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Chapter

Optimal Management of
Electrified and Cooperative Bus
Systems
Francesco Viti, Marco Rinaldi and Georgios Laskaris

Abstract

This chapter presents an integrated management approach exploiting the
potentials of the new Cooperative Intelligent Transportation Systems (C-ITS) to
meet the requirements of the next generation Public Transport (PT). This approach
considers the additional complexity of electrification—for instance electric busses
need to periodically recharge during operation using dedicated infrastructure. This
not only can impact service level, but also extend operating costs with complex
electric charges. We develop new strategies explicitly optimizing the interactions
within the PT ecosystem consisting of vehicles, traffic signals, and e-bus charging
infrastructure. To achieve these goals, we rely on vehicle control rather than on the
use of transit signal priority, which in congested urban scenarios can have negative
effects on overall traffic performance. The main research challenges are in formu-
lating and solving complex multi-objective optimization problems and real-time
control. The proposed system is tested and evaluated in simulation showing the
benefits of electrified and cooperative bus systems.

Keywords: public transport, integrated charging and scheduling, cooperative
intelligent transportation systems, real-time control, electrification

1. Introduction

Sustainable urban development motivates investments in environment-friendly
and user-centered Public Transport (PT) services. Three trends towards next genera-
tion PT systems are observed, namely 1) introduction of greener vehicles such as
electric/hybrid busses (e-busses), 2) focus on high service quality (e.g. increased ride
comfort via mitigation of stop-and-go driving) and 3) reduction of emissions and
operating costs related to fuel/energy consumption and equipment wear and tear.
These trends however bring new challenges. The first challenge is posed by different
operational characteristics and constraints of e-busses, e.g. they need to periodically
recharge batteries at e-charging stations placed in selected stops and terminals. This
brings additional constraints into PT operations and its cost dynamics. The existing
approaches lack the required degree of modeling detail necessary to capture the com-
plex interactions emerging between bus operations and charging infrastructure. The
second challenge is how to guarantee comfort- and cost-effective operations without
negatively impacting general traffic performance. Relying solely on strategies such as
Transit Signal Priority (TSP), which prioritize PT vehicles at signalized intersections,
might cause congestion effects that could backfire on the PT system itself.
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The main contribution of this work is that we jointly address constraints and
control capabilities of all entities of the PT ecosystem, which consists of signal
control, (e-)busses, and e-bus charging infrastructure. The developed methods
combine cooperation and negotiation between all actors thanks to connectivity, in
order to effectively achieve mutual goals. Thanks to bus real-time positioning sys-
tems (Automatic Vehicle Location, AVL) and vehicle-to-infrastructure communi-
cation (Signal Phase and Timing, SPaT), multi-objective optimization is employed
to determine bus dispatching time, operating speeds, dwell time plans, e-bus
charging schedules, and TSP requirements. Regarding the interaction between bus-
ses and e-charging infrastructure, the objective is to minimize electricity costs and
adhere to the planned bus dispatching times. From the online/operational perspec-
tive, the problem is to model and optimize a connected and cooperative system with
a set of heuristic tools and actions, such that real-time system disturbances can be
addressed, in order to maximize the adherence to the offline plans. For example,
busses can use information on upcoming green times to adapt their speeds or hold at
a stop in order to avoid stopping at signals. Consequently, stop-and-go is mitigated
in an efficient and non-invasive way.

This chapter is structured as follows. Section 2 provides an overview of the e-bus
eco-system, and the integrated design approach we developed in this work.
Section 3 focuses on the integrated scheduling and charging problem at the planning
phase, in particular considering a hybrid fleet of electric and hybrid busses.
Section 4 deals with the operational phase, and in particular it shows the benefits of
the cooperative ITS-based control strategies. Finally, section 5 provides an outline
and the potential future research directions for this research.

2. The electrified and cooperative bus system

The quality and service level of bus systems often rely on the interaction of
different lines, in order to provide optimal frequencies and hence acceptable
waiting times for the users, and to offer sufficient capacity to accommodate the
demand, measured in terms of passenger flows. These flows vary across the net-
work due to the variability of the demand, which differs depending on the origin
and the destination of the users, and in time. To match the demand with the supply,
bus operators aim to manage efficiently their fleet of vehicles, identifying at any
time the most opportune vehicle type and the number of vehicles to be assigned to a
line, together with their dispatching times. This decision has consequences on the
way lines run smoothly and provide a certain level of service quality to the passen-
gers, as well as it impacts the operational costs (Figure 1). In this study we consider
design decisions (node density, network density and line density) as given.

Allocating a small number of vehicles limits the service frequency, which affects
the waiting time. However, increasing this number will have a negative impact on
the operating costs, since more vehicles and drivers will need to be employed. Too
many vehicles on the other hand may result in under-utilizing vehicle capacities,
reducing the marginal profits for the operators. Hence, optimally allocating fleet
resources in the network is a fundamental planning problem that impacts both
operators’ costs and passengers’ experience.

2.1 Electrification opportunities and challenges

Emerging trends in green PT systems offer new benefits: e-busses reduce emis-
sions, energy use, noise as well as offer smoother rides. There are three types of
e-busses—hybrid electric, plug-in hybrid electric, and battery electric. The last two
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are able to recharge their batteries from an electric power grid via an opportunity
charging—a bus periodically charges at bus stops or terminals. This allows to down-
size battery and extend bus range to a desirable value. E-bus systems are currently
moving from pilot projects to small-scale deployments with single line/operator
with very few charging stations. The potentials and needs of large-scale e-bus
systems have been investigated by the EU’s Zero Emission Urban Bus System
(ZeEUS) project [1] as well as Volvo’s City Mobility Program [2]. More recent EU
projects investigated the impact of fleet mix and configuration parameters to the
operation costs [3].

When introducing e-busses, additional costs need in fact to be accounted for,
since current battery-capacitated e-busses need to be recharged multiple times a
day (e.g. a Volvo 6700 bus can perform a trip in full electric mode for around
30 km, and each vehicle can run distances of a few hundreds of km each day).
Current opportunity charging technologies allow a bus to recharge up to 80% in a
matter of 6-10 min, while novel flash charging technologies can recharge in less
than a minute, but it extends the range of only few more kilometers. An example is
the TOSA system in Geneva, a single line that uses both opportunity (3-4 min with
low power) and at bus stops e-charging (15-second each 1-1.5 km with high power)
[4]. Given the costs of fast and flash charging, bus operators charge their e-busses
overnight, when the cost of electricity is lowest, and then use opportunity charging
stations, typically located at line terminals, to recharge during the short resting
times of the drivers. Flash charging are up to date very rarely implemented, given
the very high costs of the relatively small gain in terms of range extension.

The charging infrastructure creates a strong link between infrastructure plan-
ning and bus operations [5]. The location and charging operations in fact influences
the dispatching times of the vehicles, and in turn irregularities in the operations
with recurrent phenomena of bus bunching may result in busses queuing at the
charging station, with additional propagation of delays and overall degradation of
service levels. Therefore, past research focused on developing a proper system
design including strategic locations of e-charging stations [6, 7]. Energy efficiency
was also addressed via energy management strategies for the engine [8], and
regenerative breaking technologies [9], and taking into account environmental
policies such as zero-emission zones [10].

In this study we contribute to this stream of research by focusing on the problem
of integrating vehicle scheduling and dispatching times with recharging needs and
operations of the e-bus fleet. In particular, we consider the problem of managing a

Figure 1.
Integrated design of bus systems.
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mixed fleet of vehicles, which will be likely to be the case for the next years to come,
since full electrification will require heavy investments in the electrical grid and
current batteries and chargers are considered a relatively immature technology to
completely replace combustion engines. We show in Chapter 3 that optimally
assigning vehicle types in the network will provide benefits for both service quality
(mitigation of delays due to charging) and operating costs (more e-busses used in
daily operations are likely to bring lower energy consumption costs).

2.2 Cooperation opportunities and challenges

The main PT service quality objective is expressed in terms of punctuality (for
schedule-based operations) and/or headway regularity (for headway-based opera-
tions). Current methods are based upon in-vehicle support systems, managing
holding strategies and preferential signal control (TSP) and providing PT vehicles
with preferential treatment at intersections via temporary traffic signal timing
adjustments [11, 12]. For schedule-based operations, holding strategies (delaying
departure of a bus from a bus stop until the scheduled time) ensure punctuality by
managing slack times (extra “backup time” inserted into schedules) [13]. The
problem of existing methods is that they slow down busses due to the fact that they
add delays to the planned trip time [14]. They also address isolated lines and ignore
any disturbances observed in real-world PT operations [15]. Headway-based oper-
ations are more difficult to control, as the strategies need to account for several
busses [16, 17] and multiple interacting lines [18]. Thus, additional ITS systems
such as Automated Vehicle Location (AVL), Automated Passenger Count (APC)
and a central coordination entity are used to control busses in real time [15, 19].

The core reliability objective is also supported by TSP strategies capable of
providing conditional priority. However, since TSP influences the traffic flow reli-
ability [20] its acceptance is limited. Future improvements of TSP exploiting AVL
can be achieved. This allows previously unfeasible continuous exchange of infor-
mation between vehicles and traffic signals [21], allowing cooperation bus-signal
through e.g. speed advisory [22, 23]. Such systems are one of the few ITS applica-
tions that would provide benefits even at early stages of CV technology [24].

Recent advances in V2I communication enable developing a new promising
efficiency-oriented class of driving support systems aiming at improving driving
efficiency, comfort and reducing unnecessary stops at signals [25]. Opposite to
signal control, which uses CV technology to collect information about the
approaching vehicles, in V2I-based systems vehicles use signal control information
to optimize their own speeds accordingly. The two SPaT-based DASs researched in
literature are the Green Light Optimal Speed Advisory (GLOSA) and Green Light
Optimal Dwell Time Advisory (GLODTA). GLOSA provides vehicles with speed
guidance, while GLODTA advises additional holding at bus stops. Their main
advantage is that these systems improve bus performance with respect to traffic
signals, but, unlike TSP, they are non-intrusive (i.e. do not influence signal tim-
ings). The two V2I-based advisory systems can be combined to mutually increase
their effectiveness [26] and they can be combined with traditional holding strate-
gies. These integrated controls have been shown to meet both objectives of service
regularity and reducing the number of stops, as well as they reduce the number of
TSP requests [27, 28].

2.3 The eCoBus integrated ecosystem

In this work we adopt a cooperative system approach, following the C-ITS
paradigm, reinforced by an energy-aware decision support system. This approach
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allows to manage the interplay between PT ecosystem actors (vehicles, signals, and
e-infrastructure). Secondly, it enables joint optimization and coordination of
actions carried out by the different actors, in order to achieve system goals.

Figure 2 provides an overview of the eCoBus integrated system developed in
this project. The core module consists of collecting static input, namely the location
of charging stations, lines timetables, together with the characteristics of the fleet
(number of e-busses and hybrid vehicles), the characteristics of the lines (trip
lengths) and of the signal infrastructure. We also assume to collect in real time trip
times through AVL technology, battery states from the busses, status of each
charging (occupied, available) and to have a good estimate of the passenger arrivals
at stops (via e.g. APC information). These are input to the scheduling and charging
optimization module, which is presented in detail in Section 3, whereas the driver
advisory system combining holding and C-ITS based control and TSP are used at the
operational phase to manage the vehicles in real time. The integrated system is
shown to provide significant benefits both for planning objectives (better use of the
fleet and the charging infrastructure, lower operations costs), and management
goals (lower trip time variability and passenger costs, less fuel or energy consumed,
less use of TSP requests). These benefits will be showcased in simulations using
realistic scenarios in the next sections.

3. Mixed Fleet vehicle scheduling and charging optimization

Vehicle scheduling problems in public transportation have been approached as
part of the “full operational planning process” [29]. From a modeling perspective,
these problems are usually formulated as Mixed-Integer Linear Programs (MILP),
under the name of Single/Multi-Depot Vehicle Scheduling Problem (SDVSP/
MDVSP) [30]. The impact of electrification on bus scheduling problems has been
recently taken into consideration by researchers, e.g. [31, 32], in preparation and
support towards widespread Public Transport electrification. In this Section we

Figure 2.
The eCoBus integrated management ecosystem.
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present results stemming from our own recent research efforts [33–35] concerning
the development of mixed-fleet vehicle scheduling models and algorithms tailored
to the ongoing electrification of the bus fleet in the City of Luxembourg.

Compared to combustion, a fleet of electric or partially electric busses brings
novel challenges to transit planning. Within the four decisional stages as discussed
in [29] (line planning, timetabling, vehicle scheduling and crew rostering), electri-
fication especially influences scheduling. The problem faces an increase in com-
plexity, as recharging operations must be included without introducing
disturbances in the existing schedule, to both ensure that busses have sufficient
charge to perform trips and to avoid conflicts at the charging infrastructure. When
handling a mixed fleet, optimal scheduling policies should therefore seek to take as
much advantage as possible from both coexisting technologies.

In this Section we introduce mathematical models and methodologies to address
the problem of scheduling a mixed fleet of conventional and electric busses. We
begin by introducing the offline, planning stage optimization problem related to
both single and multi-terminal instances. Subsequently we discuss a potential
extension towards online, reactive rescheduling in the presence of disturbances,
such as delays. Finally, we present a multi-terminal case study based on the city of
Luxembourg, in the eponymous country.

3.1 Offline optimization: The SDEVSP and MDEVSP optimization problems

We formulate the problem of assigning a mixed fleet of I ¼ 1, … , if g electric
busses and H ¼ 1, … , hf g hybrid busses to a set of scheduled trips J ¼ 1, … , jf g,
each characterized by desired departure time D j ¼ 1, … , d j

� �

[time steps], dura-
tion T j ¼ 1, … , t j

� �

[time steps] and total energy required U j ¼ 1, … , uf g [kWh].
Time is subdivided in consecutive steps τ ¼ 0, 1, … ,Nf g, with a discretization step
Ts. For each trip, decision variables yti,j and zth,jdescribe respectively whether trip j is
initiated at time step t by electric bus i or hybrid bus h, while variable xti,m represents
whether e-bus i is recharging at charging station m at time step t.

Throughout this Section we adopt the assumption that full charging of e-busses
happens within a single time step, as will be detailed later. Table 1 introduces the
meaning of each variable and parameter, as well as their domain.

The formulation’s objective function, in Eq. (1), is that of minimizing the total
operational cost:

min
X

t

X

i

X

j

yti,j � cþ r � t� d j

� �� �

� �

þ
X

t

X

h

X

j

zth,j � ĉþ r � t� d j

� �� �

� �

þ
X

m

X

i

X

t

qti � x
t
i,m (1)

Trip costs c and ĉ are determined following Eq. (2), adopting average cost rates
per kWh of energy components η1 and η2 for e-busses and h-busses respectively:

c ¼ η1 � u j

ĉ ¼ η2 � u j
(2)

Energy component η2 includes a coefficient to represent the difference in con-
sumption rates between electric and conventional combustion (hybrid) busses. The
penalty term r [EUR] is applied to trips being performed later than their preferred
departure time, to allow, at a cost, trade-offs between schedule adherence and
operational performance. We considerM ¼ 1, … ,mf g charging stations available at
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selected terminals, and take into account the time dependent cost qti of recharging
bus i at time t. System dynamics are captured by constraints (3)–(14):

X

j

yti,j þ
X

m

xti,m ≤ 1� At
i∀i, t (3)

yti,j þ
1

t j � 1

X

tþt j�1

t¼tþ1

X

j

yt
i,j
þ
X

m

xti,m

0

@

1

A≤ 1∀i, ∀j : t j > 1, ∀t : t≥ d j (4)

X

j

zth,j ≤ 1�Ht
h∀h, t (5)

zth,j þ
1

t j � 1

X

tþt j�1

t¼tþ1

X

j

zt
h,j
≤ 1∀h, ∀j : t j > 1, ∀t : t≥ d j (6)

X

t

X

i

yti,j þ
X

h

zth,j

 !

¼ 1∀j (7)

X

t< d j

X

i

yti,j þ
X

h

zth,j

 !

¼ 0 ∀j (8)

yti,j �
εi
t

u j þ μE
≤0∀i, j, ∀t : t≥ d j (9)

X

i

xti,m ≤ 1∀m, t (10)

ε0i ¼ εi∀i (11)

E �
X

m

xti,m �
X

j

yti,j � u j þ εti � sti ¼ εtþ1
i ∀i, t (12)

Var. Domain Explanation

yti,j 0, 1f g 1 if trip j is initiated by e-bus i at time t, 0 otherwise

zth,j 0, 1f g 1 if trip j is initiated by h-bus h at time t, 0 otherwise

xti,m 0, 1f g 1 if e-bus i is being recharged at charging station m at time t, 0 otherwise

εti ≤E, ∈ℜþ Total energy in kWh that e-bus i has at time t

u j ℜ
þ Total energy in kWh required to perform trip j, considering e-bus as a means of

transport

d j ℤ
þ Preferred departure time step for trip j

t j ℤ
þ Duration of trip j in time steps

sti ≤E, ∈ℜþ Slack variable, necessary to ensure that constraint (12) does not violate the domain
of εti

E ℜ
þ Total battery capacity in kWh for all electric busses

μ ≤ 1, ∈ℜþ Minimum battery charge in percentage for each electric bus

At
i 0, 1f g 1 if e-bus i is not available to perform any trip nor recharge at time t, 0 otherwise

Ht
h 0, 1f g 1 if h-bus h is not available to perform any trip at time, 0 otherwise

Table 1.
Problem variables and parameters.
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X

m

xtim �
sti
E
≥0∀i, t (13)

1
E
� sti �

1
E
εti ≤0∀i, t (14)

Constraint (3) ensures that an e-bus can be assigned to at most one trip at a time,
or recharge in at most one charger at a time, only in those time steps in which the
bus is available. Constraint (4) implies that an e-bus which initiates a trip j whose
duration in time steps is greater than one cannot be used to perform any other trip
nor recharged throughout the entire duration of trip j. Constraints (5) and (6)
enforce similar dynamics for trips being performed by hybrid busses. Note that
matrices Ai

t and Ht
i represent exogenous sources of unavailability (e.g., during a

scheduled maintenance). Constraint (7) guarantees that each trip be performed
exactly once, by either kind of bus, and constraint (8) implies that no trip j can be
initiated before its preferred departure time. Constraint (9) guarantees that an
e-bus will not perform a trip unless it has enough energy to do so. Constraint (10)
implies that a charger can charge at most one e-bus at any given time. Constraint
(11) controls the initial state of battery charge of each electric bus, which is set to
the exogenously given input value εi for all e-busses. Constraint (12) represents
recharging and discharging dynamics of electric bus i at time t: if it is assigned to a
trip j at time t, its available charge at time t + 1 will be reduced by the trip’s required
energy u j. Conversely, if the electric bus i is being recharged at time t, total battery
capacity E is assumed to be restored at time t + 1. We operate under the assumption
that a single time step is sufficient to fully recharge an electric bus, although this
condition can rather trivially be relaxed by altering this constraint, or by assuming a
large enough time step. We consider the availability of charging stations at selected
terminals, powerful enough to meet the required electricity demand. To ensure that
the total battery capacity is not exceeded during charging, when the residual charge
level εti is greater than zero, a “slack” variable si is introduced, with consideration of
the domain feasibility for variables εti and εtþ1

i . When a bus is being recharged, the
slack variable si must assume a value at least equal to εti, enforcing that εtþ1

i ≤E.
Constraint (13) implies that the slack variable Si can be non-zero only during
recharging operations, and constraint (14) ensures that its maximum value can be εti.
Therefore, the combination of constraints (12)–(14) governs the behavior of the slack
variable Si such that the latter variable is either 0, if bus i is not recharging at time t,
or exactly εti if the bus is recharging.

By supplying a set of lines with accompanying timetables, the model can be
employed to determine the optimal scheduling for a mixed-fleet of e-busses and
h-busses. Parameters such as fleet size, fleet composition (% of electrics, % of
hybrids), charging stations’ availability and capacity are supplied exogenously.

3.1.1 MDEVSP: Multi-depot electric vehicle scheduling problem

In order to correctly represent realistic Public Transport services, we improve
and extend the model showcased in the previous section to appropriately represent
multi-terminal schedules featuring deadheading trips.

For each trip j we therefore introduce a departure terminal α j and arrival
terminal β both within a given set of bus terminals B ¼ 1, … , bf g. The set of bus
terminals can also include any number of bus depot(s), where busses are stored
when not in service. The subset B⊆B of bus terminals is equipped with charging
stations. We assume that each terminal of the B subset is equipped with the same
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amount of m chargers. Deadheading trips are possible between any combination of
terminals, with required total energy ûb1,b2 and duration t̂b1,b2.

We discretize time in consecutive time steps τ ¼ 0, 1, … ,Nf g, with a
discretization step Ts. For each trip, decision variables yti,j and zth,j describe respec-
tively whether trip j is initiated at time step t by electric bus i or hybrid bus h,
variable gti,b controls execution of deadheading trips, and variable xti,b,m captures
recharging decisions. We adopt the assumption that full charging of e-busses
happens within a single time step. Locations of the electric and hybrid busses are
captured by variables ωt

i,b1,b2 and pth,b respectively.
In this work, we allow deadheading trips for electric busses only. Deadheading

is, in fact, critical to optimize usage of electric busses, which have cheaper opera-
tional costs, and to optimize their charging dynamics, allowing them to move to
terminals equipped with charging stations when needed, while it is not strictly
necessary for optimal dispatching of hybrid/conventional combustion busses. The
model could anyway be easily extended to consider deadheading for hybrid busses.

The updated formulation’s objective function is as follows:

min
X

t

X

i

X

j

c � 1þ r � t� d j

� �� �

� yti,j þ
X

t

X

h

X

j

ĉ � 1þ r � t� d j

� �� �

� zth,j

þ
X

t

X

i

X

b1

X

b2

c � ωt
i,b1,b2 þ

X

t

X

i

X

b

X

m

qti � x
t
i,b,m (15)

Cost vectors c, ĉ and c are computed as shown in Eq. (16), considering average
cost rates per kWh of energy components η1, η2 and η3 for e-busses, h-busses and
deadheading trips respectively:

c ¼ η1 � u j

ĉ ¼ η2 � u j

c ¼ η3 � ûb1,b2

(16)

Energy component η2 includes an adaptation coefficient to consider the differ-
ence in consumption rates between e-busses and h-busses. A penalty term r [EUR]
is applied to trips being performed later than their preferred departure time, to
evaluate trade-offs between schedule adherence and operational performance.
Regarding the cost of recharging, we take into account the time dependent cost qti of
recharging bus i at time t as part of the operational cost needing minimization.
Updated system dynamics are captured by constraints (17)–(41) as follows:

X

j

yti,j þ
XX

b1, b2 ∈B

ωt
i,b1,b2 þ

X

b

X

m

xti,b,m ≤ 1� At
i ∀i, t (17)

yti,j þ
1

t j � 1

X

tþt j�1

t¼tþ1

X

j

yt
i,j
þ
XX

b1, b2 ∈B

ωt
i,b1,b2 þ

X

b∈B

X

m

xti,b,m

0

@

1

A

≤ 1∀i,∀j : t j > 1, ∀t : d j ≤ t≤ d j þ θ

(18)

ωt
i,b1,b2

þ
1

t̂b � 1

X

tþt̂b�1

t¼tþ1

X

j

yti,j þ
XX

b1, b2

ωt
i,b1,b2

þ
X

b∈B

X

m

xt
i,b,m

0

@

1

A

≤ 1∀i,∀b1 ∈B, ∀b2 ∈B, ∀t : t̂b > 1

(19)
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X

j

zth,j ≤ 1�Ht
h∀h, t (20)

zth,j þ
1

t j � 1

X

tþt j�1

t¼tþ1

X

j

zt
h,j
≤ 1∀h, ∀j : t j > 1, ∀t : d j ≤ t≤ d j þ θ (21)

X

t

X

i

yti,j þ
X

h

zth,j

 !

¼ 1∀j (22)

X

t< d j∪t> d jþθ

X

i

yti,j þ
X

h

zth,j

 !

¼ 0 ∀j (23)

X

i

xti,b,m ≤ 1∀m, t, ∀b∈B (24)

yti,j �
εi
t

u j þ min
β j ∉ B, b2 ∈B

ûβ j,b2

� �

þ μE
≤0∀i, j,∀t : d j ≤ t≤ d j þ θ (25)

ωt
i,b1,b2 �

εi
t

ûb1,b2 þ μE
≤0∀i, ∀t,∀b1,∀b2 (26)

ε0i ¼ εi∀i (27)

E �
X

b∈B

X

m

xti,b,m �
X

j

yti,j � u j �
XX

b1, b2 ∈B

ωt
i,b1,b2 � ûb1,b2 þ εti � sti ¼ εtþ1

i ∀i, t (28)

X

b∈B

X

m

xti,b,m �
sti
E
≥0∀i, t (29)

1
E
� sti �

1
E
εti ≤0∀i, t (30)

X

m

xti,b,m � gti,b ≤0∀t, i,∀b∈B (31)

X

j:α j¼b1

yti,j þ
X

b2

ωt
i,b1,b2 � gti,b1 ≤0∀i, b1, t (32)

X

j:β j¼b2

yti,j þ
X

b1

ωt
i,b1,b2 � gtþ1

i,b2
≤0∀i, b2, t (33)

X

j:β j¼b2

yti,j þ
X

b1

ωt
i,b1,b2 � gtþ1

i,b2 � gti,b2

� �

≥0∀i, b2, t (34)

X

b

gti,b ¼ 1∀i, t (35)

g0i,b ¼
1 if b ¼ Gi

0 otherwise

�

∀i, b (36)

X

j:α j¼b

zth,j � pth,b ≤0∀h, b, t (37)

X

j:β j¼b

zth,j � ptþ1
h,b ≤0∀h, b, t (38)
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X

j:β j¼b

zth,j � ptþ1
h,b � pth,b

� �

≥0∀h, b, t (39)

X

b

pth,b ¼ 1∀h, t (40)

p0h,b ¼
1 if  b ¼ Ph

0 otherwise

�

∀h, b (41)

Constraints (17)–(21) avoid conflicts in the usage of resources. Constraints
(22)–(23) model when the scheduled trips should be executed. Constraints
(24)–(30) control the charging and discharging dynamics and ensure that the trip
execution is consistent with battery status. Constraints (31)–(41) control the
location dynamics of each bus.

3.2 Online optimization: Decomposition scheme and model predictive control

The optimization model described in the previous section is aimed at determin-
ing full day bus schedules in the Public Transport planning stage, i.e. assuming a
specific trip timetable and considering no deviations arising from operations.
However, the model has been designed with the explicit objective of enabling the
application of time-based decomposition schemes, for the sake of scalability in
seeking solutions at the planning stage. In this Section we showcase how this
decomposable nature can be further exploited, in combination with a Model
Predictive Control scheme, to compute real-time rescheduling in case of major
disruptions arising from operations (e.g. delays due to overcrowding, bunching,
congestion,… ).

3.2.1 Time-wise decomposition scheme for the SDEVSP/MDEVSP models

The two models described earlier can be rather straightforwardly decomposed
along the time variable τ ¼ 0, 1, … ,Nf g, arbitrarily choosing both the frequency of
sub-problem (defined henceforth as time-lapse) definition and the effective points
in time where decomposition should happen. In order to ensure that the
decomposed time-lapses effectively capture the original formulation, coupling con-
straints must be added to the formulation, as follows:

At
i

	

	

f
¼ A

tþl f�1ð Þ

i

	

	

	

f�1
þ λti

	

	

f�1∀i, f , t (42)

Ht
i

	

	

f
¼ H

tþl f�1ð Þ

i

	

	

	

f�1
þ ζti

	

	

f
∀i, f , t (43)

λti

	

	

f
¼

1 ∀i, t : ∃j, t : yti,j
	

	

	

f
¼ 1∧ l f < t≤ tþ t j

� �

0 otherwise

8

<

:

(44)

ζti

	

	

f
¼

1 ∀i, t : ∃j, t : zti,j
	

	

	

f
¼ 1∧ l f < t≤ tþ t j

� �

0 otherwise

8

<

:

(45)

εij f ¼ εi
l f�1
	

	

f�1∀i, f

εij0 ¼ E∀i
(46)
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These constraints communicate the status of the fleet along different time-
lapses, informing the later time periods on both availability and battery status of the
busses as a result of the scheduling decisions performed in the earlier time periods.

By correctly configuring the frequency of time decomposition (at each time
step), the width of the time lapses (chosen equal to the desired prediction horizon)
and the appropriate bus availability data (busses are marked available only after the
effective trip completion, rather than following a pre-determined trip duration), a
Model Predictive Control application can be devised, as shown in Figure 3.

3.3 Multi-terminal mixed-fleet scheduling in the city of Luxembourg

The proposed model and solution framework have been implemented in
Matlab™, employing IBM’s ILOG Cplex 12.7 as optimization software. We validated
our multi-terminal model against a real-life instance arising in the city of Luxem-
bourg, considering several urban bus lines, as shown in Figure 4. Four of the
terminals are currently equipped with two opportunity charging stations each. We
employ our model on two different sets of tests: one addressing a subset of bus lines
(lines 1, 16, 9 and 14, comprising 536 daily trips across 5 bus terminals, 2 of which
are equipped with chargers), and one representing the complete instance (10 bus
lines, 1034 daily trips across 12 terminals, 4 of which are equipped with chargers).

The results shown in Figures 5 and 6 show consistently that, as the fleet transi-
tions towards full electrification, the overall operational cost decreases and the
number of total recharges increases accordingly.

It is interesting to note that the rate at which operational costs decrease and the
total amount of recharging operations increase both exhibit an inflection point: in
the set of tests addressing all the 10 lines, the gradient decreases at about 30% of
electrified fleet, while in the reduced problem addressing 4 bus lines it becomes
actually flat at about 70% of electrified fleet.

These results showcase that a diminishing returns effect might arise when
approaching full electric operations. The effect is however less impactful in the full-
scale scenario, implying that complex instances might lead to larger potential gains
to be attained through electrification.

Figure 3.
MPC scheme.
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Figure 4.
Case study: 10 bus lines in the City of Luxembourg.

Figure 5.
Bus lines, 536 trips – Total operational costs and recharge operations (left); distinct cost factors (right).

Figure 6.
10 bus lines, 1034 trips – Total operational cost and recharge operations (left); distinct cost factors (right).
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4. Real-time cooperative control

Operation is the last pillar, following design and planning. The nature of public
transport operations is stochastic, with disruptions occurring due to irregularities in
travel times and variation in passenger demand. Thanks to the advances in Intelli-
gent Transportation Systems (ITS), the performance of a transit network can be
monitored in real time, and corrective actions can be applied to restore the targeted
level of service. All different applications have widened the spectrum of real time
control strategies that can be deployed [13]. Until now, C-ITS Driver Advisory
Systems have exclusively focused on assisting vehicles traverse signalized intersec-
tions and reducing the number of TSP requests, disregarding the consequences of
their control actions to the regularity of the transit line [27]. The regularization of a
line is the main objective of many real time strategies for public transport, with
holding to be one of the thoroughly investigated in literature and applied in practice
[17, 36]. We investigate how C-ITS can complement holding strategy and achieve a
synergy to address both the objectives of regularity and the mitigation of the
number of stops at signalized intersections.

We combine two DAS, namely GLOSA and GLODTA, with a rule-based holding
criterion at stops prior to signalized intersections, to provide a pair of holding time
and speed advisory or a holding time to achieve both objectives. The combined
controllers are presented in the following sections, followed by the results obtained
from a real-world case study.

4.1 Regularity based driver advisory systems

4.1.1 Reliability green light optimal speed adaptation (R-GLOSA)

The first regularity based advisory system is R-GLOSA. At the bus stops applied,
it instructs a vehicle to be held to regulate the operation and depart with the speed
needed to traverse the next green phase. After the arrival of a vehicle at a bus stop
prior to a signalized intersection and the completion of dwell time, its position
subject to the preceding and the succeeding vehicle is checked. If the headway from
the preceding vehicle is short enough, then the vehicle will be held until the con-
secutive headways are even. We use the same rule-based holding criterion with
[36], which regulates the departure time of a vehicle and limits the maximum
allowed headway based on the planned headway.

After holding time is calculated, the departure time from the stop is updated and
the expected arrival to the first downstream signalized intersection is estimated.
The expected arrival time at the first signalized intersection downstream tarr,tlijk is

estimated by adding to the updated exit (departure) time texitijk , the time the bus
needs between the stop and the intersection. The time corresponds to the
expected running time derived by the ratio of the distance dj,tl between current
bus stop j and the signalized intersection tl and Vk the average speed of vehicle
k at the link downstream of stop j. The expected arrival time is expressed by
Eq. (43):

tarr,tlijk ¼ texitijk þ
dj,tl

Vk
(47)

After the expected arrival time is calculated, information of the signal timing
and phasing are transmitted, to estimate if the vehicle will stop or not by the time of
the arrival at the intersection. If the current indication is red then the remaining
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time for red tRed,remain is estimated and added to the expected arrival time tarr,tlijk . Then
the recommended speed is calculated using Eq. (44):

VRGLOSA
k ¼

d j,tl

tarr,tlijk � texitijk þ tRe d,remain
� � (48)

In case of green, the vehicle should either accelerate to catch the current phase
or wait for the next green phase. Therefore, two candidate speeds can be
recommended, one for the estimated arrival time tarr,tlijk and one for the expected
arrival at the next green phase, given by Eqs. (45) and (46), respectively.

VRGLOSA
1 ¼

d j,tl

tarr,tlijk � texitijk

� � (49)

VRGLOSA
k ¼

d j,tl

tarr,tlijk � texitijk þ tGreen,remain þ tRe d
� � (50)

where tRed the red time of the cycle of the current traffic light.
In case of two candidate speeds, the one respecting the speed limits is selected. If

both speeds are within the speed limits, VRGLOSA
1 is selected since vehicle accelerates

to arrive during current green phase. If both speeds are outside the speed limits, no
speed advisory is given by the controller. In contrast, if there is no need to restore
regularity, the controller is treated as GLOSA.

4.1.2 Reliability green light optimal dwell-time adaptation (R-GLODTA)

R-GLODTA is the second hybrid controller, combining holding and GLODTA. In
principle, holding and GLODTA are using the same control logic, by extending the
time at stop to achieve their objectives to restore regularity andmitigate stops at traffic
lights respectively. Therefore, with this controller, the prolongation of dwell time at
stops aims to satisfy both objectives. After the vehicle arrives at the stop and completes
dwell time, two candidate holding times are calculated to restore regularity. Then, the
expected arrival time to the next signalized intersection is estimated using Eq. (43).

If the expected arrival time is during green phase, then no GLODTA time is
needed. In contrast, if the vehicle is expected to arrive during red, then the waiting
time at traffic light twait,tlijk is calculated by subtracting the current red time tRed,c from

the red time tRed as in Eq. (51):

twait,tl ¼ tRe d � tRe d,c (51)

The waiting time at the traffic light corresponds to the GLODTA time tGLODTA.
The waiting time at traffic light is transferred at the bus stop and utilized as dwell
time for the passengers. GLODTA time tGLODTA with the duration of green phase
define a time interval, within a vehicle will traverse the downstream signalized
intersection without stopping (Eq. 52).

tGLODTA, tGLODTA þ tGreen

 �

(52)

The hybrid controller can work as holding or GLODTA alone depending on the
current performance and needs of the system. If both candidate holding times (for
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regularity and GLODTA) meet the criteria, then the shorter time is selected. If with
both holding times, the vehicle is expected to arrive during red, then the holding
time with the less estimated remaining time at the traffic light is selected and the
controller counts simply as a regularity controller:

thold ¼ min texitijk þ tholdijk,1 þ
d

Vk
, texitijk þ tholdijk,2 þ

d

Vk

� 

(53)

In case of on time or late arrival, the vehicle will depart after tGLODTA in order to
recover by saving time at traffic light, again if needed. This joint strategy, which we
name R-GLODTA.

4.2 Cooperative control in the City of Luxembourg

The two hybrid controllers are tested for one of the busiest lines of the city of
Luxembourg, AVL Line 16. Line 16 is the backbone of the bus network of the city of
Luxembourg. As depicted in Figure 7, The line consists of 19 stops, among which
there are stops in the city center, the central business district of Kirchberg and the
new activity zone of Cloche d’Or at the south. Additionally, Line 16 connects the
central railway station, the airport and the Kirchberg multimodal transport hub.
The line is running in high frequency and double articulated busses are used. In
addition, the busses run in dedicated lanes and are equipped with AVL technology.
We assume that all traffic lights have the same signal program with cycle of 120 s
(80 green and 40 red) with the red indication first at the simulation environment.
No coordination has been considered between signals.

Two case studies, one for each of the newly introduced controller, were
conducted. In both cases, a do-nothing scenario is used as a benchmark scenario. In
addition, the hybrid controllers are compared with a holding strategy and the
individual application of GLOSA and GLODTA. Moreover, different levels of TSP
are put into test. For the R-GLOSA scenarios, three different levels are tested. The

Figure 7.
Line 16 in Luxembourg City.
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first level, referred as weak TSP, the scenario in which both green extend and green
recall are up to 5 s. With strong TSP, green phase can be modified by 15 s In the
R-GLODTA scenarios only strong TSP is tested. Lastly, in the R-GLODTA
scenarios, the hybrid controller is combined with GLOSA and TSP.

The main performance indicators used in this study are the adherence of head-
way of the line as well as the total trip time and its variability. Moreover, we will
also analyze the delay at the signalized intersections and the times the vehicles
managed to pass through a green phase. Finally, for the performance of the joint
controller, the number of times requested is given and the share or each sub-
controller are recorded. In summary, these are the performance indicators selected
for the study:

• Regularity indicators: Coefficient of variation of headways; bunching;

• Passengers’ cost indicators: in-vehicle time; waiting time at stops;

• Link performance indicators: stop frequency and delay at traffic light, average
speed and running time;

• Controller performance: share of control requests and of controller choice.

4.2.1 Results

All regularity indicators are summarized in Table 2. It is clear from the results
that the control schemes, the objective of which is to regulate the operation, domi-
nate the regularity indicators. The coefficient of variation of headway and the level
of bunching are chosen are regularity indicators. It should be noted that R-GLOSA
has a minor difference from holding control since it is based on the same criterion to
calculate holding time. The additional gaining comes from the speed recommenda-
tion given by the GLOSA part of the controller. Among strategies there are no
significant differences in waiting time of passengers at stops. The independent
application of the two DASs has no effect on system’s regularity. Both have the same
performance with the benchmark scenario. The regularity indicators remain
unchanged regardless the TSP strength and similar to the do-nothing scenario.
R-GLOSA manages to integrate the performance of holding strategy in terms of
regularity and GLOSA in terms of cycle time. The cycle time with R-GLOSA is
better than weak TSP and results to the least variable cycle time among all

CV

Line

Bunching Waiting time

[s]

In vehicle time

[s]

Cycle time

[s]

Cycle time

deviation [s]

NC 0.599 0.372 302.98 204.74 4096.91 415.61

HOLDING 0.486 0.269 302.38 211.90 4042.55 415.61

GLODTA 0.628 0.382 302.40 212.49 4166.16 505.49

GLOSA 0.597 0.351 302.63 200.66 4050.49 480.16

RGLOSA 0.466 0.254 302.30 212.73 4042.09 394.56

TSP5 0.607 0.378 303.14 204.00 4060.26 472.07

TSP10 0.590 0.358 302.22 203.25 4013.18 472.07

TSP15 0.613 0.370 301.45 198.51 4012.75 490.94

Table 2.
Regularity performance indicators.
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strategies, giving the operator the opportunity to administer more efficiently the
available resources and construct a more robust schedule.

The performance indicators for the links are documented in Table 3. It is worth
noting that R-GLOSA reports the highest frequency of stops at traffic lights. How-
ever, the total average delay at traffic lights is comparable to strong TSP, which has
the best performance in these two indicators. GLOSA and GLODTA perform better
than holding in reducing the number of stops and the delay at traffic signals. The
running time on the signalized links is also lower, meeting the objectives of both
GLODTA and GLOSA. R-GLOSA reduces the running time at signalized links at the
same level of weak TSP. The average speed of the vehicles increases only at the
scenarios with TSP.

Figure 8 shows the trade-off between the average delay at traffic lights and the
additional time due to control. When holding is applied, the travel time increases
and the additional delay at signalized intersections is not taken into account. TSP
heavily prioritizes PT neglecting the impact on regularity by increasing bunching.
Obviously, the application of TSP or GLOSA do not introduce any control delay at
stops. GLODTA and GLOSA results to similar performance as with intermediate
TSP. In contrast to TSP and GLOSA, holding is not causing any delay at traffic lights
but increases significantly the additional time added due to control at stops. The
delay of R-GLOSA is similar to the one holding, but delay at traffic signals is

Frequency of stop at

traffic lights

Total average delay at

traffic lights [s]

Running

time

Average speed

[km/h]

NC 0.309 1778.8 2821.0 18.8

HOLDING 0.302 1751.0 2817.0 18.8

GLODTA 0.237 947.6 2790.6 19.1

GLOSA 0.305 942.3 2808.3 19.0

RGLOSA 0.374 465.2 2828.7 18.6

TSP5 0.223 1265.9 2781.0 19.2

TSP10 0.152 876.5 2757.2 19.4

TSP15 0.076 435.5 2738.2 19.7

Table 3.
Link performance indicators.

Figure 8.
Tradeoff between waiting time at traffic light and holding time at stop.
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significantly reduced to the level of strong TSP. Therefore, the savings obtained in
running time can compensate the additional delay at stops. The results can vary
subject to the chosen holding criterion.

In Figure 9, the coefficient of variation (CV) of headway of all R-GLODTA case
study scenarios is depicted. Strategies that target the mitigation of stops at traffic
lights neglect the regularity of the line. Between GLODTA or TSP scenarios can be
found with minor differences compared to the benchmark scenario, reporting high
level of variability which propagates along the line. On the other hand, holding, All
the R-GLODTA scenarios show significant improvement on maintaining the prop-
agation of headway low. R-GLODTA outperforms holding and its performance
improves further with weak TSP. Although R-GLODTA with GLOSA performs
better than GLODTA and TSP, the combination is not the most effective compared
to R-GLODTA and TSP.

Regularity performance indicators at line level are summarized in Table 4.
Similarly to the results in terms of coefficient of variation per stop, R-GLODTA
outperforms the other strategies with minor differences from holding and
R-GLODTA with TSP. GLOSA has a significant impact on the regularity of the line
This can be explained by the fact the GLOSA adjusts the speed in order to traverse
green. Acceleration and deceleration can shorten the headway between consecutive
vehicles and cause platoons. Again, R-GLODTA has the lowest level of bunching
between all scenarios. Passenger indicators are also recorded during simulation.
As expected, differences between strategies can be observed in in-vehicle times.

Figure 9.
Coefficient of variation of headway per stop.

CV of Headway Bunching Waiting time [s] In vehicle time [s]

NC 0.59 0.37 300.03 204.87

GLODTA 0.62 0.37 300.98 211.2

HOLDING 0.48 0.27 300.08 212.71

R-GLODTA 0.44 0.20 299.96 215.00

R-GLODTA + TSP 0.42 0.19 301.9 212.36

R-GLODTA + GLOSA 0.43 0.21 301.64 226.26

TSP 0.62 0.38 302.75 202.77

Table 4.
Regularity performance indicators.
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The additional time added due to control actions increases the time passengers
spend on board. The higher in-vehicle time can be compensated with a more robust
travel time and the overall improved performance of the line.

One of the objectives of the proposed scheme is the mitigation of stop and go at
signalized intersections, therefore the performance of each scenario at a link level is
assessed. The results are summarized in Table 5.

Unquestionably, providing unconditional signal priority to PT can reduce dra-
matically the number of stops at signals and the corresponding delay at signalized
intersections. However, this reduction will potentially penalize the rest of the traf-
fic. R-GLODTA shows slightly increased number of stops compared to GLODTA
alone. This can be explained by the fact that the combined controller prioritizes
regularity over stopping at signals. Therefore, it will not exchange holding for
regularity to secure passing during green. Weak TSP improves substantially the
performance of R-GLODTA in terms of frequency of stops and delay at intersec-
tions. Speed adjustment with GLOSA transfers waiting time at traffic lights to
running times to the links. A GLOSA advices to decelerate in order to arrive at the
intersection during green, prolongs the running time between stops. All R-
GLODTA scenarios result in lower total running time compared to an independent
application of GLODTA or holding but higher than TSP, but they compensate with
their regularity indicators, especially bunching. Among scenarios the differences of
the speed are marginal.

We compare the number of TSP requests between the TSP and the R-GLODTA
with TSP scenarios. The number of TSP requests is halved with R-GLODTA and
with the combination of weak TSP can achieve comparable results with TSP in
reducing stop and go actions at traffic lights while it contributes to the regularity
of the line.

A final analysis is performed to check how many times the strategies are adopted
in the simulated scenarios. Table 6 shows the share of each control decision, i.e.
when each control was needed. Fixing regularity is prioritized over reducing stops
at traffic lights. Controlling actions are reduced when R-GLODTA is combined with
TSP. R-GLODTA aims to address both objectives and the number of independent
applications of holding or GLODTA. On the other hand, the combination with TSP
or GLOSA reinforces the objective of GLODTA. The need of holding alone inten-
sifies in these scenarios to restore regularity. With GLOSA, holding is triggered
more than half of the times a controller was requested. If the changes of speed do

Stop at

traffic light

frequency

per segment

Total waiting

time at traffic

light per

segment [s]

Total

running

time [s]

Average

speed

[km/h]

Times

GLOSA

triggered

per

segment

Number of

TSP

requests

per

segment

NC 5.6 113.9 2160.3 18.8 0.0 0.0

GLODTA 4.3 60.7 2135.7 19.0 0.0 0.0

HOLDING 5.4 109.2 2154.2 18.8 0.0 0.0

TSP 1.3 26.1 2084.6 19.7 0.0 4.1

R-GLODTA 4.7 69.4 2132.4 19.0 0.0 0.0

R-GLODTA+TSP 2.9 52.7 2115.9 19.3 0.0 1.7

R-
GLODTA+GLOSA

4.7 49.6 2172.1 18.7 2.1 0.0

Table 5.
Link performance indicators.
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not account for the sequence of vehicles, undesired phenomena as formation of
platoons are more likely to occur and impact the performance of a bus line.

5. Conclusions

This chapter has presented an integrated approach to manage electrified bus
systems using Cooperative ITS. We first discussed the challenges and opportunities
brought by next generation public transport systems, which require to manage the
system in an integrated way. Then we introduced novel optimization methods for
joint bus scheduling and charging, and real-time operational control strategies.
Results in realistic simulations show how the integrated systems achieves cost
effective, reliable and energy efficient operations.
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Control request Controller choice

GLODTA Holding R-GLODTA

R-GLODTA 61% 38% 42% 19%

R-GLODTA + TSP 58% 37% 49% 14%

R-GLODTA + GLOSA 62% 37% 51% 13%

Table 6.
Controller frequency.
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