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Chapter

Soliton and Rogue-Wave Solutions
of Derivative Nonlinear
Schrödinger Equation - Part 2
Zhou Guo-Quan

Abstract

A revised and rigorously proved inverse scattering transform (IST for brevity)
for DNLS+ equation, with a constant nonvanishing boundary condition (NVBC)
and normal group velocity dispersion, is proposed by introducing a suitable affine
parameter in the Zakharov-Shabat IST integral; the explicit breather-type and pure
N-soliton solutions had been derived by some algebra techniques. On the other
hand, DNLS equation with a non-vanishing background of harmonic plane wave is
also solved by means of Hirota’s bilinear formalism. Its space periodic solutions are
determined, and its rogue wave solution is derived as a long-wave limit of this space
periodic solution.

Keywords: soliton, nonlinear equation, derivative nonlinear Schrödinger equation,
inverse scattering transform, Zakharov-Shabat equation, Hirota’s bilinear derivative
method, DNLS equation, space periodic solution, rogue wave

1. Breather-type and pure N-soliton solution to DNLS+ equation with
NVBC based on revised IST

DNLS+ equation with NVBC, the concerned theme of this section, is only a
transformed version of modified nonlinear Schrödinger equation with normal
group velocity dispersion and a nonlinear self-steepen term and can be expressed as

iut � uxx þ i uj j2u
� �

x
¼ 0, (1)

here the subscripts represent partial derivatives.
Some progress have been made by several researchers to solve the DNLS equa-

tion for DNLS equation with NVBC, many heuristic and interesting results have
been attained [1–14]. An early proposed IST worked on the Riemann sheets can
only determine the modulus of the one-soliton solution [3, 15]. References [4, 5, 16]
had attained a pure single dark/bright soliton solution. Reference [6] had derived a
formula for N� soliton solution in terms of Vandermonde-like determinants by
means of Bäcklund transformation; but just as reference [7, 9] pointed out, this
multi-soliton solution is still difficult to exhibit the internal elastic collisions among
solitons and the typical asymptotic behaviors of multi-soliton of DNLS equation. By
introducing an affine parameter in the integral of Zakharov-Shabat IST, reference
[7] had found their pure N� soliton solution for a special case that all the simple
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poles (zeros of a λð Þ) were located on a circle of radius ρ centered at the origin, while
reference [8] also found its multi-soliton solution for some extended case with N
poles on a circle and M poles out of the circle, and further developed its perturba-
tion theory based on IST. Reference [7] constructed their theory by introducing an
damping factor in the integral of Zakharov-Shabat IST, to make it convergent, and
further adopted a good idea of introducing an affine parameter to avoid the trouble
of multi-value problem in Riemann sheets, but both of their results are assumed N�
soliton solutions and the soliton solution gotten from their IST had a self-dependent
and complicated phase factor [7–9], hence reference [8] had to verify an identity
demanded by the standard form of a soliton solution (see expression (52) in Ref.
[8]). Such kind of an identity is rather difficult to prove for N ≥ 2 case even by the
use of computer techniques and Mathematica. On the other hand, author of refer-
ence [8] also admits his soliton solution is short of a rigorous verification of stan-
dard form. Then questions naturally generates – whether the traditional IST for
DNLS equation with NVBC can be avoided and further improved? And whether a
rigorous manifestation of soliton standard form can be given and a more reasonable
and natural IST can be constructed?

A newly revised IST is thus proposed in this section to avoid the dual difficulty
and the excessive complexity. An additional affine factor 1=λ, λ ¼ zþ ρ2z�1ð Þ=2, is
introduced in the Z-S IST integral to make the contour integral convergent in the
big circle [7, 10–13]. Meanwhile, the additional two poles on the imaginary axis
caused by λ ¼ 0 are removable poles due to the fact that the first Lax operator
L λð Þ ! 0, as λ ! 0. What is more different from reference [7] is that we locate the
N simple poles off the circle of radius ρ centered at origin O, which corresponds to
the general case of N breather-type solitons. When part of the poles approach the
circle, the corresponding part of the breathers must tend to the pure solitons, which
is the case described in Ref. [8]. The resulted one soliton solution can naturally tend
to the well-established conclusion of VBC case as ρ ! 0 [17–20] and the pure one
soliton solution in the degenerate case. The result of this section appears to be strict
and reliable.

1.1 The fundamental concepts for the IST theory of DNLS equation

Under a Galileo transformation x, tð Þ ! xþ ρ2t, tð Þ, DNLS þ Eq. (1) can be
changed into

iut � uxx þ i uj j2 � ρ2
� �

u
h i

x
¼ 0, (2)

with nonvanishing boundary condition:

u ! ρ, as xj j ! ∞: (3)

According to references [7–9], the phase difference between the two infinite
ends should be zero. The Lax pair of DNLSþ Eq. (3) is

L ¼ �iλ2σ3 þ λU，U ¼
0 u

u 0

� �
¼ uσþ þ uσ� (4)

M ¼ i2λ4σ3 � 2λ3U þ iλ2 U2 � ρ2
� �

σ3 � λ U2 � ρ2
� �

U þ iλUxσ3 (5)

where σ3, σþ, and σ� involve in standard Pauli’s matrices and their linear
combination. Here and hereafter a bar over a variable represents complex
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conjugate. An affine parameter z and two aided parameters η, λ are introduced to
avoid the trouble of dealing with double-valued functions on Riemann sheets

λ � zþ ρ2z�1
� �

=2, η � z� ρ2z�1
� �

=2 (6)

The Jost functions satisfy first Lax equation

∂xF x, zð Þ ¼ L x, zð ÞF x, zð Þ, (7)

here Jost functions F x, zð Þ∈ Ψ x, zð Þ,Φ x, zÞð gf .

Ψ x, zð Þ ¼ ~ψ x, zð Þ, ψ x, zð Þð Þ ! E x, zð Þ, as x ! ∞ (8)

Φ x, zð Þ ¼ ϕ x, zð Þ, ~ϕ x, zð Þ
� �

! E x, zð Þ, as x ! �∞ (9)

The free Jost function E x, zð Þ can be easily attained as follows:

E x, zð Þ ¼ I þ ρz�1σ2
� �

exp �iληxσ3ð Þ, (10)

which can be verified satisfying Eq. (7). The monodramy matrix is

T zð Þ ¼ a zð Þ ~b zð Þ
b zð Þ ~a zð Þ

 !
, (11)

which is defined by

Φ x, zð Þ ¼ Ψ x, zð Þ T zð Þ (12)

Some useful and important symmetry properties can be found

σ1L zð Þσ1 ¼ L zð Þ, σ3L �zð Þσ3 ¼ L zð Þ (13)

Symmetry relations in (13) lead to

~ψ x, zð Þ ¼ σ1ψ x, zð Þ, ~ϕ x, zð Þ ¼ σ1ϕ x, zð Þ (14)

~ψ x,�zð Þ ¼ σ3 ~ψ x, zð Þ,ψ x,�zð Þ ¼ �σ3ψ x, zð Þ (15)

σ1T x, zð Þσ1 ¼ T zð Þ, σ3T �zð Þσ3 ¼ T zð Þ (16)

The above symmetry relations further result in

~a zð Þ ¼ a zð Þ, ~b zð Þ ¼ b zð Þ (17)

a �zð Þ ¼ a zð Þ, b �zð Þ ¼ �b zð Þ (18)

Other important symmetry properties called reduction relations can also be
easily found

λ ρ2z�1
� �

¼ λ zð Þ, η ρ2z�1
� �

¼ �η zð Þ,L x, ρ2z�1
� �

¼ L x, zð Þ (19)

E x, ρ2z�1
� �

¼ ρ�1z I þ ρz�1σ2
� �

e�iηλxσ3σ2 (20)

The above symmetry properties lead to following reduction relations among Jost
functions
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~ψ x, ρ2z�1
� �

¼ iρ�1zψ x, zð Þ,ψ x, ρ2z�1
� �

¼ �iρ�1z~ψ x, zð Þ (21)

ϕ x, ρ2z�1
� �

¼ iρ�1z~ϕ x, zð Þ, ~ϕ x, ρ2z�1
� �

¼ �iρ�1zϕ x, zð Þ (22)

The important symmetries among the transition coefficients further resulted
from (12), (21), and (22):

σ2T ρ2z�1
� �

σ2 ¼ T zð Þ, ~a ρ2z�1
� �

¼ a zð Þ, ~b ρ2z�1
� �

¼ �b zð Þ (23)

On the other hand, the simple poles, or zeros of a zð Þ, appear in quadruplet, and
can be designated by zn, (n ¼ 1, 2,⋯, 2N), in the I quadrant, and znþ2N ¼ �zn in the
III quadrant. Due to symmetry (17), (18) and (23), the n’ th subset of zero points is

z2n�1, z2n ¼ ρ2z�1
2n�1,�z2n�1,�z2n ¼ �ρ2z�1

2n�1

� 	
(24)

And we arrange the 2N zeros in the first quadrant in following sequence

z1, z2; z3, z4;⋯; z2N�1, z2N (25)

According to the standard procedure [21, 22], the discrete part of a zð Þ can be
deduced

a zð Þ ¼
Y2N

n¼1

z2 � z2n
z2 � z2n

zn
zn

(26)

At the zeros of a zð Þ, or poles zn, n ¼ 1, 2,⋯, 2N � 1, 2Nð Þ, we have

ϕ x, znð Þ ¼ bnψ x, znð Þ, _a �znð Þ ¼ � _a znð Þ (27)

Using symmetry relation in (14), (17), (21)–(24), (27), we can prove that

b2n ¼ �b2n�1, c2n�1 ¼ ρ2z�2
2n c2n (28)

2. Relation between the solution and Jost functions of DNLS+ equation

The asymptotic behaviors of the Jost solutions in the limit of λj j ! ∞ can be
obtained by simple derivation. Let F�1 ¼ ~ψ x, λð Þ, then Eq. (7) can be rewritten as

~ψ1x þ iλ2~ψ1 ¼ λu~ψ2, ~ψ2x � iλ2~ψ2 ¼ �λu~ψ1, (29)

then we have

~ψ1xx � ~ψ1x þ iλ2~ψ1

� �
ux=uþ λ4~ψ1 � λ2 uj j2~ψ1 ¼ 0 (30)

We assume a function g to satisfy the following equation

~ψ1 x, λð Þ ¼ e�iληxþg (31)

~ψ1x ¼ �iληþ gx
� �

~ψ1, ~ψ1xx ¼ �iληþ gx
� �2 þ gxx

h i
~ψ1 (32)
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Substituting (31)–(32) into Eq. (30), we have

gxx þ g2x � 2iληþ ux=uð Þgx � iλ λ� ηð Þux=uþ λ2 λ2 � η2
� �

� λ2 uj j2 ¼ 0 (33)

In the limit of ∣z∣ ! ∞, gx can be expanded as sumof series of z�2ð Þ j, j ¼ 0, 1, 2, ⋯

gx � μ ¼ μ0 þ μ2z
�2 þ μ4z

�4 þ⋯, (34)

where

μ0 ¼ �i ρ2 � uj j2
� �

=2 ¼ O 1ð Þ (35)

Inserting formula (34) and (35) in Eq. (33) at ∣z∣ ! ∞ leads to

u ¼ ~ψ1

λ~ψ2
iλ λ� ηð Þ � 1

2 i ρ2 � uj j2
� �h i

! i ~ψ 1

~ψ2

uj j2
z , as zj j ! ∞ð Þ

Then we find a useful formula

u ¼ �i lim
∣z∣!∞

z~ψ2 x, zð Þ=~ψ1 x, zð Þ, (36)

which expresses the conjugate of the solution u in terms of Jost functions
as ∣z∣ ! ∞.

2.1 Introduction of time evolution factor

In order to make the Jost functions satisfy the second Lax equation, a time
evolution factor h t, zð Þ should be introduced by a standard procedure [21, 22] in the
Jost functions and the scattering data. Considering the asymptotic behavior of the
second Lax operator

M x, t; zð Þ ! i2λ4σ3 � 2λ3ρσ1, as x ! ∞, (37)

we let h t, kð Þ to satisfy

∂=∂t�M x, t; zð Þ½ �h�1 t, zð Þψ x, t; zð Þ ¼ 0, as x ! ∞ (38)

then

∂=∂t� i2λ4σ3 � 2λ3ρσ1

 �

h�1 t, zð ÞE•2 x, zð Þ ¼ 0: (39)

Due to

E•2 x, zð Þ ¼ �iρz�1eiληx, eiληx
� �T

, (40)

from (39) and (40), we have

h t, zð Þ ¼ ei2λ
3ηt: (41)

Therefore, the complete Jost functions should depend on time as follows

h t, zð Þ~ψ x, zð Þ, h�1 t, zð Þψ x, zð Þ; h t, zð Þϕ x, zð Þ, h�1 t, zð Þ~ϕ x, zð Þ (42)

5

Soliton and Rogue-Wave Solutions of Derivative Nonlinear Schrödinger Equation - Part 2
DOI: http://dx.doi.org/10.5772/intechopen.93450



Nevertheless, hereafter the time variable in Jost functions will be suppressed
because it has no influence on the treatment of Z-S equation. By a similar procedure
[9, 15], the scattering data has following time dependences

a z, tð Þ ¼ a z, 0ð Þ, b t, zð Þ ¼ b 0ð Þe�i4λ3ηt (43)

2.2 Zakharov-Shabat equations and breather-type N-soliton solution

A 2 � 1 column function Π x, zð Þ is introduced as usual

Π x, zð Þ �
ϕ x, zð Þ=a zð Þ, as z in I, III quadrants:

~ψ x, zð Þ, as z in II, IV quadrants:

�
(44)

here and hereafter note “�” represents definition. There is an abrupt jump for
Π x, zð Þ across both real and imaginary axes

ϕ x, zð Þ=a zð Þ � ~ψ x, zð Þ ¼ r zð Þψ x, zð Þ, (45)

where

r zð Þ ¼ b zð Þ=a zð Þ (46)

is called the reflection coefficient. Due to μ0 6¼ 0 in (34), Jost solutions do not
tend to the free Jost solutions E x, zð Þ in the limit of ∣z∣ ! ∞. This is their most typical
property which means that the usual procedure of constructing the equation of IST
by a Cauchy contour integral must be invalid. In view of these abortive experiences,
we proposed a revised method to derive a suitable IST and the corresponding Z-S
equation by multiplying an inverse spectral parameter 1=λ, λ ¼ zþ ρ2z�1ð Þ=2, before
the Z-S integrand. Meanwhile, our modification produces no new poles since the
Lax operator L λð Þ ! 0, as λ ! 0. In another word, the both additional poles z0 ¼
�iρ generated by λ ¼ 0 are removable. Under reflectionless case, that is, r zð Þ ¼ 0,
the Cauchy integral along with contour Γ shown in Figure 1 gives

1

λ
Π x, zð Þ � E�1ðx, zÞf geiληx ¼ 1

2πi
∮
Γ

dz0
1

z0 � z

1

λ0
Π x, z0ð Þ � E�1ðx, z0Þf geiλ0η0x (47)

Figure 1.
The integral path for IST of the DNLSþ.
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or

~ψ x, zð Þ ¼ e�iληx þ λ �
X4N

n¼1

1

λn

1

zn � z
cnψ x, znð Þeiλnηnx

( )
e�iληx (48)

where

cn � bn= _a znð Þ, _a znð Þ ¼ da zð Þ=dzjz¼zn
; n ¼ 1, 2,⋯, 4N (49)

Note that (27), (45), and (46) have been used in (48). The minus sign before the
sum of residue number in (48) comes from the clock-wise contour integrals around
the 4 N simple poles when the residue theorem is used, shown in Figure 1. By a
standard procedure, the time dependences of bn and cn similar to (43) can be
derived

bn tð Þ ¼ bn0e
�i4λ3nηnt, cn ¼ cn 0ð Þe�i4λ3nηt (50)

cn 0ð Þ ¼ bn0= _an; n ¼ 1, 2,⋯, 4N (51)

In the reflectionless case, the Zakharov-Shabat equations for DNLS+ equation
can be derived immediately from (48) as follows

~ψ1 x, zð Þ ¼ e�iΛx þ λ
X2N

n¼1

2z

λn

1

z2 � z2n
cnψ1 x, znð ÞeiΛnx

" #
e�iΛx (52)

~ψ2 x, zð Þ ¼ iρz�1e�iΛx þ λ
X2N

n¼1

2zn
λn

1

z2 � z2n
cnψ2 x, znð ÞeiΛnx

" #
e�iΛx (53)

here Λ � λη,Λn � λ znð Þη znð Þ ¼ λnηn, and in Eqs. (52) and (53), the terms
corresponding to poles zn, (n ¼ 1, 2,⋯, 2N), have been combined with the terms
corresponding to poles znþ2N ¼ �zn. Substituting Eqs. (52) and (53) into formula
(36) and letting z ! ∞, we attain the conjugate of the raw N-soliton solution (the
time dependence is suppressed).

uN ¼ UN=VN (54)

UN � ρ 1�
X2N

n¼1

i
zn
ρλn

cnψ2 x, znð ÞeiΛnx

" #
(55)

VN � 1þ
X2N

n¼1

cn
λn

ψ1 x, znð ÞeiΛnx (56)

Letting z ¼ ρ2z�1
m , (m ¼ 1, 2,⋯, 2N), respectively, in Eqs. (52) and (53), by use

of reduction relations (19), (21), and (22), we can further change Eqs. (52) and (53)
into the following form

ψ1 x, zmð Þ ¼ �iρz�1
m eiΛmx þ

X2N

n¼1

λmcn
λnz2m

2ρ3

i ρ4z�2
m � z2n

� �ψ1 x, znð Þei ΛnþΛmð Þx (57)

ψ2 x, zmð Þ ¼ eiΛmx þ
X2N

n¼1

λmzncn
λnzm

� 2ρ

i ρ4z�2
m � z2n

� �ψ2 x, znð Þei ΛnþΛmð Þx (58)

m ¼ 1, 2,⋯, 2N. An implicit time dependence of the complete Jost functions ψ1

and ψ2 besides cn should be understood. To solve Eq. (58), we define that
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φ2ð Þn � i
zn
ρλn

ffiffiffiffi
cn
2

r
ψ2 x, znð Þ,φ2 � φ2ð Þ1, φ2ð Þ2,…, φ2ð Þ2N

� �
(59)

f n �
ffiffiffiffiffiffiffi
2cn

p
eiΛnx, gn � i

ffiffiffiffi
cn
2

r
zn
ρλn

eiΛnx ¼ izn
2ρλn

f n, n ¼ 1, 2,⋯, 2N (60)

f � f 1, f 2,… f 2N
� �

, g � g1, g2,…g2N
� �

(61)

B � Matrix Bnmð Þ2N�2N, with

Bnm � f n
ρ

i z2n � ρ4z�2
m

� � fm,m, n ¼ 1, 2,⋯, 2N: (62)

Then Eq. (58) can be rewritten as

φ2ð Þm ¼ gm �
X2N

n¼1

φ2ð ÞnBnm,m ¼ 1, 2,⋯, 2N (63)

or in a more compact form

φ2 ¼ g � φ2B: (64)

The above equation gives

φ2 ¼ g I þ Bð Þ�1: (65)

Note that the choice of poles, zn, n ¼ 1, 2,⋯,Nð Þ, should make det I þ Bð Þ
nonzero and I þ Bð Þ an invertible matrix. On the other hand, Eq. (55) can be
rewritten as

UN ¼ ρ 1� φ2f
T

h i
, (66)

hereafter a superscript “T” represents transposing of a matrix. Substituting
Eq. (65) into (66) leads to

UN ¼ ρ 1� g I þ Bð Þ�1fT
h i

¼ ρ
det I þ B� fTg
� �

det I þ Bð Þ ¼ ρ
det I þAð Þ
det I þ Bð Þ (67)

where

A � B� fTg (68)

with

Anm � Bnm � f ngm ¼ zmznλn=ρ
2λm

� �
Bnm: (69)

To solve Eq. (57), we define that

φ1ð Þm � i

ffiffiffiffiffi
cm
2

r
zm
ρλm

ψ1 x, zmð Þ,φ1 � φ1ð Þ1, φ1ð Þ2,⋯, φ1ð Þ2N
� �

(70)

f 0m � i
ffiffiffiffiffiffiffiffi
2cm

p
� ρ

zm
eiΛmx ¼ i

ρ

zm
fm; g

0
m ¼

ffiffiffiffiffi
cm
2

r
� 1

λm
eiΛmx ¼ �izm

2ρλm
f 0m (71)
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f 0 ¼ f 01, f
0
2,… f 02N

� �
; g0 ¼ g01, g

0
2,…g02N

� �
; (72)

D0
nm � f 0n

�ρ

i z2n � ρ4z�2
m

� �
" #

f 0m ¼ ρ2

znzm
Bnm c:f : 1:70ð Þ and 1:61ð Þð Þ (73)

with n,m ¼ 1, 2,⋯, 2N. Then Eq. (57) can be rewritten as

φ1ð Þm ¼ g0m �
X2N

n¼1

φ1ð ÞnD0
nm,m ¼ 1, 2,⋯, 2N (74)

or in a more compact form

φ1 ¼ g0 � φ1D
0 (75)

The above equation givess

φ1 ¼ g0 I þD0ð Þ�1
(76)

Note that the choice of poles, zn, n ¼ 1, 2,⋯,Nð Þ, shouldmake det I þD0ð Þ non-
zero and I þD0ð Þ an invertible matrix. On the other hand, Eq. (56) can be rewritten as

VN ¼ 1�
X2N

n¼1

φ1ð Þn f
0
n ¼ 1� φ1 f

0T (77)

Substituting Eq. (76) into (77), we thus attain

VN ¼ 1� g0 I þD0ð Þ�1
f 0

T ¼
det I þD0 � f 0

T
g0

� �

det I þD0ð Þ � det I þ B0ð Þ
det I þD0ð Þ (78)

where use is made of Appendix A.1 and

B0
nm � D0 � f 0

T
g0

� �
nm

¼ zmznλn
ρ2λm

D0
nm ¼ λn

λm
Bnm (79)

In the end, by substituting (67) and (78) into (54), we attain the N-soliton
solution to the DNLS+ Eq. (3) under NVBC and reflectionless case (note that the
time dependence of soliton solution naturally emerges in cn tð Þ):

u x, tð Þ ¼ UN

VN
¼ ρ

det I þAð Þdet I þD0ð Þ
det I þ Bð Þdet I þ B0ð Þ � ρ

CNDN

D
2
N

, (80)

here

CN � det I þAð Þ,DN � det I þ Bð Þ (81)

The solution has a standard form as (80), that is

det I þ B0ð Þ ¼ det I þ Bð Þ ¼ det I þD0ð Þ � D, (82)

which can be proved by direct calculation for the N ¼ 1 case and by some special
algebra techniques for the N > 1 case.
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3. Verification of standard form and the explicit breather-type
multi-soliton solution

3.1 Verification of det I þ B0ð Þ ¼ det I þ Bð Þ

In order to prove the first identity in (82), we firstly calculate DN ¼ det I þ Bð Þ.
By use of (60)–(62), Binet-Cauchy formula, (Appendix (A.2)) and an important
determinant formula, (Appendix (A.3)), we have

DN � det I þ Bð Þ ¼ 1þ
X2N

r¼1

X

1≤ n1 <⋯< nr ≤ 2N

B n1, n2,⋯, nrð Þ, (83)

here B n1, n2,⋯, nrð Þ is a r,th-order principal minor of B consisting of elements
belonging to not only rows n1, n2,⋯, nrð Þ but also columns n1, n2,⋯, nrð Þ.
Due to (62),

B n1, n2,⋯, nrð Þ ¼
Y
n,m

f n
ρ

i z2n � ρ4z�2
m

� �
" #

fm
Y

n<m

i z2n � z2m
� �

� i �ρ4z�2
n

� �
� �ρ4z�2

m

� �
 �

(84)

in (84), n,m∈ n1, n2,⋯, nrð Þ. The technique of calculating B n1, n2,⋯, nrð Þ is to
couple term i z2n � ρ4z�2

m

� ��1
with term i z2m � ρ4z�2

n

� �
into pair, (n 6¼ m), in the

denominator of
Q
n,m

⋯ð Þ, (with totally r r� 1ð Þ=2 pairs), and transplant them into the

denominator of
Q

n<m
⋯ð Þ, and combine with i z2n � z2m

� �
i ρ4z�2

m � ρ4z�2
n

� �
in
Q

n<m
⋯ð Þ to

form a typical factor as a whole, (with just totally r r� 1ð Þ=2 pairs). Note that if we
define

zn � ρeδnþiβn , with δn >0, βn ∈ 0, π=2ð Þ, (85)

and further define that

z2n=ρ
2 ¼ e2δnþi2βn � tanhΘn, (86)

then the typical factor is

i z2n � z2m
� �

i ρ4z�2
m � ρ4z�2

n

� �

i z2n � ρ4z�2
m

� �
i z2m � ρ4z�2

n

� � ¼ z2n=ρ
2 � z2m=ρ

2

1� z2nz
2
m=ρ

4

� �2

¼ tanh 2
Θn � Θmð Þ (87)

and

B n1, n2,⋯, nrð Þ ¼
Y
n

f 2n
ρ

i z2n � ρ4z�2
n

� �
" #Y

n<m

tanh 2
Θn � Θmð Þ

¼
Y
n

Fn

Y

n<m

tanh 2
Θn � Θmð Þ (88)

here n,m∈ n1, n2,⋯, nrð Þ, and a typical function Fn is defined as

Fn � Bn n ¼ f 2n
ρ

i z2n � ρ4z�2
n

� � ¼ 2ρ

i z2n � ρ4z�2
n

� � cn tð Þei2Λnx (89)
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where use is made of formula (60) and (62), the time dependence of the solution
naturally emerged in cn tð Þ. Substituting Eq. (88) into (83) thus completes the

computation of DN .
Secondly, let us calculate det I þD0ð Þ. By use of (72) and (73), Binet-Cauchy

formula, (Appendix A.2) and an important matrix formula, (Appendix A.3), we
have

det I þD0ð Þ ¼ 1þ
X2N

r¼1

X

1≤n1 < n2 <⋯< nr ≤ 2N

D0 n1, n2,⋯, nrð Þ, (90)

where D0 n1, n2,⋯, nrð Þ is the principal minor of a r,th-order submatrix of D0

consisting of elements belonging to not only rows n1, n2,⋯, nrð Þ but also
columns n1, n2,⋯, nrð Þ, and

D0 n1, n2,⋯, nrð Þ ¼
Y
n,m

f 0n
iρ

z2n � ρ4z�2
m

� �
f 0m
Y

n<m

z2n � z2m
� �

ρ4z�2
m � ρ4z�2

n

� �
(91)

n,m∈ n1, n2,⋯, nrð Þ. Using the same tricks as used in dealing with (84) leads to

D0 n1, n2,⋯, nrð Þ ¼
Y
n

�1ð Þr f 0n
2 ρ

i z2n � ρ4z�2
n

� �
" #Y

n<m

z2n � z2m
� �

ρ4z�2
m � ρ4z�2

n

� �

z2n � ρ4z�2
m

� �
z2m � ρ4z�2

n

� �

¼
Y
n

ρ

zn

� �2

Fn

Y

n<m

tanh 2
Θn � Θmð Þ (92)

Thirdly, let us calculate det I þD0 � f 0
T
g0

� �
� det I þ B0ð Þ with B0 � D0 � f 0

T
g0.

According to (79) and Binet-Cauchy formula (Appendix (A.2)), similarly
we have

det I þD0 � f 0
T
g0

� �
¼ det I þ B0ð Þ ¼ 1þ

X2N

r¼1

X

1≤n1 <n2 <⋯< nr ≤ 2N

B0 n1, n2,⋯, nrð Þ

(93)

B0 n1, n2,⋯, nrð Þ ¼
Y
n,m

znzmλn
ρ2λm

� �
f 0n

�ρ

i z2n � ρ4z�2
m

� �
" #

f 0m
Y

n<m

i z2n � z2m
� �

i ρ4z�2
m � ρ4z�2

n

� �

(94)

n,m∈ n1, n2,⋯, nrð Þ. Using the same tricks as that used in treating (84) leads to

B0 n1, n2,⋯, nrð Þ ¼
Y
n

zn
ρ

� �2 iρ

zn

� �2

� f 2n
�ρ

i z2n � ρ4z�2
n

� �
 !Y

n<m

tanh 2
Θn � Θmð Þ

¼
Y
n

f 2n
ρ

i z2n � ρ4z�2
n

� �
 !Y

n<m

tanh 2
Θn � Θmð Þ ¼

Y
n

Fn

Y

n<m

tanh 2
Θn � Θmð Þ

� B n1, n2,⋯, nrð Þ (95)
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Due to (95), comparing (83) and (93) results in the expected identity and
completes the verification of the first identity in (82).

3.2 Verification of det I þD0ð Þ ¼ det I þ Bð Þ

Our most difficult and challenging task is to prove the second identity in (82).
For convenience of discussion, we define that

zn̂ � ρ2z�1
n (96)

then

z2n ¼ z∧2n�1 ¼ ρ2z�1
2n�1, z2n�1 ¼ z ^2 n ¼ ρ2z�1

2n (97)

or

2̂n ¼ 2n� 1, ^2n� 1 ¼ 2n, n ¼ 1, 2,⋯,Nð Þ (98)

Then the sequence of poles (25) is just in the same order as follows

z2̂, z1̂; z4̂, z3̂;⋯; z∧2N, z∧2N�1 (99)

On the other hand, due to (28), (62), and (73), we have

D0
nm ¼ ρ2

znzm
� f n

ρ

i z2n � ρ4z�2
m

� � fm (100)

Then

D0
nm ¼ ρ2

znzm
�
ffiffiffiffiffiffiffiffiffiffiffiffi
4cncm

p
� ρ

�i z2n � ρ4z�2
m

� � � e�i ηnλnþηmλmð Þx (101)

Substituting zn ¼ ρ2z�1
n̂ , zm ¼ ρ2z�1

m̂ into above formula and using following
relation

ηnλn ¼ �ηn̂λn̂, cn ¼ ρ2z�2
n̂ cn̂ (102)

We can get an important relation between D0
nm and Bm̂n̂

D
0
nm ¼ f m̂

ρ

i z2m̂ � ρ4z�2
n̂

� � f n̂ ¼ Bm̂n̂ ¼ BT
n̂m̂ (103)

On the other hand, an unobvious symmetry between matrices Bnmð Þ2N�2N and
Bn̂m̂ð Þ2N�2N is found

diag σ1,⋯, σ1ð Þ2N�2N Bnmð Þ2N�2Ndiag σ1,⋯, σ1ð Þ2N�2N ¼ Bn̂m̂ð Þ2N�2N (104)

It can be rewritten in a more explicit form

12

Nonlinear Optics - From Solitons to Similaritons



σ1 0 ⋯ ⋯ 0

0 σ1 ⋮

⋮ ⋱ ⋮

⋮ ⋱ ⋮

0 ⋯ ⋯ ⋯ σ1

0
BBBBBBBB@

1
CCCCCCCCA

B11 B12 ⋯ ⋯ B1,2N

B21 B22 ⋯ ⋯ B2,2N

⋮ ⋮ ⋮

⋮ ⋮ ⋮

B2N,1 B2N,2 ⋯ ⋯ B2N,2N

0
BBBBBBBB@

1
CCCCCCCCA

σ1 0 ⋯ ⋯ 0

0 σ1 ⋮

⋮ ⋱ ⋮

⋮ ⋱ ⋮

0 ⋯ ⋯ ⋯ σ1

0
BBBBBBBB@

1
CCCCCCCCA

¼

B22 B21 ⋯ B2,2N B2,2N�1

B12 B11 ⋯ B1,2N B1,2N�1

⋮ ⋮ ⋱ ⋮ ⋮

B2N,2 B2N,1 ⋯ B2N,2N B2N,2N�1

B2N�1,2 B2N�1,1 ⋯ B2N�1,2N B2N�1,2N�1

0
BBBBBBBB@

1
CCCCCCCCA

¼

B1̂1̂ B1̂2̂ ⋯ ⋯ B
1̂ b2N

B2̂1̂ B2̂2̂ ⋯ ⋯ B
2̂, b2N

⋮ ⋮ ⋮

Bd2N�1,1̂
Bd2N�1,2̂

B d2N�1, b2N
B b2N,1̂

B b2N,2̂
⋯ ⋯ B b2N, b2N

0
BBBBBBBBB@

1
CCCCCCCCCA

(105)

The last equation in (105) is due to (97) and (99), thus from (103) and (104),
we have

σ1 0

⋱

0 σ1

0
B@

1
CA I þ Bð Þ2N�2N

σ1 0

⋱

0 σ1

0
B@

1
CA ¼ I þD0T

� �
(106)

The determinants of matrices at both sides of (106) are equal to each other

detσ1ð ÞNdet I þ Bð Þ detσ1ð ÞN ¼ det I þD0T
� �

¼ det I þD0ð Þ (107)

The left hand of (107) is just det I þ Bð Þ, and this completes verification of
identity (82). From the verified (82), we know multi-soliton solution (80) is surely
of a typical form as expected.

3.3 The explicit N-soliton solution to the DNLS+ equation with NVBC

In order to get an explicit N-soliton solution to the DNLS+ Eq. (1) with NVBC,
firstly we need to make an inverse Galileo transformation of (2) by x, tð Þ !
x� ρ2t, tð Þ in Fn x, tð Þ in (89). Due to (51) and (85)–(87), the typical soliton kernel
function Fn can be rewritten as

Fn ¼
2ρ

i z2n � ρ4z�2
n

� � bn 0ð Þ
_a znð Þ exp i2Λn x� 2λ2n þ ρ2

� �
t


 �
(108)

Fn � exp �θn þ iφnð Þ (109)

θn x, tð Þ ¼ ρ2 sin 2βnch2δn
� �

x� xn0ð Þ � ρ2 2þ cos2βnch4δn
ch2δn

� �
t

� �
� νn x� υnt� xn0ð Þ

(110)
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φn x, tð Þ ¼ ρ2 cos 2βnsh2δn
� �

x� ρ2 2þ cos 4βnch2δn
cos 2βn

� �
t

� �
þ φn0 � μn x� ξntð Þ þ φn0

(111)

μn ¼ ρ2 cos 2βnsh2δn, νn ¼ ρ2 sin 2βnch2δn (112)

υn ¼ ρ2 2þ ch4δn cos 2βn
ch2δn

� �
, ξn ¼ ρ2 2þ ch2δn cos 4βn

cos 2βn

� �
(113)

2ρ

i z2n � ρ4z�2
n

� � bn 0ð Þ
_a znð Þ � exp νnxn0ð Þ exp iφn0ð Þ (114)

tanh Θn � Θmð Þ ¼ � sh δn � δmð Þ cos βn � βmð Þ þ ich δn � δmð Þ sin βn � βmð Þ
sh δn þ δmð Þ cos βn þ βmð Þ þ ich δn þ δmð Þ sin βn þ βmð Þ (115)

where in (114) the n’th pole-dependent constant factor has been absorbed by
redefinition of the n’th soliton center and initial phase in (110)–(111).

Secondly, we need to calculate determinant CN ¼ det I þAð Þ �

det I þ B� fTg
� �

. According to the definition of A in (68)–(69), using Binet-

Cauchy formula, (Appendix (A.2)), leads to

CN ¼ det I þAð Þ ¼ det I þ B� fTg
� �

¼ 1þ
X2N

r¼1

X

1≤ n1 < n2 <⋯< nr ≤ 2N

A n1, n2,⋯, nrð Þ

(116)

where A n1, n2,⋯, nrð Þ is the determinant of a r,th-order minor of A consisting of
elements belonging to not only rows n1, n2,⋯, nrð Þ but also columns n1, n2,⋯, nrð Þ.

A n1, n2,⋯, n f

� �
¼
Y
n,m

znzmλn
ρ2λm

� �
f n

ρ

i z2n � ρ4z�2
m

� �
" #

fm
Y

n<m

i z2n � z2m
� �

i ρ4z�2
m � ρ4z�2

n

� �

(117)

n,m∈ n1, n2,⋯, nrð Þ. Using the same tricks as used in dealing with (84) leads to

A n1, n2,⋯, nrð Þ ¼
Y
n

z2n
ρ2

f 2n
ρ

i z2n � ρ4z�2
n

� �
Y

n<m

tanh 2
Θn � Θmð Þ

¼
Y
n

Fn tanhΘn

Y

n<m

tanh 2
Θn � Θmð Þ (118)

n,m∈ n1, n2,⋯, nrð Þ. Substituting (108)–(115) into (88) and (83) gives the

explicit values of DN � det I þ Bð Þ and DN . Substituting (118) into (116) then
completes calculation of CN in (81). In the end, by substituting (83) and (116) into
(80), we thus attain an explicit breather-type N-soliton solution of the DNLS+

Eq. (1) with NVBC under reflectionless case, based upon a revised and improved
inverse scattering transform. Due to the limitation of space, the asymptotic behav-
iors of the N-soliton solution are just similar to that of the pure N-soliton solution in
Ref. [7] and thus not discussed here, but it should be emphasized that in the limit of
t ! �∞, the N-soliton solution surely can be viewed as summation of N single
solitons with a definite displacement and phase shift of each soliton in the whole
process of elastic collisions.
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4. The one and two-soliton solutions to DNLS+ equation with NVBC

We give two concrete examples – the one and two breather-type soliton solu-
tions in illustration of the general explicit N� soliton formula.

In the case of one-soliton solution, N ¼ 1, z1 � ρeδ1eiβ1 , z2 ¼ ρ2z�1
1 ¼ ρe�δ1eiβ1 ,

and δ1 >0, β1 ∈ 0, π=2ð Þ, using formula (82), (88), (116), (108)–(115), and

c1 0ð Þ ¼ b10
_a z1ð Þ ¼ b10

z21 � z21
2z1

z21 � z22
z21 � z22

z1z2
z1z2

(119)

c2 0ð Þ ¼ b20
_a z2ð Þ ¼ b20

z22 � z22
2z2

z22 � z21
z22 � z21

z1z2
z1z2

(120)

we have

D1 ¼ 1þ B n1 ¼ 1ð Þ þ B n1 ¼ 2ð Þ þ B n1 ¼ 1, n2 ¼ 2ð Þ
¼ 1þ F1 þ F2 þ F1F2 tanh

2
Θ1 � Θ2ð Þ

¼ 1þ sin 2β1
sinh 2δ1

eiβ1e�θ1 eδ1eiφ1 þ e�δ1e�iφ1
� �

� ei2β1e�2θ1 (121)

C1 ¼ 1þ A n1 ¼ 1ð Þ þ A n1 ¼ 2ð Þ þ A n1 ¼ 1, n2 ¼ 2ð Þ
¼ 1þ F1 tanhΘ1 þ F2 tanhΘ2 þ F1F2 tanhΘ1 tanhΘ2 tanh

2
Θ1 � Θ2ð Þ

¼ 1þ sin 2β1
sinh 2δ1

ei3β1e�θ1 e3δ1eiφ1 þ e�3δ1e�iφ1
� �

� ei6β1e�2θ1 (122)

where not as that in (114), we define

b10e
i2λ1η1 x�2λ21tð Þ � e�θ1eiφ1 , b10 ¼ eν1x10eiφ10 (123)

�b20e
i2λ2η2 x�2λ22tð Þ � e�θ2eiφ2 (124)

θ1 x, tð Þ � ν1 x� υ1t� x10ð Þ (125)

φ1 x, tð Þ � μ1 x� ξ1tð Þ þ φ10, (126)

with μ1 ¼ ρ2 cos 2β1sh2δ1, ν1 ¼ ρ2 sin 2β1ch2δ1, and (127)

υ1 ¼ ρ2 2þ ch4δ1 cos 2β1
ch2δ1

� �
, ξ1 ¼ ρ2 2þ ch2δ1 cos 4β1

cos 2β1

� �
(128)

θ2 ¼ θ1,φ2 ¼ �φ1 (129)

It is different slightly from the definition in Eq. (114) for the reason that an

additional minus sign “�” before b20 can support (131)–(133) due to �b20 ¼ b10.
Substituting (121)–(122) into the following formula gives the one-soliton solution of
DNLS+ Eq. (1) with NVBC.

u1 x, tð Þ ¼ ρC1D1=D
2
1, or u1 x, tð Þ ¼ ρC1D1=D

2
1, (130)

which is generally called a breather solution and shown as Figure 2.
Formula (130) includes the one-soliton solution of the DNLS equation with VBC

as its limit case. In the limit of ρ ! 0, δ1 ! ∞ but an invariant ρeδ1 , we have

ρC1 ! 4 λ1j j sin 2β1ei3β1e�θ1eiφ1 (131)

D1 ! 1� ei2β1e�2θ1 , and D1 ! 1� e�i2β1e�2θ1 (132)
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Substituting (131) and (132) into (130), we can attain

u1 x, tð Þ ¼ 4 λ1j j sin 2β1e�i3β1e�θ1e�iφ1 1� ei2β1e�2θ1
� �

= 1� e�i2β1e�2θ1
� �2

(133)

If we redefine z1 � ρeδ1ei π=2�β01ð Þ, z2 � ρe�δ1ei π=2�β01ð Þ, then u1 x, tð Þ ¼ q1 x, tð Þ, the
complex conjugate of one-soliton solution (133), completely reproduce the one-
soliton solution that gotten in [17–20, 23], under the VBC limit with ρ ! 0, δ1 ! ∞,

but ρeδ1 ¼ 2 λ01
�� �� invariant, up to a permitted global constant phase factor. This

verifies the validity of our formula of N-Soliton solution and the reliability of the
newly revised inverse scattering transform.

The degenerate case for N ¼ 1, or the so-called pure one soliton solution, is also
a typical illustration of the present improved IST. It can be dealt with by letting

δ1 ! 0. The simple poles z1 ¼ ρeiβ1
� �

and z2 ¼ ρ2z�1
1 ¼ ρeiβ1

� �
are coincident, so do

z3 ¼ �z1ð Þ and z4 ¼ �ρeiβ1
� �

. Meanwhile μ1 ! 0, φ1 ! 0, ν1 ¼ ρ2 sin 2β1, �ib10 ∈.

Especially for the degenerate case, we have

a zð Þ ¼ z2 � z21

z2 � z21

z1
z1
, c1 0ð Þ ¼ b10

_a z1ð Þ ¼ b10
z21 � z21
2z1

z1
z1

(134)

�ib10e
i2λ1η1 x�2λ21tð Þ � εe�θ1 , θ1 x, tð Þ � ν1 x� υ1t� x10ð Þ (135)

with ν1 ¼ ρ2 sin 2β1, υ1 ¼ ρ2 1þ 2 cos 2β1ð Þ, ε ¼ sgn �ib10ð Þ. Then we have

D ¼ 1þ εeiβ1e�θ1 , or D ¼ 1þ εe�iβ1e�θ1 ;C ¼ 1þ z21F1=ρ
2
1 ¼ 1þ εei3β1e�θ1 (136)

u1 x, tð Þ ¼ ρ
C1D1

D
2
1

¼ ρ
1þ εei3β1e�θ1
� �

1þ εe�iβ1e�θ1
� �

1þ εeiβ1e�θ1ð Þ2
¼ ρ 1� 4ε sin 2β1

eθ1e�iβ1 þ e�θ1eiβ1 þ 2ε

� �

(137)

where ε ¼ 1 �1ð Þ corresponds to dark (bright) soliton. Similarly if we redefine
that β1 � π=2� β01, then solution (137) is just the same as that gotten in [4, 5,
11, 12, 16] and called one-parameter pure soliton. This further convinces us of the
validity and reliability of the newly revised IST for NVBC.

Figure 2.
The evolution of one-breather solution in time and space.
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In the case of breather-type two-soliton solution, N ¼ 2, we define that

z1 � ρeδ1eiβ1 , z2 ¼ ρe�δ1eiβ1 , z3 � ρeδ3eiβ3 , z4 ¼ ρe�δ3eiβ3 (138)

F j � e�θ jeiφ j , j ¼ 1, 2, 3, 4 (139)

which is just the same as that defined in (108)–(115), the pole z j-related constant
complex factor is absorbed into the j’th soliton center and the initial phase. Using
formula (80)–(82), (88), (116), (108)–(115), we have

u2 x, tð Þ ¼ ρC2D2=D
2
2, or u2 x, tð Þ ¼ ρC2D2=D

2
2 (140)

D2 ¼ det I þ Bð Þ ¼ 1þ B n1 ¼ 1ð Þ þ B n1 ¼ 2ð Þ þ B n1 ¼ 3ð Þ þ B n1 ¼ 4ð Þ
þ B n1 ¼ 1, n2 ¼ 2ð Þ þ B n1 ¼ 1, n2 ¼ 3ð Þ þ B n1 ¼ 1, n2 ¼ 4ð Þ þ B n1 ¼ 2, n2 ¼ 3ð Þ
þ B n1 ¼ 2, n2 ¼ 4ð Þ þ B n1 ¼ 3, n2 ¼ 4ð Þ þ B n1 ¼ 1, n2 ¼ 2, n3 ¼ 3ð Þ
þ B n1 ¼ 1, n2 ¼ 2, n3 ¼ 4ð Þ þ B n1 ¼ 1, n2 ¼ 3, n3 ¼ 4ð Þ
þ B n1 ¼ 2, n2 ¼ 3, n4 ¼ 4ð Þ þ B n1 ¼ 1, n2 ¼ 2, n3 ¼ 3, n4 ¼ 4ð Þ

¼ 1þ F1 þ F2 þ F3 þ F4 þ F1F2 tanh
2
Θ1 � Θ2ð Þ þ F1F3 tanh

2
Θ1 � Θ3ð Þ

þ F1F4 tanh
2
Θ1 � Θ4ð Þ þ F2F3 tanh

2
Θ2 � Θ3ð Þ

þ F2F4 tanh
2
Θ2 � Θ4ð Þ þ F3F4 tanh

2
Θ3 � Θ4ð Þ

þ F1F2F3 tanh
2
Θ1 � Θ2ð Þ tanh 2

Θ1 � Θ3ð Þ tanh 2
Θ2 � Θ3ð Þ

þ F1F2F4 tanh
2
Θ1 � Θ2ð Þ tanh 2

Θ1 � Θ4ð Þ tanh 2
Θ2 � Θ4ð Þ

þ F1F3F4 tanh
2
Θ1 � Θ3ð Þ tanh 2

Θ1 � Θ4ð Þ tanh 2
Θ3 � Θ4ð Þ

þ F2F3F4 tanh
2
Θ2 � Θ3ð Þ tanh 2

Θ2 � Θ4ð Þ tanh 2
Θ3 � Θ4ð Þ

þ F1F2F3F4 tanh
2
Θ1 � Θ2ð Þ tanh 2

Θ1 � Θ3ð Þ tanh 2
Θ1 � Θ4ð Þ

� tanh 2
Θ2 � Θ3ð Þ tanh 2

Θ2 � Θ4ð Þ tanh 2
Θ3 � Θ4ð Þ

(141)

Similarly we can attain C2 from (116) and (118) as follows

C2 ¼ det I þ Að Þ
¼ 1þ F1 tanΘ1 þ F2 tanΘ2 þ F3 tanΘ3 þ F4 tanΘ4

þ F1F2 tanhΘ1 tanhΘ2 tanh
2
Θ1 � Θ2ð Þ þ tanhΘ1 tanhΘ3F1F3 tanh

2
Θ1 � Θ3ð Þ

þ F1F4 tanhΘ1 tanhΘ4 tanh
2
Θ1 � Θ4ð Þ þ F2F3 tanhΘ2 tanhΘ3 tanh

2
Θ2 � Θ3ð Þ

þ F2F4 tanhΘ2 tanhΘ4 tanh
2
Θ2 � Θ4ð Þ þ F3F4 tanhΘ3 tanhΘ4 tanh

2
Θ3 � Θ4ð Þ

þ F1F2F3 tanhΘ1 tanhΘ2 tanhΘ3 tanh
2
Θ1 � Θ2ð Þ tanh 2

Θ1 � Θ3ð Þ tanh 2
Θ2 � Θ3ð Þ

þ F1F2F4 tanhΘ1 tanhΘ2 tanhΘ4 tanh
2
Θ1 � Θ2ð Þ tanh 2

Θ1 � Θ4ð Þ tanh 2
Θ2 � Θ4ð Þ

þ F1F3F4 tanhΘ1 tanhΘ3 tanhΘ3 tanh
2
Θ1 � Θ3ð Þ tanh 2

Θ1 � Θ4ð Þ tanh 2
Θ3 � Θ4ð Þ

þ F2F3F4 tanhΘ2 tanhΘ3 tanhΘ4 tanh
2
Θ2 � Θ3ð Þ tanh 2

Θ2 � Θ4ð Þ tanh 2
Θ3 � Θ4ð Þ

þ F1F2F3F4 tanhΘ1 tanhΘ2 tanhΘ3 tanhΘ4 tanh
2
Θ1 � Θ2ð Þ tanh 2

Θ1 � Θ3ð Þ tanh 2
Θ1 � Θ4ð Þ

� tanh 2
Θ2 � Θ3ð Þ tanh 2

Θ2 � Θ4ð Þ tanh 2
Θ3 � Θ4ð Þ

(142)
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Substituting (141)–(142) into (140) completes the calculation of breather-type
two-soliton solution. The evolution of breather-type two-soliton solution with
respect to time and space is given in Figure 3. It clearly display the whole process of
the elastic collision between two breather solitons, and in the limit of infinite time
t ! �∞, the breather-type two-soliton is asymptotically decomposed into two
breather-type 1-solitons.

4.1 Explicit pure N-soliton solution to the DNLS+ equation with NVBC

When all the simple poles are on the circle O, ρð Þ centered at the origin O, just as
shown in Figure 4, our revised IST for DNLS+ equation with NVBC will give a
typical pure N-soliton solution. The discrete part of a zð Þ is of a slightly different
form from that of the case for breather-type solution, and it can be expressed as

a zð Þ ¼
YN

n¼1

z2 � z2n
z2 � z2n

zn
zn

; _a znð Þ ¼ 2zn
z2n � z2n

zn
zn

YN

m¼1,m 6¼n

z2n � z2m
z2n � z2m

zm
zm

(143)

Figure 3.
Evolution of the square amplitude of a breather-type two-soliton with respect to time and space ρ ¼ 2; δ1 ¼ 0:4;
δ3 ¼ 0:6; β1 ¼ π=5:0; β3 ¼ π=2:2; x10 ¼ 0; x20 ¼ 0 =0; x30 ¼ 0; x40 ¼ 0; φ10 ¼ 0; φ20 ¼ 0; φ30 ¼ 0; φ40 ¼ 0.

Figure 4.
Integral contour as all poles are on the circle of radiusρ.
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At the zeros of a zð Þ, we have

ϕ x, znð Þ ¼ bnψ x, znð Þ, _a �znð Þ ¼ � _a znð Þ, bn ¼ �bn (144)

On the other hand, the zeros of a zð Þ appear in pairs and can be designed by zn,
(n ¼ 1, 2,⋯,N), in the I quadrant, and znþN ¼ �zn in the III quadrant. The
Zakharov-Shabat equation for pure soliton case of DNLS+ equation under
reflectionless case can be derived immediately

~ψ1 x, zð Þ ¼ e�iΛx þ λ
XN

n¼1

2z

λn

1

z2 � z2n
cnψ1 x, znð ÞeiΛnx

" #
e�iΛx (145)

~ψ2 x, zð Þ ¼ iρz�1e�iΛx þ λ
XN

n¼1

2zn
λn

1

z2 � z2n
cnψ2 x, znð ÞeiΛnx

" #
e�iΛx (146)

Here Λ ¼ κλ, Λn ¼ κnλn; Letting z ¼ ρ2z�1
m , m ¼ 1, 2,⋯,N, then

ψ1 x, zmð Þ ¼ �iρz�1
m eiΛmx þ

XN

n¼1

λmcn
λnz2m

� 2ρ3

i ρ4z�2
m � z2n

� �ψ1 x, znð Þei ΛnþΛmð Þx (147)

ψ2 x, zmð Þ ¼ eiΛmx þ
XN

n¼1

λmzncn
λnzm

� 2ρ

i ρ4z�2
m � z2n

� �ψ2 x, znð Þei ΛnþΛmð Þx (148)

Different from that in breather-type case, we define zn � ρeδneiβn ¼ ρeiβn , with
βn ∈ 0, π=2ð Þ, δn ¼ 0, i ¼ 1, 2,⋯,Nð Þ, specially we have

cn0 ¼ bn0= _a znð Þ ¼ ibn0ρ sin 2βne
iβn

YN

k¼1; k6¼n

sin βn þ βkð Þ
sin βn � βkð Þ (149)

tanh 2
Θn � Θmð Þ ¼ sin 2 βn � βmð Þ= sin 2 βn þ βmð Þ (150)

An inverse Galileo transformation x, tð Þ ! x� ρ2t, tð Þ changes Fn x, tð Þ into

Fn � f 2n
ρ

i z2n � ρ4z�2
n

� � ¼ 2ρ

i z2n � ρ4z�2
n

� � cnoe�i4λ3nκntei2Λnx

¼ �ibn0ð Þ
YN

k¼1; k 6¼n

sin βn þ βkð Þ
sin βn � βkð Þ e

i2Λn x� 2λ2þρ2ð Þt½ �þiβn (151)

Due to bn0 ¼ �bn0, � ibn0 ∈, following equations hold:

Fn ¼ eiβn
YN

k¼1; k6¼n

sin βn þ βkð Þ
sin βn � βkð Þ

 !
�ibn0e

i2Λn x� 2λ2nþρ2ð Þt½ �
� �

� εnEne
iβn exp �θn þ iφnð Þ

(152)

where

�ibn0e
i2Λn x� 2λ2nþρ2ð Þt½ � � εn exp �θn þ iφnð Þ (153)

θn x, tð Þ � νn x� υnt� xn0ð Þ,φn ¼ 0, (154)

εn � sgn �ibn0ð Þ; �ibn0j j � eνnxn0 (155)
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νn ¼ ρ2 sin 2βn, υn ¼ ρ2 1þ 2 cos 2βn
� �

(156)

En �
YN

k¼1; k 6¼n

sin βn þ βkð Þ
sin βn � βkð Þ (157)

where En is also a real constant which is only dependent upon the order number
n. The constant and positive real number �ibn0j j has been absorbed by redefinition
of the n’ th soliton center xn0 in (155). Thus the determinants in formula (83) for
pure soliton solution can be calculated as follows

DN � det I þ Bð Þ ¼ 1þ
XN

r¼1

X

1≤ n1 <⋯<nr ≤N

B n1, n2,⋯, nrð Þ (158)

B n1, n2,⋯, nrð Þ ¼
Y
n

f 2n
ρ

i z2n � ρ4z�2
n

� �
" #Y

n<m

i z2n � z2m
� �

i ρ4z�2
m � ρ4z�2

n

� �

i z2n � ρ4z�2
m

� �
i z2m � ρ4z�2

n

� �

¼
Y
n

Fn

Y

n<m

tanh 2
Θn � Θmð Þ

¼
Y
n

εnEne
iβne�θn

Y

n<m

sin 2 βn � βmð Þ
sin 2 βn þ βmð Þ

; n,m∈ n1, n2,⋯, nrð Þ

(159)

CN ¼ det I þ Að Þ ¼ 1þ
XN

r¼1

X

1≤ n1 < n2 <⋯<nr ≤N

A n1, n2,⋯, nrð Þ (160)

A n1, n2,⋯, n f

� �
¼
Y
n

z2n
ρ2

Fn

Y

n<m

tanh 2
Θn � Θmð Þ

¼
Y
n

εnEne
i3βne�θn

Y

n<m

sin 2 βn � βmð Þ
sin 2 βn þ βmð Þ

; n,m∈ n1, n2,⋯, nrð Þ (161)

Substituting (149)–(157) into (158)–(161), and substituting (158)–(161) into the
following formula, we attain the explicit pure N-soliton solution

uN � ρCNDN=D
2
N or uN � ρCNDN=D

2
N (162)

The N ¼ 2 case, that is, the pure two-soliton is also a typical illustration of the
general explicit N-soliton formula. According to (158)–(162), it can be calculated as
follows

D2 ¼ 1þ B 1ð Þ þ B 2ð Þ þ B 1, 2ð Þ

¼ 1þ ε1E1e
iβ1e�θ1 þ ε2E2e

iβ2e�θ2 þ ε1ε2E1E2e
i β1þβ2ð Þe� θ1þθ2ð Þ sin 2 β1 � β2ð Þ= sin 2 β1 þ β2ð Þ

¼ 1þ ε1
sin β1 þ β2ð Þ
sin β1 � β2ð Þ e

iβ1e�θ1 � ε2
sin β1 þ β2ð Þ
sin β1 � β2ð Þ e

iβ2e�θ2 � ε1ε2e
i β1þβ2ð Þe� θ1þθ2ð Þ

(163)

C2 ¼ 1þ A 1ð Þ þ A 2ð Þ þ A 1, 2ð Þ

¼ 1þ ε1
sin β1 þ β2ð Þ
sin β1 � β2ð Þ e

i3β1e�θ1 � ε2
sin β1 þ β2ð Þ
sin β1 � β2ð Þ e

i3β2e�θ2 � ε1ε2e
i3 β1þβ2ð Þe� θ1þθ2ð Þ

(164)
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u2 x, tð Þ ¼ ρC2D2=D
2
2 (165)

The evolution of pure two-soliton solution with respect to time and space is
given in Figure 5. It clearly demonstrates the whole process of the elastic collision
between pure two solitons. If 0< β2 < β1 < π=2, then ε1 ¼ 1, sgnE1 ¼ 1 and ε2 ¼ �1,
sgnE2 ¼ �1 correspond to double-dark pure 2-soliton solution as in Figure 5a;
ε1 ¼ �1, sgnE1 ¼ 1 and ε2 ¼ 1, sgnE2 ¼ �1 correspond to a double-bright pure
2-soliton solution in Figure 5c; ε1 ¼ 1, sgnE1 ¼ 1 and ε2 ¼ 1, sgnE2 ¼ �1
correspond to a dark-bright-mixed pure 2-soliton solution in Figure 5b. In the limit
of infinite time t ! �∞, the pure 2-soliton solution is asymptotically decomposed
into two pure 1-solitons.

By the way, it should be point out, although our method and solution have
different forms from that of Refs. [7, 16], they are actually equivalent to each other.
In fact if the constant En, (n ¼ 1, 2,⋯,N), is also absorbed into the n’th soliton
center xn0 just like �ibn0 does in (152)–(154), and replace βn with β0n ¼ π=2�
βn ∈ 0, π=2ð Þ, the result for the pure soliton case in this section will reproduce the
solution gotten in Refs. [7, 9, 16].

On the other hand, letting only part of the poles converge in pairs on the circle in
Figure 1 and rewriting the expression of an zð Þ as in Ref. [7, 8, 12], our result can

Figure 5.
Evolution of pure two soliton solution in time and space. (a) dark-dark pure 2-soilton, (b) dark-bright pure
2-soilton, and (c) bright-bright pure 2-soilton.
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naturally generate the mixed case with both pure and breather-type multi-soliton
solution.

4.2 The asymptotic behaviors of the N-soliton solution

Without loss of generality, we assume β1 > β2 >⋯> βn >⋯> βN;
υ1 < υ2 <⋯< υn <⋯< υN in (156), and define the n’th neighboring area as ϒn :

x� xno � υnt � 0, n ¼ 1:2,⋯,Nð Þ. In the neighboring area of ϒn,

θ j ¼ ν j x� x j0 � υ jt
� �

! fþ∞, for j> n
�∞, for j< n (166)

D≈B 1, 2,…, n� 1ð Þ þ B 1, 2,…, n� 1, nð Þ (167)

C≈A 1, 2,…, n� 1ð Þ þ A 1, 2,…, n� 1, nð Þ (168)

where

B 1, 2,…, nð Þ ¼ εnEne
�θn�iβn

Yn�1

j¼1

sin 2 β j � βn

� �

sin 2 β j þ βn

� �B 1, 2,…, n� 1ð Þ (169)

A 1, 2,…, n� 1, nð Þ ¼ εnEne
�θnþi3βn

Yn�1

j¼1

sin 2 β j � βn

� �

sin 2 β j þ βn

� �A 1, 2,…, n� 1ð Þ (170)

In the neighboring area of ϒn, we have

u≃ u1 θn þ Δθ �ð Þ
n

� �
(171)

With

Δθ �ð Þ
n ¼ 2

Xn�1

j¼1

ln
sin β j � βn

� �

sin β j þ βn

� �

������

������
(172)

As t ! �∞, the N neighboring areas queue up in a descending series
ϒN,ϒN�1,⋯,ϒ1, then

uN ≃
XN

n¼1

u1 θn þ Δθ �ð Þ
n

� �
(173)

the N-soliton solution can be viewed as N well-separated exact pure one

solitons, each u1 θn þ Δθ �ð Þ
n

� �
, (1, 2,⋯, n) is a single pure soliton characterized by

one parameter βn, moving to the positive direction of the x-axis, queuing up in a
series with descending order number n.

As t ! ∞, in the neighboring area of ϒn we have

θ j ¼ ν j x� x j0 � υ jt
� �

! f�∞, for j> n
þ∞, for j< n (174)

D≈B n, nþ 1,…,Nð Þ þ B nþ 1, nþ 2,…,Nð Þ (175)

C≈A n, nþ 1,…,Nð Þ þ A nþ 1, nþ 2,…,Nð Þ (176)
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where

B n, nþ 1,…,Nð Þ ¼ εnEne
�θn�iβn

YN

j¼nþ1

sin 2 β j � βn

� �

sin 2 β j þ βn

� �B nþ 1, nþ 2,…,Nð Þ (177)

A n, nþ 1,…,Nð Þ ¼ εnEne
�θnþi3βn

YN

j¼nþ1

sin 2 β j � βn

� �

sin 2 β j þ βn

� �A nþ 1, nþ 2,…,Nð Þ

(178)

u≃ u1 θn þ Δθ þð Þ
n

� �
(179)

Δθ þð Þ
n ¼ 2

XN

nþ1

ln
sin β j þ βn

� �

sin β j � βn

� �

������

������
(180)

uN ≃
XN

n¼1

u1 θn þ Δθ þð Þ
n

� �
(181)

That is, the N-soliton solution can be viewed as N well-separated exact pure one
solitons, queuing up in a series with ascending order number n such as
ϒ1,ϒ2,⋯,ϒN:.

In the process of going from t ! �∞ to t ! ∞, the n’th pure single soliton
overtakes the solitons from the 1’th to n� 1’th and is overtaken by the solitons from
nþ 1’th to N’th. In the meantime, due to collisions, the n’th soliton got a total

forward shift Δθ �ð Þ
n =νn from exceeding those slower soliton from the 1’th to n� 1’th,

got a total backward shift Δθ þð Þ
n =νn from being exceeded by those faster solitons

from nþ 1’th to N’th, and just equals to the summation of shifts due to each
collision between two solitons, that is,

Δxn ¼ Δθ þð Þ
n � Δθ �ð Þ

n

�� ��=νn (182)

By introducing an suitable affine parameter in the IST and based upon a newly
revised and improved inverse scattering transform and the Z-S equation for the
DNLSþ equation with NVBC and normal dispersion, the rigorously proved
breather-type N-soliton solution to the DNLSþ equation with NVBC has been
derived by use of some special linear algebra techniques. The one- and two-soliton
solutions have been given as two typical examples in illustration of the unified
formula of the N-soliton solution and the general computation procedures. It can
perfectly reproduce the well-established conclusions for the special limit case. On
the other hand, letting part/all of the poles converge in pairs on the circle in
Figure 4 and rewriting the expression of an zð Þ as in [7, 12, 13], can naturally
generate the partly/wholly pure multi-soliton solution. Moreover, the exact
breather-type multi-soliton solution to the DNLSþequation can be converted to that
of the MNLS equation by a gauge-like transformation [17].

Finally, the elastic collision among the breathers of the above multi-soliton
solution has been demonstrated by the case of a breather-type 2-soliton solution.
The newly revised IST for DNLSþ equation with NVBC and normal dispersion
makes corresponding Jost functions be of regular properties and asymptotic behav-
iors, and thus supplies substantial foundation for its direct perturbation theory.
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5. Space periodic solutions and rogue wave solution of DNLS equation

DNLS equation is one of the most important nonlinear integrable equations in
mathematical physics, which can describe many physical phenomena in different
application fields, especially in space plasma physics and nonlinear optics [1, 2,
16, 24–29]. We have found that DNLS equation can generate not only some usual
soliton solutions such as dark/bright solitons and pure/breather-type solitons, but
also some special solutions – space periodic solutions and rogue wave solution [14].

There are two celebrated models of the DNLS equations. One equation is called
Kaup-Newell (KN) equation [15]:

iut þ uxx þ i u2u
� �

x
¼ 0 (183)

and the other is called Chen-Lee-Liu (CLL) equation [30]:

ivt þ vxx þ ivvvx ¼ 0 (184)

Actually, there is a gauge transformation between these two Eqs. (183) and
(184) [14, 30, 31]. Supposing u is one of the solutions of the KN Eq. (183), then

v ¼ u � exp i

2

ðx
uj j2dx

� �
(185)

will be the solution of the CLL equation.
This section focuses on the KN Eq. (183) with NVBC – periodic plane-wave

background. The first soliton solution of (183) was derived by Kaup and Newell via
inverse scattering transformation (IST) [3, 15, 32]. Whereafter, the multi-soliton
solution was gotten by Nakamura and Chen by virtue of the Hirota method [30, 31].
The determinant expression of the N-soliton solution was found by Huang and
Chen on the basis of the Darboux transformation (DT for brevity) [33], and by
Zhou et al., by use of a newly revised IST [7, 11–13, 17].

Recently, rogue waves which seem to appear from nowhere and disappear
without a trace have drawn much attention [34, 35]. The most significant feature of
rogue wave is its extremely large wave amplitude and space-time locality [35]. The
simplest way to derive the lowest order of rogue wave, that is, the Peregrine
solution [35, 36], is to take the long-wave limit of an Akhmediev breather [37] or a
Ma breather [38], both of which are special cases of the periodic solution. Thus, the
key procedure of generating a rogue wave is to obtain an Akhmediev breather or a
Ma breather. As far as we know, DT plays an irreplaceable role in deriving the rogue
wave solution [39–41]. Because both Akhmediev breather and Ma breather can exist
only on a plane-wave background; Darboux transformation has the special privilege
that a specific background or, in other words, a specific boundary condition can be
chosen as the seed solution used in DT. For instance, if we choose q0 ¼ 0 as the seed
solution of the DT of the KN Eq. (183), then after 2-fold DT, a new solution will be
gotten under VBC:

q 2½ � ¼ 4iαβ
�iα1 cosh 2Γð Þ þ β1 sinh 2Γð Þð Þ3

�α21 � β21
� �

cosh 2Γð Þ2 þ β21

� �2 (186)

(where all the parameters are defined in Ref. [38]). Similarly, setting a seed
solution q0 ¼ c exp i axþ �c2 þ að Þat½ �, a plane-wave solution to Eq. (183), will
generate a new solution after 2-fold DT under a plane-wave background. Therefore,
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there is no need to discuss the boundary conditions or background when applying
DT to solve those nonlinear integrable equations. This makes DT the most effective
and prevailing method in obtaining a rogue wave solution.

Compared with DT, the IST has its fatal flaw that the difficulty of dealing with
the boundary condition is unavoidable, which limits the possible application of the
IST. Although the KN equation has been solved theoretically by means of an
improved IST for both VBC and the NVBC [7–9, 17–20], there is no report that the
KN equation could be solved under a plane-wave background by means of IST. And
consequently, it appears that rogue wave solutions cannot be obtained through the
IST method. This major problem is caused by the difficulty of finding appropriate
Jost solutions under the plane-wave background.

On the other hand, the Hirota’s bilinear-derivative transform (HBDT for
brevity) [42–46], though not as a prevalent method as DT, has its particular
advantages. The core of this method is a bilinear operator D which is defined by:

Dn
t D

m
x A•B � ∂

∂t
� ∂

∂t0

� �n
∂

∂x
� ∂

∂x0

� �m

A x, tð ÞB x0, t0ð Þ t0¼t; x0¼xj (187)

where, at the left side of the above formula, a dot • between two functions
A x, tð Þ and B x0, t0ð Þ represents an ordered product. The HBDT method is very useful
in dealing with periodic solutions for its convenience in computing the bilinear
derivatives of an exponential function [44]:

F Dx,Dy,⋯,Dt

� �
exp kxþ lyþ⋯þ ωtð Þ• exp k0xþ l0yþ⋯þ ω0t

� �

¼ F k� k0, l� l0,⋯,ω� ω0� �
exp kþ k0

� �
xþ lþ l0

� �
yþ⋯þ ωþ ω0ð Þt


 � (188)

Here, F represents general function expressed by the finite or infinite power
series expansion of the Hirota’s bilinear differential operators. Formula (188) is the
generalization of Appendix 5.5. Thus using HBDT method to find space periodic
solutions of KN equation is practicable. The space periodic solutions possess the
characters that they approach the plane-wave solution when ∣t∣ ! ∞ and are peri-
odic in space. The first space periodic solution was found by Akhmediev with one
parameter [45]. Actually, we can regard the space periodic solution as a special
Akhmediev breather with a pure complex-valued wave number. Further, through a
space periodic solution, a rogue wave solution can be constructed. This means
besides DT, HBDT method is also an alternative and effective way to find rogue
wave solution of KN equation.

5.1 Bilinear derivative transformation of DNLS equation

The Hirota bilinear transformation is an effective method which could help to
solve the KN equation. Due to the similarity of the first equation of Lax pairs
between that of DNLS equation and AKNS system, there is a direct inference and
manifestation that u x, tð Þ has a typical standard form [6, 7]:

u x, tð Þ ¼ g f= f 2 (189)

where f and g are complex auxiliary functions needed to be determined. Apply-
ing the bilinear derivative transform to (189), we can rewrite the derivatives of
u x, tð Þ in the bilinear form [19, 20, 42–46]:

ut ¼ f fDt g � f � g f Dt f � f
� �

= f 4 (190)
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uxx ¼ f fD2
x g � f � 2 Dx g � fð Þ Dx f � f

� �
þ g f D2

x f � f � 2 g fD2
x f � f

h i
= f 4 (191)

uj j2u
� �

x
¼ 2 g gDx g � f þ g2Dx g � f
� �

= f 4 (192)

Directly substituting the above Eqs. (190)–(192) into (183) gives:

f f iDt þD2
x

� �
g � f � g f iDt þD2

x

� �
f � f þ f�2Dx f 3 � g 2Dxf � f � ig g

� �h i
¼ 0

(193)

Then the above transformed KN equation can be decomposed into the following
bilinear equations:

iDt þD2
x � λ

� �
g � f ¼ 0 (194)

iDt þD2
x � λ

� �
f � f ¼ 0 (195)

Dx f � f ¼ igg=2 (196)

where λ is a constant which needs to be determined. Notice that if λ ¼ 0 then the
above bilinear equations are overdetermined because we have only two variables
but three equations. Actually, setting λ ¼ 0 is the approach to search for the soliton
solution of the DNLS equation under vanishing boundary condition [19, 20]. Here,
we set λ as a nonzero constant to find solutions under a different boundary condi-
tion – a plane-wave background.

5.2 Solution of bilinear equations

5.2.1 First order space periodic solution and rogue wave solution

Let us assume that the series expansion of the complex functions f and g in (189)
are cut off, up to the 2’th power order of ϵ, and have the following formal form:

f ¼ f 0 1þ ϵ f 1 þ ϵ
2 f 2

� �
; g ¼ g0 1þ ϵg1 þ ϵ

2g2
� �

(197)

Substituting f and g into Eqs. (194)–(196) yields a system of equations at the
ascending power orders of ϵ, which allows for determination of its coefficients
[14, 19, 20]. We have 15 equations [14, 19, 20] corresponding to the different orders
of ϵ. After solving all the equations, then we can obtain the solution of the DNLS
equation:

u 1½ � x, tð Þ ¼ f
1½ �
g 1½ �= f 1½ �2 (198)

with

g 1½ � ¼ ρeiωt 1þ a1e
pxþΩtþϕ0 þ a2e

�pxþΩtþϕ0 þMa1a2e
ΩþΩð Þtþϕ0þϕ0

� �
(199)

f 1½ � ¼ eiβx 1þ b1e
pxþΩtþϕ0 þ b2e

�pxþΩtþϕ0 þMb1b2e
ΩþΩð Þtþϕ0þϕ0

� �
(200)

where

ω ¼ 3ρ4=16; β ¼ ρ2=4 (201)
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a1 ¼ b1
2Ωþ 2ip2 � pρ2

2Ω� 2ip2 � pρ2
; a2 ¼ b2

2Ωþ 2ip2 þ pρ2

2Ω� 2ip2 þ pρ2
(202)

b2 ¼
b1 Ωþ ip2 � pρ2
� �

Ω� ip2 � pρ2
;M ¼ 1þ 4p4

ΩþΩ
� �2 (203)

Notice that ρ and M are real; b1 and φ0 are complex constants, so there are two
restrictions for a valid calculation: (1) the wave number pmust be a pure imaginary
number; (2) the angular frequency Ω must not be purely imaginary number and
must furthermore satisfy the quadratic dispersion relation:

4Ω2 þ 4pρ2Ωþ 4p4 þ 3p2ρ4 ¼ 0 (204)

According to the test rule for a one-variable quadratic, there is a threshold
condition under which Ω will not be a pure imaginary number:

2p4 þ p2ρ4 <0 (205)

The asymptotic behavior of this breather is apparent. Because the wave number
p is a pure imaginary number, the breather is a periodic function of x. The quadratic
dispersion relation (204) permits the angular frequency Ω to have two solutions:

Ωþ ¼ �pρ2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 2p4 þ p2ρ4ð Þ

q� �
=2 (206)

Ω� ¼ �pρ2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 2p4 þ p2ρ4ð Þ

q� �
=2 (207)

If we set Ω ¼ Ωþ, because
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2p4 þ p2ρ4ð Þ

p
>0, then t ! �∞ will lead to:

g 1½ � ! ρ exp iωtð Þ (208)

f 1½ � ! exp iβxð Þ (209)

u 1½ � ! ρ exp i �3βxþ ωtð Þ (210)

And t ! ∞ will lead to:

g 1½ � ! ρMa1a2 exp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 2p4 þ p2ρ4ð Þ

q
þ ϕ0 þ ϕ0 þ iωt

� �
(211)

f 1½ � ! Mb1b2 exp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 2p4 þ p2ρ4ð Þ

q
þ ϕ0 þ ϕ0 þ iβx

� �
(212)

u 1½ � ! ρ exp i �3βxþ ωtþ φð Þ (213)

where φ is the phase shift across the breather:

exp iφð Þ ¼ a1a2=b1b2 (214)

and due to ∣a1a2∣ ¼ ∣b1b2∣, thus the above phase shift φ is real and does not affect

the module of the breather u 1½ � when t ! ∞. As for the other choice Ω ¼ Ω�, further

algebra computation shows the antithetical asymptotic behavior of g 1½ �, f 1½ �, and u 1½ �

when ∣t∣ ! ∞. In a nutshell, u 1½ � will degenerate into a plane wave.
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Hereto, we have completed the computation of the 1st-order space periodic
solution, the space-time evolution of its module is depicted in Figure 6. In what
follows, we will take the long-wave limit, that is, p ! 0, to construct a rogue wave
solution. Supposing p ¼ iq, here q is a real value and q ! 0, then the asymptotic
expansion of the angular frequency Ω is:

Ω ¼ qρ2 �iþ σð Þ=2þ O q3
� �

(215)

where σ ¼ �
ffiffiffi
2

p
. For the sake of a valid form of the rogue wave solution, we need

to set b1 ¼ 1 and φ0 ¼ 0 (of course, setting b1 ¼ 1 and eφ0 ¼ �1 is alright, all we need

is to make sure that the coefficients of the q0 and q1 in the expansions of f 1½ � and g 1½ �

are annihilated). Therefore, the expansions of g 1½ � and f 1½ � in terms of q are given by:

g 1½ � ¼ q2eiωt
�8 7iþ 5σð Þ þ 16x 1� 2iσð Þρ2 þ 3 �iþ σð Þρ4 4x2 � 4ρ2tx� 8itþ 3ρ4t2ð Þ

12 �iþ σð Þρ3 þO q3
� �

(216)

f 1½ � ¼ q2eiβx
8 �iþ σð Þ þ 16xρ2 þ �iþ σð Þρ4 4x2 � 4ρ2tx� 8itþ 3ρ4t2ð Þ

4 �iþ σð Þρ4 þ O q3
� �

(217)

Consequently, the rogue wave solution can be derived according to Eq. (198):

uRW ¼ ρ ei �3βxþωtð Þ g0 f 0
� �

= f 0
2

(218)

where

g0 ¼ �8 7iþ 5σð Þ þ 16x 1� 2iσð Þρ2 þ 3 �iþ σð Þρ4 4x2 � 4ρ2tx� 8itþ 3ρ4t2
� �

;

f 0 ¼ 24 �iþ σð Þ þ 48xρ2 þ 3 �iþ σð Þρ4 4x2 � 4ρ2tx� 8itþ 3ρ4t2
� �

:

Here ω and β are given by Eq. (201), ρ is an arbitrary real constant. The module
of rogue wave solution Eq. (218) is shown in Figure 7.

As we discussed in the Introduction section, there is a gauge transformation
between KN Eq. (183) and CLL Eq. (184). Thus, it is instructive to use the integral
transformation Eq. (185) to construct a solution of Eq. (184). Substituting the
solution (198) into (185), further algebra computation will lead to a space periodic
solution of the CLL equation:

υc x, tð Þ ¼ g 1½ �= f 1½ � (219)

Figure 6.
The space-time evolution of the module of the 1st order space periodic solution in (198) with p ¼ i, ρ ¼ffiffiffi
2

p
, b1 ¼ i and Ω ¼ Ωþ, complex constant φ0 is set to zero.
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where, g 1½ �, f 1½ �, and other auxiliary parameters are invariant and given by
Eqs. (199)–(203). The same procedures which are used to derive the rogue wave
solution of the KN equation can be used to turn υc into a rogue wave solution of the
CLL equation:

υc,RW ¼ ρ ei �βxþωtð Þg0= f 0 (220)

which has the same parameters as uRW . And this solution υc,RW has exactly the
same form as the result given by ref. [46].

5.2.2 Second-order periodic solution

Taking the similar procedures described previously could help us to derive the
2nd-order space periodic solution. Assume the auxiliary functions f and g to have
higher order expansions in terms of ϵ:

g ¼ g0 1þ ϵg1 þ ϵ
2g2 þ ϵ

3g3 þ ϵ
4g4

� �
(221)

f ¼ f 0 1þ ϵ f 1 þ ϵ
2 f 2 þ ϵ

3 f 3 þ ϵ
4 f 4

� �
(222)

Similarly, substituting f and g into the bilinear Eqs. (194)–(196) leads to the 27
equations [14, 19, 20] corresponding to different orders of ϵ. Solving these equa-
tions is tedious and troublesome but worthy and fruitful. The results are expressed
in the following form:

u 2½ � x, tð Þ ¼ f
2½ �
g 2½ �= f 2½ �2 (223)

with

g 2½ � ¼ ρeiωt 1þ g1 þ g2 þ g3 þ g4
� �

(224)

f 2½ � ¼ eiβx 1þ f 1 þ f 2 þ f 3 þ f 4
� �

(225)

β ¼ ρ2=4;ω ¼ 3ρ4=16; λ ¼ ρ4=16 (226)

g1 ¼
X

i

aie
ϕi ; f 1 ¼

X

i

bie
ϕi (227)

Figure 7.
The space-time evolution of the module of the rogue wave solution with ρ ¼ 1 and σ ¼ ffiffiffi

2
p

. The max amplitude
is equal to 3 at the point x ¼ � ffiffiffi

2
p

, t ¼ �2
ffiffiffi
2

p
=3ð Þ.
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g2 ¼
X

i< j

Mijaia je
ϕiþϕ j ; f 2 ¼

X

i< j

Mijbib je
ϕiþϕ j (228)

g3 ¼
X

i< j< k

Tijkaia jake
ϕiþϕ jþϕk ; f 3 ¼

X

i< j< k

Tijkbib jbke
ϕiþϕ jþϕk (229)

g4 ¼ Aa1a2a3a4e
ϕ1þϕ2þϕ3þϕ4 ; f 4 ¼ Ab1b2b3b4e

ϕ1þϕ2þϕ3þϕ4 (230)

where i, j, k ¼ 1, 2, 3, 4, and the above parameters and coefficients are given
respectively by:

p2 ¼ p1; p4 ¼ p3;Ω2 ¼ Ω1;Ω4 ¼ Ω3 (231)

ϕi ¼ pixþΩitþ ϕ0i; ai ¼ bi2Ωi þ 2ip2i � piρ
2=2Ωi � 2ip2i � piρ

2 (232)

b2 ¼ b1
Ω2 þ ip22 þ p2ρ

2

Ω2 � ip22 þ p2ρ
2
; b4 ¼ b3

Ω4 þ ip24 þ p4ρ
2

Ω4 � ip24 þ p4ρ
2

(233)

Mij ¼
Ωip j � Ω jpi

� �2
þ p2i p

2
j pi � p j

� �2

Ωip j � Ω jpi

� �2
þ p2i p

2
j pi þ p j

� �2 (234)

Tijk ¼ MijMjkMki;A ¼
Y

i< j

Mij (235)

Of course, for a valid and complete calculation, we are faced with the same
situation as the 1st-order breather: ρ is real, b1, b3 and all φ0i are complex constants.
Certainly, each wave number pi must be a pure imaginary number and each angular
frequency Ωi has to satisfy the quadratic dispersion relation:

4Ω2
i þ 4piρ

2
Ωi þ 4p4i þ 3p2i ρ

4 ¼ 0, i ¼ 1, 2, 3, 4ð Þ (236)

And the threshold conditions for each complex-valued Ωi share the same form as
Eq. (205):

2p4i þ p2i ρ
4
<0 (237)

Figure 8.
The space-time evolution of the module of the 2nd order space periodic solution with
p1 ¼ 0:4i, p3 ¼ 0:75i, b1 ¼ i, b3 ¼ 1 and ρ ¼ 1:6. Other phase factors φ1 and φ3 are set to zero.
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The space-time evolution of the module of the 2nd order space periodic solution
(223) is shown in Figure 8. Paying attention to the form of this breather and the
previous one, we will notice that this breather can exactly degenerate into the
1st-order breather if we take p3 ¼ p1. Under this condition, M13 ¼ M24 ¼ 0, thus

the higher order interaction coefficients Tijk and A will vanish. Therefore, g 2½ � and

f 2½ � will degenerate into the forms of g 1½ � and f 1½ �, respectively:

g 2½ �
p3¼p1

¼ g0
1½ � ¼ ρeiωt 1þ a01e

ϕ1 þ a02e
ϕ2 þM12a

0
1a

0
2e

ϕ1þϕ2
� �

(238)

f 2½ �
p3¼p1

¼ f 0
1½ � ¼ eiβx 1þ b01e

ϕ1 þ b02e
ϕ2 þM12b

0
1b

0
2e

ϕ1þϕ2
� �

(239)

where b01 ¼ χb1, b
0
2 ¼ χb2, a01 ¼ χa1 and a02 ¼ χa2 with χ ¼ b1 þ b3ð Þ=b1. That is

how u 2½ � can be reduced to u 1½ �. Given to this reduction, a generalized form of these
two breathers arises:

u N½ � ¼ f
N½ �
g N½ �= f N½ �2; N ¼ 1, 2ð Þ (240)

g N½ � ¼ ρeiωt 1þ
X2N

r¼1

X

1≤ n1 <⋯< nr ≤ 2N

M n1,⋯, nrð Þ
Ynr

i¼n1

aie
ϕi

 !
(241)

f N½ � ¼ eiβx 1þ
X2N

r¼1

X

1≤n1 <⋯<nr ≤ 2N

M n1,⋯, nrð Þ
Ynr

i¼n1

bie
ϕi

 !
(242)

where the coefficient M is defined by:

M ið Þ ¼ 1 (243)

M n1,⋯, nrð Þ ¼
Y

i< j

Mi j; i, j∈ n1,⋯, nrð Þ (244)

On the other hand, this breather possesses the same feature as the former one
that it is periodic with respect to variable x due to the pure imaginary numbers p1
and p3. In addition, its asymptotic behaviors are analogical to the 1st-order space
periodic solution. Each quadratic dispersion equation has two roots, respectively:

Ω1� ¼ �p1ρ
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 2p41 þ p21ρ

4
� �q� �

=2 (245)

Ω3� ¼ �p3ρ
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 2p43 þ p23ρ

4
� �q� �

=2 (246)

Thus, we will have four combinations of Ω1 and Ω2. Details are numerated in
Table 1. The parameters φ0,φ and φ0 in Table 1 are the phase shifts which are all

real so that they will not change the module of u 2½ � when t ! ∞. And φ is given in
Eq. (214), and others are determined by:

exp iφ0ð Þ ¼ a1a2a3a4=b1b2b3b4 (247)

exp iφ0ð Þ ¼ a3a4=b3b4 (248)

From Table 1, we could draw the conclusion that this breather will also
degenerate into the background plane wave as ∣t∣ ! ∞. Furthermore, there is a
phase shift across the breather from t ¼ �∞ to t ¼ ∞, which depended on the
choice of Ω1 and Ω2.

31

Soliton and Rogue-Wave Solutions of Derivative Nonlinear Schrödinger Equation - Part 2
DOI: http://dx.doi.org/10.5772/intechopen.93450



In this section, the 1st order and the 2nd order space periodic solutions of KN
equation have been derived by means of HBDT. And after an integral transforma-
tion, these two breathers can be transferred into the solutions of CLL equation.
Meanwhile, based on the long-wave limit, the simplest rogue wave model has been
obtained according to the 1st order space periodic solution. Furthermore, the
asymptotic behaviors of these breathers have been discussed in detail. As |t| ! ∞,
both breathers will regress into the plane wave with a phase shift.

In addition, the generalized form of these two breathers is obtained, which gives
us an instinctive speculation that higher order space periodic solutions may hold
this generalized form, but a precise demonstration is needed. Moreover, higher
order rogue wave models cannot be constructed directly by the long-wave limit of a
higher order space periodic solution because the higher order space periodic solu-
tion has multiple wave numbers pi, we are also interested in seeking an alternative
method besides DT that could help us to determine the higher order rogue wave
solutions.

6. Concluding remarks

In the end, as the author of the above two parts, part 1 and 2, I want to give some
concluding remarks. As a whole, the two parts had taken the DNLS equation as a
reference, systematically introduced several principal methods, such as IST, GLM
(Marchenko) method, HBDT, to solve an integrable nonlinear equation under VBC
and NVBC. We had gotten different kinds of soliton solutions, such as the light/
dark soliton, the breather-type soliton, the pure soliton, the mixed breather-type
and pure soliton, and especially the rogue-wave solution. We had also gotten soliton
solutions in a different numbers, such as the one-soliton solution, the two-soliton
solution, and the N-soliton solution. Nevertheless, I regret most that I had not
introduced the Bäcklund transform or Darboux transform to search for a rogue
wave solution or a soliton solution to the DNLS equation, just like professor Huang
N.N., one of my guiders in my academic research career, had done in his paper [33].
Another regretful thing is that, limited to the size of this chapter, I had not intro-
duced an important part of soliton studies, the perturbation theory for the nearly-
integrable perturbed DNLS equation. Meanwhile, this chapter have not yet involved
in the cutting-edge research of the higher-order soliton and rogue wave solution to
the DNLS equation, which remain to be studied and concluded in the future.

A. Appendices

Some useful formulae.
A1, If A1 and A2 are N � 1 matrices, A is a regular N �N matrix, then

A1
TA�1A2 ¼ det Aþ A2A1

T
� �

=det Að Þ � 1 (A1)

Choice of Ωi Ω1þ,Ω2þ Ω1þ,Ω2� Ω1�,Ω2þ Ω1�,Ω2�

t ! �∞ ρe�3iβxþiωt ρe�3iβxþiωtþiφ0
ρe�3iβxþiωtþiφ ρe�3iβxþiωtþiφ0

t ! ∞ ρe�3iβxþiωtþiφ0 ρe�3iβxþiωtþiφ ρe�3iβxþiωtþiφ0
ρe�3iβxþiωt

Table 1.
Asymptotic behaviors of u 2½ �.
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A2, Binet-Cauchy formula: For a squared N �N matrix B

det I þ Bð Þ ¼ 1þ
XN

r¼1

X

1≤ n1 < n2 <⋯< nr ≤N

B n1, n2,⋯, nrð Þ (A2)

where B n1, n2,⋯, nrð Þ is a r’th-order principal minor of B.
A3, For a N � N matrix Q1 and a N � N matrix Q2,

det I þ Q1Q2ð Þ ¼ 1þ
PN
r¼1

P
1≤ n1 < n2 <⋯<nr ≤N

Ωr n1, n2,⋯nrð Þ

¼ 1þ
XN

r¼1

X

1≤ n1 <⋯< nr ≤N

X

1≤m1 <⋯<mr ≤N

Q1 n1, n2,⋯nr;m1,m2,⋯,mrð ÞQ2 m1,m2,⋯mr; n1, n2⋯, nrð Þ

(A3)

where Q1 n1, n2,⋯nr;m1,m2,⋯,mrð Þ denotes a minor, which is the determinant
of a submatrix of Q1 consisting of elements belonging to not only rows (n1, n2,⋯nr)
but also columns (m1,m2,⋯,mr).

The above formula also holds for the case of det I þΩ1Ω2ð Þ With Ω1 to be a
N � N þ 1ð Þ matrix and Ω2 a N þ 1ð Þ �N matrix.

A4, For a squared matrix C with elements Cjk� ¼ f jgk x j � yk
� ��1

,

det Cð Þ ¼
Y

j

f jg j

Y

j< j0, k< k0
x j � x j0

� �
yk0 � yk
� �Y

j, k

x j � yk
� ��1

(A4)

A5, Some useful blinear derivative formulae.

A

B

� �

x

¼ DxA � B
B2 (A5)

A

B

� �

xx

¼ D2
xA � B
B2 � A

B

D2
xB � B
B2 (A5.1)

Dxab � cd ¼ bdDxa � cþ acDxb � d ¼ bcDxa � dþ adDxb � c (A5.2)

D2
xab � cd ¼ bdD2

xa � cþ 2 Dxa � cð Þ Dxb � dð Þ þ acD2
xb � d (A5.3)

Dn
tD

m
x exp η1ð Þ � exp η2ð Þ ¼ Ω1 �Ω2ð Þn Λ1 � Λ2ð Þm exp η1 þ η2ð Þ, (A5.4)

where ηi ¼ Ωi tþ Λixþ η0i，i ¼ 1, 2; Ωi, Λi, η0i are complex constants.
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