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Chapter

Remote Sensing Approaches and 
Related Techniques to Map and 
Study Landslides
Ram L. Ray, Maurizio Lazzari and Tolulope Olutimehin

Abstract

Landslide is one of the costliest and fatal geological hazards, threatening and 
influencing the socioeconomic conditions in many countries globally. Remote 
sensing approaches are widely used in landslide studies. Landslide threats can 
also be investigated through slope stability model, susceptibility mapping, hazard 
assessment, risk analysis, and other methods. Although it is possible to conduct 
landslide studies using in-situ observation, it is time-consuming, expensive, and 
sometimes challenging to collect data at inaccessible terrains. Remote sensing data 
can be used in landslide monitoring, mapping, hazard prediction and assessment, 
and other investigations. The primary goal of this chapter is to review the existing 
remote sensing approaches and techniques used to study landslides and explore the 
possibilities of potential remote sensing tools that can effectively be used in land-
slide studies in the future. This chapter also provides critical and comprehensive 
reviews of landslide studies focus¬ing on the role played by remote sensing data 
and approaches in landslide hazard assessment. Further, the reviews discuss the 
application of remotely sensed products for landslide detection, mapping, predic-
tion, and evaluation around the world. This systematic review may contribute to 
better understanding the extensive use of remotely sensed data and spatial analysis 
techniques to conduct landslide studies at a range of scales.

Keywords: remote sensing, landslide detection, landslide mapping, landslide 
inventory, natural hazards, susceptibility, assessment

1. Introduction

Landslides are natural hazards that have a significant impact globally [1, 2]. In 
comparison to other natural hazards, landslides are one of the costliest and fatal 
geological hazards, threatening and influencing the socioeconomic conditions of 
many countries throughout the world [3–5]. A landslide can be triggered by various 
natural phenomena (e.g., earthquakes, heavy rainfall, tsunami, and flood) and 
human disturbances (e.g., deforestation, infrastructure developments by cutting 
slopes, and presence of historical underground cavities) [6–8]. A landslide occurs 
when the soil layers of the slope get detached either from saturation due to extreme 
rainfall events or from external forces (e.g., earthquakes) and move downhill 
causing loss of life, properties, environments, and economic damage. For example, 
in the U.S. alone, landslides cause approximately $3.5 billion in damage and kill 
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between 25 to 50 people each year [9]. Also, in 2014 alone, Nepal had a landslide 
where livestock loss was many times larger than human loss and infrastructural 
damage was more expensive in comparison to the economy of the country [10]. 
Slope failures also cause major sedimentation into streams and lakes, which further 
represents a major cause of flooding [5, 11].

Landslides are common primarily in the mountainous regions if a slope is 
unstable or becomes unstable due to external driving forces [10, 12]. Landslide haz-
ard can be classified into high, moderate, and low based on the volume, duration, 
possible effect in terms of distance, area, and speed at which the slope fails. Since 
landslides can adversely affect human lives and property, it is essential to monitor, 
detect, map, and conduct hazard analysis in order to reduce the impact of their haz-
ard and save human lives, property, and environment around the globe. Landslide 
susceptibility maps can be developed for landslide-prone regions by combining all 
of the potential predisposing factors, which cause a landslide.

Landslide susceptibility depends on the local terrain, land use, and climatic 
conditions, which require spatial information [13]. A landslide susceptibility zone 
includes information of past landslide inventory with an evaluation of future 
landslide-prone areas, but it does not include assessment of the frequency of land-
slide occurrence [14]. Also, the temporal probability of a landslide is not included in 
susceptibility models [15]. High-quality landslide inventory maps can be developed 
using in situ measurements and field surveying [16, 17]. However, in situ measure-
ments and field surveying are time consuming, expensive, and difficult for local 
to global scales. On the other hand, landslide susceptibility and inventory maps, as 
well as landslide hazard analysis, can be possible using remote sensing techniques 
and data, such as aerial surveys, unmanned aerial vehicles (UAV), light detection 
and ranging (LiDAR), and satellite imagery [16, 18].

Although remote sensing is continuously used for landslide detection/mapping 
and monitoring, it is generally considered to have a medium effectiveness/reli-
ability for landslide studies because satellite data are available relatively at coarse 
resolutions [3]. On the other hand, hazard assessment requires high resolution data 
to define the spatial distribution of landslides and their state of activity both on a 
local scale and from studies from regional/global scales [10]. In addition, remotely 
sensed data are cost-effective because most of the global satellite products are 
freely available and can cover rugged/complex terrains, which is otherwise not 
possible to assess with in situ measurements [19]. Even in the late 1990s, stereo-
scopic air-photo interpretation was the most used remote sensing tool applied to 
the mapping and monitoring of landslides [20]. Many studies have been carried 
out on landslide hazard evaluation using geographic information systems (GIS) 
and geoinformation-related techniques [4]. Recently, GIS and remote sensing 
tools have become powerful tools for integrating spatial data to conduct landslide 
studies [10, 21].

Remotely sensed data and techniques are widely used in landslide studies, 
including landslide inventory/detection, monitoring, and mapping, and hazard 
analysis (e.g., [16, 22, 23]). Timely and high-quality information derived from 
space-borne observations helps in managing natural and human-made disasters [1]. 
Accordingly, landslide risk mapping and management can help reduce disaster risk 
[10]. Similarly, early landslide predictions and warnings are important in curtailing 
landslide hazards [4, 24]. Landslide vulnerability assessment is used in identifying 
what elements are at risk and why; such information helps in landslide disaster 
mitigation measures [10, 21].

The use of remote sensing data for landslide studies, whether air, satellite, or 
ground-based measurements, is mainly classified into three main categories: (a) 



3

Remote Sensing Approaches and Related Techniques to Map and Study Landslides
DOI: http://dx.doi.org/10.5772/intechopen.93681

detection and identification, (b) monitoring, and (c) spatial analysis and hazard 
prediction [20]. However, we have reviewed landslide studies using multiple 
categories as they appear in the literature.

This chapter aims to provide a critical and comprehensive review of recent 
landslide studies conducted using remotely sensed data and techniques. It 
includes an overview of landslide inventory/detection, mapping and monitor-
ing, susceptibility, and hazard analysis using remotely sensed data at a range 
of scales. It helps to understand the potential benefits of conducting landslide 
studies using satellite data to save human lives, properties, and environments 
around the globe.

2. Landslide inventory/detection

Landslides, influenced by several preparatory and triggering factors, are 
naturally hazardous events causing loss of lives and properties and environmental 
degradation [25]. Landslide-triggering factors such as intense or prolonged rainfall 
or rapid snowmelt, earthquakes, or volcanic eruptions are enhanced by human-
induced triggering factors such as deforestation, mining, and cutting slopes for 
road development [8, 26, 27]. Landslides include various movements like flowing, 
sliding, toppling, or falling, and many landslides combine two or more of these 
movements at the same time or during the lifetime of a landslide [28]. Traditionally, 
landslide inventory maps can be retrieved from historical sources, archives docu-
ments, and newspapers, which are important but not detailed enough, making 
quantitative risk assessment challenging [29]. Historical landslide events offer a 
good opportunity to evaluate landslide detection techniques to develop landslide 
inventory, which can also be used in developing or validating landslide susceptibil-
ity and hazard mappings models [30].

An inventory map identifies landslides in a study area to establish the spatial cor-
relation between landslides and environmental factors [31]. A landslide inventory 
map is required to quantify landslide occurrence effectively. Landslide inventories 
generally include the size of landslides, its locations, and volume (preferred) [26]. 
Inventory maps, which provide information on the location of landslide distribu-
tions, help implement necessary mitigation measures [25]. The first step in evaluat-
ing landslide hazards is a comprehensive landslide inventory map [32].

Although landslide inventory mapping is a crucial requirement for a thorough 
hazard and risk analysis, the usefulness of these maps for land management and 
planning is rather limited due to their inhomogeneous spatial distribution and the 
use of different mapping and classification criteria and methods [33]. However, 
large-scale landslide inventory maps, developed using remotely sensed data, can 
overcome these problems and limitations, thus making susceptibility hazard and 
risk assessment more efficacious [34].

Since it is time consuming and expensive to develop landslide inventories using 
in situ measurements, remote sensing data, and tools can be an effective way to 
develop landslide inventory maps. High-resolution satellite image and advanced 
remote sensing and spatial analysis techniques allow developing more reliable land-
slide inventory maps [29, 35]. Methods involved in generating landslide inventories 
include visual interpretation of multi-temporal aerial photographs and remotely 
sensed images and geomorphological field mapping, expert knowledge on the 
geological setting in combination [36, 37].

For example, Harp et al. [38] suggested mapping criteria for landslide inventory 
as follows:
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a. GIS tool can be used to develop a spatial map for statistical analysis in relation 
to other spatial variables; and

b. the entire population of landslides triggered by the external forces or natural 
and anthropogenic causes must be mapped and plotted so that a complete 
landslide distribution can be obtained.

However, detailed inventories are rarely available because evidence could have 
been lost due to various degrees of modification in the past [26]. On the other hand, 
an inventory map/data can be developed using high-resolution historical remote 
sensing data, especially if morphological indicators for past landslide activities are 
present [34].

According to Guzzetti et al. [33] and Malamud et al. [26], landslide inven-
tory maps are categorized into archive inventory (based on records in archives, 
newspapers, and so on). Similarly, in Guzzetti et al. [33] landslide inventory maps 
are categorized as geomorphological inventory which can further be classified as 
follows:

• historical inventory (showing the cumulative effect of landslide over a long 
period without further temporal differentiation),

• event-based inventory (landslides caused by a single triggering event, such as a 
strong earthquake),

• seasonal inventory (landslides triggered within one active season) and multi-
temporal inventory (continuous monitoring of landslide activity over longer 
periods independent of particular triggering events), and

• the multi-temporal inventory is the most labor-intensive inventory type and 
the only one with the potential for spatio-temporal completeness, and it 
 generally requires the use of remote sensing.

A historical inventory is the most popular approach developing landslide inven-
tories using past landslide events. High spatial resolution and long-term remotely 
sensed data help rapid mapping and monitoring, especially during an emergency 
[1]. Based on the available in situ information and remotely sensed data, various 
landslide inventories can be produced and detailed at different scales covering the 
entire area affected by landslides, including, wherever possible, all sizes of land-
slides, and mapping landslides as polygons to depict their exact shapes [38].

In addition, landslide inventory maps are prepared for multiple scopes, 
including:

• documenting the extent of landslide phenomena in areas ranging from small to 
large watersheds and from regions to states or nations,

• taking a preliminary step toward landslide susceptibility, hazard, and risk 
assessment,

• investigating distribution, types, and patterns of landslides in relation to 
morphological and geological characteristics, and distribution of slope failure 
processes,

• studying the evolution of landscapes dominated by mass-wasting processes,



5

Remote Sensing Approaches and Related Techniques to Map and Study Landslides
DOI: http://dx.doi.org/10.5772/intechopen.93681

• investigating the recent and historical relationships between mass movement 
processes, settlements, and high cultural value areas [39], and

• extracting thresholds of rainfall-induced landslides [40].

Landslide inventory and detection are technically very close and often used 
interchangeably. An inventory must be carried out through direct visual inspections 
(or field surveys) and/or in situ measurements (when possible), which, altogether, 
identify “detection.” In other words, there is no good and effective inventory 
without detection.

A complete and accurate landslide inventory is crucial for landslide predictions; 
therefore, the accuracy of landslide inventory can be maintained by analyzing high-
resolution satellite images [41]. Identification of landslide’s boundaries, terrestrial 
and topography verification, and third-party review are the procedures in inter-
preting the accuracy of landslide inventory [41].

The systematic information on the type, abundance, and distribution of land-
slide is still lacking, which helps document essential details on landslide types, 
patterns, recurrence, and statistics of slope failures. These pieces of information are 
helpful to identify landslide susceptible zones and determine potential hazards and 
landslide risk assessment [33]. Multi-temporal inventories are needed, especially 
in regions of frequently occurring landslide. These regions require high spatio-
temporal resolution data and efficient methods for landslide mapping and analysis 
[42]. An inventory map which contains landslide type, state of activity, depth, 
volume, date, and place of occurrence, can be used for the calculation of predispos-
ing factors for performance and reliability analysis [30, 37]. In addition to analyze 
and understand the causes of past landslides, landslide detection is equally useful 
for monitoring and predicting future hazards [43].

Landslide inventory/detection maps can be developed using the consolidated 
procedure of photo-interpretation of different sets of stereoscopic aerial photos, 
that can be integrated with an extensive field control of each recognized landslide. 
The field control process includes acquiring additional information about the 
main geomorphic elements and topographic signatures related to mass movement 
processes and their interpretation in terms of pattern, distribution, state of activity, 
and evolution of slope processes. In particular, the geomorphological field survey 
focuses on:

1. the validation of the information acquired by aerial photo-interpretation,

2. recognition of landslide types and state of activity,

3. analysis of deposits involved in slope failures, and

4. evaluation of damages to infrastructures.

Landslides of different sizes and types also offer to detect landslides, which can 
be used to develop a landslide inventory map [30]. A landslide can be detected or 
identified using visual interpretation techniques combined with field investigations 
as a ground control to develop the most reliable form of inventory maps for scien-
tific studies [44–47].

Numerous researchers have conducted studies to develop landslide inventories 
using remotely sensed data (e.g., [35, 37, 48–50]) (Table 1). For example, Moosavi 
et al. [37] produced a landslide inventory map using GeoEye remotely sensed data 
and found that thematic mapping using high spatial resolution satellite imagery 
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necessitates a new methodology. Also, Sun et al. [35] used Geofen-1 remotely sensed 
data to develop a landslide inventory map in a complex region with numerous gullies, 
which was otherwise challenging and impractical via field investigations.

Satellites Spatial 

resolutions (m)

Launch date Applications References for 

examples

Geofen-1 2 2013 Inventory [35]

GeoEye-1 1.65 2008 Inventory [37]

IRS-1C
Resources at 2-LISS III
RapidEye

188
24
5

1995
2011
2008

Inventory [48]

TERRA/ASTER 15, 30 1999 Inventory [49, 50]

SPOT-5 2.5 Pan
10 Mult

2002 Detection
Mapping

[39, 51]

Quickbird-2 0.6 2001 Detection [52, 53]

LiDAR 0.5 NA Detection [33, 45, 54]

IKONOS 0.82 Pan, 3.2 
Mult

1999 Mapping [55]

Landsat-8 15, 30 2013 Mapping [56, 57]

SRTM 30, 90 2000 Susceptibility
Detection

[16, 57]

Cartosat-2 1.0 2017 Susceptibility [25]

Cartosat-1 2.5 2005 Susceptibility [30]

AMSR-E 25,000 2002 Susceptibility [16]

TRMM 25,000 1997 Susceptibility [58]

GPM-Integrated Approx. 11,000 NA Susceptibility [59, 60]

WorldView-1/
Quickbird-2/
GeoEye-1

1.85/2.4/1.65 2009/2001/2008 Susceptibility
Inventories

[61]

Landsat MSS
Landsat TM

80
30

1984 Interpretation [4, 62]

Landsat 30 1992 Planning [63]

Landsat 7 15, 30 1999 Characterizing
Identification

[64, 65]

ALOS
ALOS/PALSAR

10 2007 Mapping
Deformation

[1, 52]

Landsat TM/SPOT-5 15, 30/2.5, 10 1999/2002 Hazard [66]

IRS/Landsat-7 6, 23.6, 188/30 1997/1999 Hazard [67]

Radarsat-1
ERS-2

8
10

1995
1995

Characterizing
Monitoring

[68]

ERS SAR 10 1995 Monitoring [69]

ERS-1/2 10 1991/1995 Monitoring [70]

COSMO-SkyMed-1, 3 1, 5, 15, 30, 100 2007/2008 Detection [71]

TerraSAR-X 1 2007 Monitoring [72]

This list is an effort to compile popularly used satellite data to study landslides; it is not meant to be a comprehensive 
list as there are many more studies that used other satellite products.

Table 1. 
A series of remotely sensed data used for landslide study.
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3. Landslide susceptibility mapping

Landslide prediction is vital to prevent possible damages and save human 
lives. Landslide susceptibility map is important in predicting landslides because 
it helps to identify potential landslide areas and any area susceptible to landslides 
[30, 73, 74]. The local topography and hydrological conditions play a significant 
role in landslide susceptibility [39]. Although a proper landslide inventory may 
provide both spatial and temporal information on previous landslides over an 
area, landslide susceptibility map gives information about potential future land-
slides over an area [60]. However, detailed information on the historical records 
of previous landslides, rainfall, or earthquake is vital in determining triggering 
thresholds [74].

Landslide susceptibility can be quantified from stable to highly susceptible. 
Many researchers categorize slopes into four landslide susceptibility classes; highly 
susceptible, moderately susceptible, slightly susceptible, and stable (e.g., [12, 16, 
58, 75–78]). Some researchers used slightly different susceptible classes to develop 
landslide susceptibility maps such as unstable, quasi-stable, moderately stable, and 
stable (e.g., [12]). Some studies also used susceptibility indices: very high, high, 
moderate, low, and very low (e.g., [59–61, 79]).

For disaster prevention, a landslide susceptibility map can be used in land-use 
planning and decision making [39]. A detailed susceptibility map for land-use 
mapping helps local authorities manage these landscapes for urban or industrial 
planning and development [80]. However, developing an effective landslide sus-
ceptibility map is always a challenge because it requires multiple spatial information 
of soil, geology, vegetation, and hydrology. For example, Stanley and Kirschbaum 
[60] identified four major issues that are important to be addressed for developing 
landslide susceptibility maps:

i. lack of detailed inventories,

ii. minimum available input data,

iii. regional differences in the importance of causative factors, and

iv. the dearth of expertise on landscape processes across large regions.

Numerous methods exist in literature developing landslide susceptibility map 
using in situ measurements, models, remotely sensed data either stand-alone or 
in combination. For example, landslide inventories and causative factors, along 
with the statistical approach, are used in developing landslide susceptibility model 
for predicting potential landslides [39]. In addition, many studies used statistical 
approaches, physically based models, and deterministic approaches in developing 
landslide susceptibility maps (e.g., [53, 62, 75, 81]).

Besides the different existing methods for landslide susceptibility analysis and 
mapping, it is also essential to have advanced tools and detailed spatial information 
to develop an effective landslide susceptibility map. Digital tools such as GIS and 
global positioning system (GPS) are mostly used to analyze spatial data and devel-
oping landslide susceptibility and hazard maps [29, 81]. Moreover, remotely sensed 
data and technologies are widely used for effective landslide susceptibility mapping, 
hazard assessment, and risk assessment, which further helps in awareness, mitiga-
tion, and management of potential landslide threats [29].

Many researchers have used remotely sensed data to develop landslide sus-
ceptibility maps from local to global scale. For example, Ray and Jacobs [59] and 
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Kirschbaum et al. [60] used remotely sensed precipitation data [TRMM and global 
precipitation measurement (GPM)] combined with slope, geology, road networks, 
fault zones, and forest loss to develop landslide susceptibility map at the global scale 
(Table 1, Figure 1). Ray et al. [16] used remotely sensed soil moisture (AMSR-E) 
combined with slope, soil, and vegetation characteristics to develop dynamic 
landslide susceptibility maps at a regional scale.

4. Landslide hazard analysis

Landslide is a major natural hazard that leads to a significant loss to human lives 
and properties. Landslide hazard requires systematic and objective assessment 
of the multi-landslide hazard, which includes different characteristics and casual 
factors of hazard along with their spatial, temporal, and size probabilities [48, 82]. 
Effective planning and management reduce social and economic losses caused by 
landslides [30, 83, 84]. A landslide susceptibility map combined with temporal 
information can be converted into a landslide hazard map for estimating potential 
losses due to landslides [30]. Landslide risk can be estimated using landslide hazard 
maps [85]. A useful hazard map should include local geology, geomorphology, 
lithology, hydrology, vegetation, and climatic factors. These factors affect landslide 
events, needed for proper hazard analysis [86].

A vital part of hazard assessment is the quantitative estimate of the pre-failure 
and failure stages of the susceptibility of the slope [87]. Landslide hazard assess-
ment determines slope failure probability [88]. Over the last 30 years, numerous 
studies have been conducted on landslide hazard zonation as a result of the demand 
for slope instability hazard for planning purposes [89]. Despite that susceptible 
slopes triggers or reactivate slope failures, hazard analysis must consider the speed 
of landslide movement along the slope [88]. Huabin et al. [90] suggested two 
important aspects of landslide hazard zonation, which are assessing the suscepti-
bility of the terrain for slope failure, and determining the probability of a specific 
triggering event occurring.

Nadim and Kjekstad [91] used a landslide hazard index (Hlandslide) to classify 
landslide hazard levels from negligible to very high (Table 2). The Hlandslide 
was obtained by multiplying a series of factors such as slope factor (Sr), lithology 

Figure 1. 
Global susceptibility map (slightly modified from Stanley and Kirschbaum [60]).
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factor (Sl), soil moisture factor (Sh), precipitation trigger factor (Tp), and seismic 
trigger factor (Ts); the following equation was used to develop Hlandslide.

 ( ) ( )= * * * +landslide r l h s pH S S S T T  (1)

where Sr = slope factor, Sl = lithology factor, Sh = soil moisture factor, 
Ts =  seismic trigger factor, and Tp = precipitation trigger factor.

Remotely sensed data provide several essential factors used in the equation to 
develop landslide hazard zones on the range of scales. It is often difficult to obtain 
the multi-spatio-temporal information on landslide occurrences needed for land-
slide hazard analysis [48]. Chau et al. [86] suggested that landslide analysis should 
include landslide-dynamics-based numerical simulations to prevent subjectivity 
and bias; incorporation with GIS should result in an adequate hazard map to work 
for better planning.

Susceptible areas can be assessed and predicted, thereby reducing damage 
caused by landslides through proper preparation and mitigation because land-
slide prevention is a severe challenge [4]. Generally, landslide hazard analysis is 
conducted using aerial photographs, and/or remotely sensed images; therefore, it 
might contain a large degree of uncertainty (Table 3) [92]. As listed in Table 2, the 
degree of uncertainty is related to many factors, such as topography, soil, vegeta-
tion, and hydrology. On the other hand, the level of uncertainty is strongly related 
to the degree of susceptibility of a map [92]. Also, the probability of landslide 
hazard depends on both the intrinsic and extrinsic variables. Intrinsic variables 
include geological conditions and slope structures, whereas extrinsic variables 
include rainfall and human activities [90]. Chau et al. [86] explained that a reliable 
landslide hazard map should include historical landslide events, geomorphological 
analysis, and mechanical analysis of slides, falls, and flows of earth mass. Since all 
three aspects of hazard analysis involve handling and interpreting a large amount of 
data, spatial analysis tools such as GIS is essential for such analysis.

Spatial information from previous landslide events is needed for landslide analy-
sis and evaluating the probability of future landslide occurrence [48]. Therefore, 
high-resolution spatial information (satellite data) for factors associate in landslide 
hazards is essential for effective hazard analysis.

Value of 

Hlandslide

Class Classification of landslide 

hazard potential

Approximate annual potential 

frequency in 1 km2 grid

<14 1 Negligible Virtually zero

15–20 2 Very low Negligible

51–100 3 Low Very small

101–168 4 Low to moderate Small

169–256 5 Moderate 0.0025–0.01%

257–360 6 Medium 0.0063–0.025%

360–512 7 Medium to high 0.0125–0.05%

513–720 8 High 0.025–0.1%

>720 9 Very high 0.05–0.2%

Table 2. 
Landslide hazard index (Hlandslide), adapted from Nadim and Kjekstad [91].
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Recently, GIS tools and remotely sensed data have proven a vital approach 
for comparing and analyzing landslide, whereby a probabilistic landslide hazard 
analysis for the affected region is produced [38, 90]. Multiple layers of information 
are incorporated into the GIS system for a more accurate and reliable landslide 
hazard and risk analysis [86]. Geotechnical and safety factor-based models are also 
recommended for an effective landslide hazard analysis [4]. Various scenarios with 
different volumes or sliding surfaces should be integrated for hazard analysis of 
potential unknown landslides [2].

Golovko et al. [48] used multiple satellite data (e.g., Landsat, Spot, Aster, 
IRS-1C, LISS III, and RapidEye) and automated detection techniques to develop 
landslide susceptibility map and landslide hazard index. They summarized that 
their presented approach was based on the extensive use of remote sensing data 
and geospatial tools (e.g., GIS) to characterize landslide susceptibility and hazard. 
Ray et al. [16] used satellite soil moisture and hydrologic model in combination to 
develop landslide susceptibility maps at active Cleveland Corral landslide area in 
California, U.S. Ray et al. [76] used an integrated approach to combine satellite soil 
moisture and a hydrologic model to develop susceptibility maps at Dhading, Nepal.

5. Landslide monitoring

Landslide monitoring includes all of the activities discussed earlier, such as 
developing landslide inventory/detection, landslide susceptibility maps, and 
conducting a landslide hazard analysis. The easiest way to provide geological 
information to decision-makers and the public is through maps or visualization, 
which show locations of the landslide events, or where it might occur, thereby 
providing information on landslide hazard zones [37]. The most effective way to 

Factors Uncertainty Factors Uncertainty

Slope angle Low Rainfall distribution Intermediate

Slope direction Low Morphological setting Low

Slope convexity Low Detailed geomorphological 
situation

Intermediate/high

General lithological 
zonation

Low Present mass movement 
distribution

Intermediate

General lithological 
composition

High Present mass movement 
typology

Intermediate

General tectonic 
framework

Low Present mass movement 
activity

Intermediate/high

Detailed rock 
structure

High Past mass movement 
distribution

High

Soil type distribution Low/intermediate Land use Low

Soil characteristics Intermediate/high Past climatological 
condition

High

Soil thickness High Earthquake acceleration High

Groundwater 
conditions

High

Table 3. 
Main factors in landslide hazard zonation and their estimated degree of uncertainty, adapted from Mantovani 
et al. [92].
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minimize and reduce the impact of landslide hazards and improve risk management 
is through landslide monitoring and planning [30, 35].

Landslides occur due to the combined effect, such as intense rainfall, topogra-
phy, and antecedent soil moisture [93]. However, landslides can also be triggered 
due to external driving forces, such as earthquake, volcano, and excessive surcharge 
load on the slopes. Landslide hazard causes enormous infrastructural damages and 
human casualties in mountainous regions [20], and environmental degradation 
[94]. The combined effect of surface and sub-surface saturation is critical because 
landslide trigger is not due to only surface layer saturation [92]. Landslide monitor-
ing technique depends on the type and size of the landslide, and the risks involved; 
it also differs between countries because of their available technology and expertise 
in landslide monitoring, past experiences with a landslide, and other factors [94]. 
For example, monitoring the surface displacements of a slope provides essential 
data for landslide dynamics [94].

Landslide hazard mitigation measures include hazard mapping and assessment, 
real-time monitoring systems of active and complex landslides, and emergency 
planning [94]. Landslide monitoring includes a comparison of the areal extent, 
speed of debris movement, rate of slope movement, surface topography, etc., 
concerning landslide conditions from different landslide occurrences to assess the 
activity of a landslide [92]. Timely and high-quality information received from 
spatial observations is crucial for managers of natural and human-made disasters, 
particularly in response to emergencies [1]. Landslide monitoring has improved 
over the years, with better monitoring equipment, automatic measurements done 
by machines, and less expensive tools [95].

Remote sensing data and techniques can be used for in-depth hazard mapping 
and monitoring because of their extensive coverage and frequency of observations, 
especially in high mountainous regions [20, 41, 92, 96]. Stereoscopic air-photo 
interpretation as far back as the late 1990s has been the most consistent remote 
sensing tool for landslide monitoring [20]. Combining aerial photography and 
infrared imagery gives a better result of terrain conditions rather than from either 
system separately [94].

Coupled with pre-existing landslide inventory maps and synthetic aperture 
radar (SAR) imagery and interferometric synthetic aperture radar (InSAR) through 
the integration of auxiliary data (e.g., detailed geological information) can be an 
effective method to update landslide inventory [1, 20, 97]. Ground-based optical 
systems (video cameras) limits monitoring movement of active landslides, in case 
of fog, rain, and darkness [94]. InSAR is useful to monitor prolonged slope move-
ments [20]. Also, InSAR has been widely used in research because of its broad 
coverage, high spatial resolution, and ability to operate under all weather condi-
tions [52].

Landslide monitoring includes detailed information on topography, geology, 
groundwater levels, material properties, possible mass movements [93]. Several 
types of instruments, such as extensometers, inclinometers, piezometers, strain-
meters, pressure cells, geophones, tiltmeters, and crack meters, have been used to 
monitor slope movements and deformation [92, 93]. Recently, the landslide moni-
toring system has been improved with the development of less expensive computer-
ized equipment [95]. According to Savvaidis [94], and Macek et al. [95], landslide 
monitoring systems and techniques include:

1. Remote sensing techniques with space-derived information. They are of impor-
tance for seismic hazards, landslide hazards, and management of earthquake 
disasters. Also, remote sensing tools provide surface soil moisture data up to 
1–5 cm deep, which has been used to develop landslide susceptibility maps [93].
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2. Global positioning system (GPS) technique. It is a flexible and easy operation 
that uses a series of satellites to determine accuracy in the order of centimeters 
[92]. A handled GPS provides accurate differential positioning over several 
kilometers [94].

3. Photogrammetric technique, combined with digital imaging sensors data. 
It allows early identification of landslide hazard [96]. A photogrammetric 
technique, which includes interpretation of aerial photography, is a  useful 
 technique to identify and map landslides for an extended period [20, 92, 
94, 98]. It is also a valuable technique for identifying and describing the 3D 
 overview of the terrain in determining surface information [96].

4. Ground-based conventional surveying techniques measure for absolute dis-
placement computations with the use of different instruments, usually em-
ployed in an episodic `monitoring program [94].

5. Geotechnical methods make use of sensors permanently working on or in the 
region under consideration, and can also use a telemetric system for real-time 
transmission of data to a control center [94].

6. Types and role of remote sensing techniques

Several remote sensing data have been used to study landslide processes, 
including space-borne synthetic aperture radar (SAR) and optical remote sensing, 
airborne light detection and ranging (LiDAR), ground-based SAR and terrestrial 
LiDAR, incorporating in situ measurements and observations of environmental 
factors (Table 1). In particular:

• SAR data have been widely used in landslide research because of their broad 
coverage and high spatial resolution and the ability to operate under all 
weather conditions. Satellite SAR data used include archived ERS and Envisat 
ASAR [46], ALOS/PALSAR [52, 99], COSMO-SkyMed constellation [71, 100], 
TerraSAR-X [72, 101], TerraSAR-X/TanDEM-X [100] and Sentinel-1 [102] and 
Envisat 2010+ data (22 October 2010–8 April 2012).

• Optical remote sensing images were mainly applied to generate landslide inven-
tory, considering long time-series of Landsat TM/ETM, SPOT 1–5, ASTER, 
IRS-1C LISS III, and RapidEye between 1986 and 2016 [48]. The ZY-3 [103], and 
GF-1 [35] high spatial resolution satellite images were used to investigate the 
landslide cinematics with an image correlation algorithm to SPOT-5 images [104].

• Multi-temporal LiDAR images and ortho-photos can be compared to quantify 
landscape changes caused by an active landslide [105]. The ground-based ter-
restrial laser scanner (TLS) LiDAR can produce highly detailed three dimen-
sional (3D) images within minutes, allowing the study of 3D surface changes of 
landslides [106].

Among the most useful applications derived from the analysis of remote sensing 
images is the development of digital terrain models (DEMs), such as those gener-
ated from Indian remote sensing satellite (IRS) P5 images [107] and TerraSAR-X/
TanDEM-X images by InSAR [108]. DEM can then be used to assess erosion, 
landslide, and topographic multi-temporal differences [107].
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Lu et al. [45] used Quickbird remotely sensed data for landslide detection 
and mapping. They summarized that traditional mapping techniques for land-
slide detection and mapping, which rely on manual interpretation of aerial 
photographs and intensive field surveys, are time consuming and not efficient 
for generating such event-based maps. Guzzetti et al. [33] used aerial photo-
graphs, high-resolution DEM (LiDAR), and satellite images (e.g., Landsat-7, 
IRS, IKONOS-2, Quickbird-2, WorldView-2, and GeoEye-1/2) to develop multi-
temporal landslide inventory maps. Holbling et al. [51] used SPOT-5 remotely 
sensed data for landslide change detection, whereas [52] used ALOS/PALSAR 
imageries and InSAR techniques for landslide detection. On the other hand, 
Desrues et al. [54] used LiDAR DEM and satellite images for landslide detection 
and mapping.

7. Global application

There are several studies conducted using remote sensing data and technologies 
around the globe. This chapter intends to summarize some of the remote-sensing 
based research undertaken to address landslide issues from selected countries, 
which are, mainly, more vulnerable to landslides. The studies have shown that 
several remote sensing techniques can assist in producing landslide inventory and 
risk assessment maps by providing information on the morphological features of 
landslides.

These approaches are very useful mainly in very large geographical areas where 
landslides are the most common yet highly devastating disasters, such as in Nepal, 
U.S., Philippines, and in many other countries. In the U.S., landslides caused 25 to 
50 deaths each year, whereas extreme rainfall is the most common cause of land-
slides in the Philippines [109]. Ray and Jacobs [93] studied landslides in California, 
U.S., Leyte, Philippines and, Dhading, Nepal. They established the relationship 
between landslides, satellite soil moisture (Advanced Microwave Scanning 
Radiometer (AMSR-E)), and satellite precipitation (Tropical Rainfall Measuring 
Mission (TRMM)). In Nepal, Amatya et al. [61] used high resolution optical data 
for landslide mapping and susceptibility analysis along the Karnali Highway 
in Nepal.

Light detection and ranging (LiDAR) data open unprecedented possibilities for 
landslide mapping, with potential opportunities for hazard and risk zonation and 
landscape evolution modeling [33]. Gorsevki et al. [110] used LiDAR data to detect 
landslides in the Cuyahoga Valley National Park, Ohio, U.S, to generate a suscep-
tibility map using the artificial neural network (ANN). Martha et al. [30] used a 
semiautomatic approach to develop landslide inventories from post-event satellite 
images, which they used for landslide susceptibility, hazard, and risk in the High 
Himalayan terrain in India. Following the 2004 Typhoon Aere, the object-based 
image analysis approach (OBIA) was adopted to develop landslide inventory in 
Xiulan, Taiwan [111].

Landslide mapping in the Cameron Highlands area in Malaysia is complicated 
due to dense vegetation and weather conditions. However, researchers used 
airborne synthetic aperture radar (AIRSAR) and WorldView-1 satellite data to 
develop a landslide inventory map for the Cameron Highlands [112, 113]. Also, Bui 
et al. [34] used synthetic aperture radar (SAR) data for landslide detection and 
susceptibility mapping in Cameron Highlands, Malaysia. In China, an area near the 
Three Gorges Reservoir (TGR) along the Yangtze River, which is one of the most 
landslide-prone regions in the world, was studied using ZY-3 high resolution satel-
lite images to develop landslide inventory map [103].
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In Italy, rainfall-induced landslides are serious threats to the population [114]. 
Since landslides are a national threat and distributed throughout the nation, it is 
not possible to analyze and monitor landslides using in situ measurements alone. 
Several researchers have studied landslides using remotely sensed data and tech-
nologies (e.g., [102, 115, 116]). Several researchers have also used cartographic 
thematic and optical data with Persistent Scatterer Interferometry (PSI) to identify 
slow to very slow moving landslides in a different region of Italy [117–122]. Boni 
et al. [115] developed a new methodology to update the landslide state of activity 
(LAMBDA) using multi-temporal A-DInSAR data at north-western Italy.

Bozzano et al. [46] used field surveys and remote sensing techniques to inves-
tigate more than 90 landslides affecting a small river basin in Central Italy. Bardi 
et al. [116] used GB-InSAR data to monitor the rapid movement of earth flows over 
the Capriglio landslide in the northern Apennines, Italy. InSAR data were used to 
conduct a multi-temporal assessment of landslide activity in the basin of Abruzzi, 
Italy [44]. Fayne et al. [57] used Landsat-8 imagery in identifying potential loca-
tions and timing of newly triggered landslides in Italy.

Satellite-born landcover panchromatic images and shuttle radar topography 
(SRTM) elevation data were used to monitor landslide clusters over a vegetated 
landscape in Itaoca, Brazil [123]. Landslide is one of the natural hazards that occur 
each year in Indonesia. Hayati et al. [124] used interferometric synthetic aperture 
radar (InSAR) data to monitor the slow-moving landslide in Ciloto, Indonesia. The 
sensors provided useful data in obtaining continuous and area-based informa-
tion for landslide affected areas. Bravo-Carvajal et al. [125] used SPOT satellite 
images to develop landslide inventory and susceptibility maps at the village of 
Nueva Colombia in the state of Chiapas. Also, in northern Pakistan, the SPOT-5 
satellite was used to develop a landslide inventory [126]. Shroder and Weihs [127] 
used ASTER elevation data and Landsat 7 images for landslide mapping at north-
eastern Badakhshan, Afghanistan. Rainfall-induced landslides are frequent in the 
mountainous region of Bangladesh. For example, Das and Raja [128] used ASTER 
elevation data and Landsat 8 images to develop a landslide susceptibility map at 
Chittagong city, Bangladesh. Singhroy et al. [64] used Landsat TM and SAR images 
in combination to interpret the retrogressive slope failures on the Shale banks of the 
Saskatchewan river in Canada. Singhroy et al. [64] used SAR images to identify flow 
slides on sensitive marine clays in the Ottawa Valley of Canada.

8. Summary and conclusions

Natural disasters such as hurricanes, earthquakes, tsunami, and landslides 
have been on the rise, causing damage to property and human lives, especially in 
mountainous regions. Major causes of landslides are conditioning factors, such as 
lithology, relief, geological structure, geomechanical properties, weathering, and 
triggering factors such as precipitation, seismicity, temperature change, and static 
and dynamic loads. Conventional methods for landslide studies mainly rely on the 
visual interpretation of aerial photographs and field investigation in combination. 
However, these methods are time consuming and cost-ineffective. On the other 
hand, remotely sensed data at high spatial and temporal resolutions and advanced 
techniques could be used for landslide studies at a range of scales, which can reduce 
the time and resources required for the studies.

This chapter has reviewed the use of remotely sensed data and advanced tech-
nologies used for landslide inventory/detection, developing landslide susceptibility 
maps, conducting a landslide hazard analysis, and monitoring landslide events and 
slope movement at a range of scales. More robust technologies and high-resolution 
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data are essential to reduce the impact of landslides threats on human lives, proper-
ties, and environments. In addition, we also need to develop advanced technologies, 
which can improve landslide assessment, prediction, and mitigations. According 
to Singhroy [129], our primary challenge is to have an advanced technology and/or 
high-resolution data to recognize and interpret detailed geomorphic characteristics 
of large and small landslides and determine whether or not failure is likely to occur. 
Although the use of high spatial resolution radar and LiDAR data are very helpful 
in conducting landslide studies, satellite products at high spatial and temporal 
resolutions are still limited. In the future, if real-time remotely sensed products 
at high spatial and temporal resolutions are available, especially in remote and 
hardly accessible terrain, it would be helpful to study landslide dynamics at a range 
of scales.
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