affect and add to age-dependent olfac-
tory decline [29, 42]. A comparative research study quantifying heritability of odor 
identification and cognition detected a role of common genes in both olfaction and 
cognition. However, heritability of odor identification was lower in contrast to that 
of cognition [43]. Quantitative analysis of olfaction using odor identification (OI) 
scale in community dwelling subjects of age group 70–79 years reveals association of 
higher risk of dementia with poor OI score [44] and reduction in OI has been linked 
to advanced physiological brain aging as well as with a number of neurodegenerative 
diseases [45]. An aging cortical synapse in limbic structures has been considered as 
a hallmark of age-associated decline in cognition [46]. However, such studies are 
still preliminary for the olfactory bulb, despite evidence of growth factor dependent 
induction of synaptic strength in olfactory bulb cell layers during odor-dependent 
social transmission of food preference [47]. Chronological age adds to the impact of 
environmental exposure through living and working conditions on all physiological 
systems and their functions [48]. Experimental analysis indicates age-dependent 
accumulation of somatic mutations using both proliferative and non-proliferative cell 
types from human brain tissue [49]. It further indicates the probability of mutation 
accumulation in neurons. Genome-wide single somatic nucleotide variant analysis on 
DNA of 159 single neurons of 15 normal individuals with a wide age range (4 months 
to 82 years) and 9 individuals diagnosed with early onset of neurodegeneration 
revealed linear increase in both sets, indicating age-dependent accumulation of 
somatic mutations as significant factor affecting neurodegeneration [50]. Research 
studies of classical neurodegenerative disorders have proposed that the observed vari-
ability of olfactory dysfunction in diverse neurological and neuropsychiatric diseases 
could aid in early differential diagnosis of Alzheimer’s disease (AD), Parkinson’s 
disease (PD), mild cognitive impairment (MCI), progressive supranuclear palsy 
(PSP) and frontotemporal lobar degeneration known as FTLD-TDP43 [51–54]. A cell 
biology oriented experimental approach to detect the presence of neurodegeneration-
associated proteins used nasal brushing to collect olfactory neurons from olfactory 
mucosa of normal subjects and detected four different characteristic proteins involved 
in neurodegenerative pathology: α-synuclein, transactive response DNA-binding 
protein 43 (TDP-43), hyperphosphorylated tau and β-amyloid proteins [55]. These 
findings have prompted an analysis of the parallel progression of loss of olfaction 
with onset of neurodegenerative pathology and/or decline in cognitive abilities as 
initial symptoms of neurological and neuropsychiatric disorders.

4. Alzheimer’s disease, dementia and olfactory deficits

Olfactory deficiencies are evident in a number of neurodegenerative disorders 
such as AD, dementia with Lewy bodies (DLB), frontotemporal dementia (FTD), 
MCI, PD and Huntington disease [40, 51, 56–59]. In an extensive two year study 
with six-monthly follow up, all MCI patients with lower range of olfaction score but 
no subjective smelling loss detected by standard UPSIT (University of Pennsylvania 
Smell Identification Test) developed AD. In contrast, in a control group of higher 
olfaction score, AD occurrence was nil [60]. A similar association of lower olfaction 
score with development of AD pathology was evident in a multiethnic community 
cohort with UPSIT test [61]. In a comparative OI analysis of FTD and AD patients 
with normal age matched control individuals, OI score of FTD patients differed 
significantly with control group, however, there was a close resemblance in OI 
pattern of FTD patients with OI in AD patients [62]. An analysis using Pocket Small 
Test as indicator of OI performance in AD patients and healthy young and age 
matched control group of individuals detected reduced OI in an older control group 
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than in a younger control group, and AD patients had even reduced OI compared to 
their age matched control group [27]. At the cellular level, a characteristic neuro-
pathological feature of AD is the appearance of neurofibrillary tangles consisting of 
hyperphosphorylated tau protein [63]. In relation to olfactory dysfunction, the two 
key hallmarks of AD neuropathology are the detection of amyloid-beta (Aβ) and 
hyperphosphorylated tau protein in the olfactory system; both have been detected 
together with impaired olfaction much before a clinical presentation of the disease 
[57]. An analysis assessing OI as indicator of presymptomatic AD pathogenesis 
in cognitively normal aged individuals shows an association of reduced OI with 
lower cognitive score and older age as well as increased ratio of total tau protein to 
phosphorylated tau protein in cerebrospinal fluid [64]. Therefore, at the behavioral 
level, diminished OI has emerged as a practical and affordable biomarker of AD 
pathology [64] as well as prodromal symptom of AD [65].

5. Parkinson’s disease and olfactory impairment

A major factor leading to neurodegenerative PD pathology is the loss of dopa-
minergic neurons from the substantia nigra, resulting in slow but substantial loss of 
dopamine that eventually leads to many clinical motor symptoms such as bradyki-
nesia, rigidity, tremor, instability of posture and decline of cognitive function [66]. 
The olfactory system is a severely affected non-motor system in PD patients with 
early appearance of olfactory dysfunction that remains independent of progressive 
PD symptoms, their duration and treatment [67]. Additional research studies have 
indicated association of olfactory dysfunction with PD for over three decades [25, 68]. 
Olfactory dysfunction, including hyposmia and decline in olfactory acuity, has been 
established as one of the earliest features of PD. These are detectable in approximately 
90% of early stage PD patients, where they may precede the onset of the motor 
symptoms by a margin of years [69–73]. Hyposmia and progressive olfactory decline 
in PD patients have been attributed to central olfactory processing, since the olfactory 
epithelium biopsy samples of PD patients were normal [74]. Subsequent MRI studies 
indicate a varying degree of reduction in olfactory bulb volume and depth of olfac-
tory sulcus in PD patients than in normal control individuals. These studies indicate 
an association of anatomical changes with altered olfaction in PD patients [75]. Lewy 
bodies and Lewy neurites comprised of α-synuclein are histological hallmarks of 
neurodegenerative pathology in PD [76]. The olfactory bulb and lower brainstem 
have been considered as the induction site for the onset of histopathological features 
comprising of both Lew bodies and Lewy neurites [73, 77]. Along with the peripheral 
nervous system, such histological aberrations also begin to appear in gut nerve plexa 
and the olfactory bulb, thereby indicating participation of olfactory bulb cell layers in 
the progression of neurodegenerative pathology of PD [78].

Dementia associated with PD, known as Parkinson’s disease dementia (PDD), is 
one of the most debilitating symptoms of PD and is difficult to predict during early 
stages of the disease. A research study using OSIT-J (odor stick identification test for 
Japanese) shows over 18 fold increase in risk of dementia for PD patients with severe 
hyposmia [79]. Indeed OI has emerged as a reliable tool for providing excellent 
diagnostic accuracy for PD distinguishing it from PD mimics [80].

6. Mood and communication disorders

In addition to aging, neurodegenerative and psychiatric conditions, olfactory 
deficits including low OI appear as characteristic feature of mild to severe major 
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depressive disorders [81, 82]. As there is overlap in brain regions involved in AD, 
depression and olfactory processing, olfactory dysfunction could be the potential 
early biomarker of both AD and depressive disorders [83]. Similar to research 
studies using animal models that indicate a strong link between loss of olfaction and 
depressive behavior, a comparative analysis of age matched control individuals and 
patients diagnosed with depression showed loss of normal olfaction as marker of 
depression in humans [84]. Literature reviews of multiple research findings using 
specific parameters indicate a clear and consistent relation between depression 
and poor life quality in individuals from both clinical and community setting in 
age dependent manner [85]. Encoded olfactory stimuli activate emotional memory 
[86]; olfactory system and brain circuits participating in memory and cognition 
show a close anatomical link as well as frequent functional alteration in patients 
with depression [87–89]. Additional analysis clearly denotes a reciprocal relation-
ship between olfaction and depression; patients with olfactory dysfunction show 
worsening depressive symptoms while olfactory performance is clearly reduced in 
depression patients in comparison to normal controls [90]. Moreover,

Declined olfactory acuity and olfactory dysfunction are also evident in indi-
viduals suffering with post-traumatic stress disorder (PTSD) and in patients 
diagnosed with major depressive disorder (MDD). PTSD leads to decreased 
olfactory bulb volume, thereby leading to decreased olfactory acuity, additional 
olfactory deficits and dysfunction [35]. MDD indicates decline in both primary 
and secondary olfactory processing [84, 91]. MDD patients denote lower score for 
olfactory threshold, odor discrimination in 40-point smell identification test in 
comparison to normal controls At the same time, patients with olfactory dysfunc-
tion show clear symptoms of depression that become acute in comparative analysis 
of hyposmic to anosmic subjects [90].

ASD adult patients show decline in odor identification ability [92]. Experimental 
evidence in two different mouse models of ASD indicates weaker and fewer synapses 
between olfactory sensory nerve terminals and olfactory bulb tufted cell layer; and 
weaker synapses between olfactory sensory nerve terminals and inhibitory periglo-
merular cells of the olfactory bulb [93]. Duplication of GABA receptor genes and 
deletion of TOP3B, topoisomerase involved in relaxation of supercoiled DNA con-
tribute to autism susceptibility and have been assigned to gene families with specific 
contribution to neurodevelopmental disorders [94]. Out of 102 identified genes that 
contribute to ASD, most genes are expressed and enriched early in excitatory and 
inhibitory neuronal lineages and affect synapses [95].

7. Drugs

The regenerative ability of olfactory epithelium has made it an attractive target 
for exploring and evaluating therapeutic strategies to distinguish and treat drug 
induced olfactory disorders [96]. More than 86% of cancer patients of wide age 
range display smell and taste disorders that persist even after completion of chemo-
therapy for cancer [97]. However, not every therapeutic chemotherapy drugs has 
negative impact on olfactory acuity (personal communication). Bacopa monnieri 
extracts administration reverses bulbectomy induced neurochemical and histologi-
cal alterations in mouse model of depression; cognition dysfunction is reversed 
through a mechanism that enhances synaptic plasticity related signaling, BDNF 
transcription and protection of cholinergic systems [98].

The flavonoid Naringenin functions as antidepressant by restoring serotonin 
and noradrenaline levels in brain tissue [99]. In bulbectomized mice, two weeks of 
Naringenin treatment ameliorated depression like behavioral alterations, decreased 
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elevated pro-inflammatory cytokines and increased levels of BDNF and serotonin 
in hippocampus and cortex [100].

Depression with psychomotor agitation (PMA) is a putative psychiatric disorder 
associated with substance dependence, specifically, opioids. It remains unaffected by 
drug induced major depressive episodes indicating complex interplay of therapeutic 
drugs in treating depression [101].

The AON, a key area of the olfactory system, shows accumulation of character-
istic neuropathological markers such as hyperphosphorylated tau, α-synuclein and 
β-amyloid proteins at the earliest stages of AD in a Somatostatin (SST) expressing 
subpopulation of interneurons. In the limbic system, the same accumulation is 
evident in same subpopulation of interneurons [102]. However, SST is unequally 
involved in two predominant neurodegenerative disorders with a very strong 
involvement in AD pathology but quite weaker participation in PD. In early stages of 
AD, SST is reduced in olfactory areas whereas it is preserved in non-demented PD 
cases [102]. Further analysis of SST related olfactory deficiencies will pave the way 
of SST based therapeutic approaches.

Olfactory dysfunctions unrelated to blocked nasal passages are present in a 
significant percentage of Covid-19 patients [103–105]. Altered expression of SARS-
CoV-2 entry genes in supporting cells of the olfactory epithelium has been proposed 
as a mechanism underlying COVID-19-associated anosmia [106, 107].

8. Discussion and conclusions

The mammalian olfactory bulb has been termed the “brain inside the brain”, 
due to the presence of sensory inputs, neuronal lamination and contribution of 
new neural elements throughout the lifetime [108]. It plays a pivotal role in olfac-
tory processing [8, 109]. In addition to AD, PD, MCI and depressive disorders, 
inadequate and/or improper olfactory function together with impaired olfactory 
processing exist in many other neurodegenerative and neuropsychiatric disorders. 
For instance, in the case of multiple sclerosis (MS), prevalence of olfactory dys-
function ranges from 20 to 45% of the MS population. However, the mechanism of 
loss of olfaction remains unknown, except for decreased olfactory bulb and brain 
volume [110, 111]. In patients with a diagnosis of a behavioral FTD variant, OI and 
odor discrimination did not show any difference from control cases, but there was a 
significant difference in the odor association test. It has been attributed to impaired 
olfactory processing [112]. Within the healthy population, impulsive tendencies 
exhibit some link to olfactory defects [113]. Narcolepsy is associated with hypo-
cretin deficiency of the limbic system. Despite genetic predisposition, it has been 
postulated to increase by environmental substances that may access the olfactory 
bulb, triggering neuroinflammation and induce neurodegeneration [114].

Single cell transcriptome analysis during mouse olfactory neurogenesis in early 
development reveals that expression of olfactory receptor (OR) genes becomes 
progressively restricted to one gene per neuron in each mature neuron instead of 
several receptor genes that express in immature neurons [115, 116]. Expression 
of a single OR allele in olfactory sensory neurons is the outcome of coalescence of 
multiple intergenic enhancers to a multi-chromosomal hub that allows the expres-
sion of a single OR allele while the remaining OR genes converge into few hetero-
chromatic compartments leading to effective transcriptional silencing [117]. Age 
associated chromosomal breakage and DNA damage lead to an increase in markers 
of genome instability [118] and requires many layers of regulatory functions such as 
inducing senescence [48], reducing accumulation of DNA damage and enhancing 
DNA repair pathways [119]. Genome protection from DNA damage to minimize 
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aging effects is also an effective strategy to minimize risk factor for neurodegenera-
tion [119]. This is likely to retain olfactory acuity and ability based on the model 
proposed by Bashkirova and Lomvardas [117].

Single cell RNA sequencing reveals differentially regulated and expressed genes 
as neuronal markers specific to adult born interneurons that may serve as molecular 
markers for synapse formation, synapse maintenance, and neural plasticity of adult 
brain circuits [120]. Research studies analyzing functional mechanisms of these 
markers and their regulation are likely to facilitate the understanding of decreased 
OI, olfactory dysfunction and onset of neurodegenerative pathology.

Olfactory ensheathing glial cells help olfactory bulb neurons to connect with 
both the peripheral and central nervous system, and, therefore, they have been 
widely used as therapeutic tools for neural repair and olfactory/neural regenera-
tion for injuries and neurodegenerative pathological conditions [121]. Indeed, 
the olfactory bulb has emerged as an attractive target for many novel therapeutic 
approaches [122].

Another fast growing research topic addresses the role of microRNAs in regu-
lating genes that participate in cognition and neurodegeneration [123–125] and 
olfactory acuity. Such findings would also add to a better understanding of the 
relationship between olfactory dysfunction and neurodegenerative pathologies.

Targeting synaptic deficits in AD patients and aging individuals by improv-
ing synaptic plasticity though alteration of structural deficits in dendritic spines 
through microRNA mediated regulatory pathways could be an effective and novel 
therapeutic strategy for AD as well as other neurodegenerative disorders [126].
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