
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



1

Chapter

New Developments in Behavioral 
Pharmacology
Jonathan Cueto-Escobedo, Fabio García-García, 

Caio Maximino and Juan Francisco Rodríguez-Landa

Abstract

Behavioral pharmacology research has been a cornerstone in the understanding 
of the processes that underlie the behavior of living organisms as well as the biological 
basis of the behavioral, emotional, and cognitive disorders that affect humans. 
The findings in this area have helped to explore the potential therapeutic effects 
of several substances for the treatment of the mentioned disorders. The present 
chapter brings an extremely brief introduction to this vast area. First, we try to put 
in context behavioral pharmacology and its relevance and then show some brief 
examples of how this discipline has developed over the years. Second, we review 
the concept of a “research model” in preclinical behavioral pharmacology, given 
the importance of animal models and tests in this area, followed by a brief review 
of the recent advances using zebra fish as a valuable tool of research. Third, more 
specific examples are aborded, such as the findings on sleep disorders and those 
related to sexual hormones and menopause.

Keywords: behavioral pharmacology, psychopharmacology, psychoactive drugs, 
behavioral models

1. Introduction

Every time academics talk about the evolution of human societies and the 
advance of humanity, language is always mentioned, followed by different pieces of 
technology that allowed us to change the world. Few times, medicine is mentioned, 
and within the same area of knowledge, pharmacology is even more frequently 
omitted. But without the development of pharmacology as a science founded in 
systematic research, the capacities of medical sciences and therapeutics would 
be very limited. Knowledge in pharmacology allows us to understand that there 
exist chemical substances with very specific structures and properties which, in 
controlled doses, can interact with the normal physiology of our organism in order 
to produce effects that improve our health, known as therapeutic effects; but if the 
doses are insufficient or excessive, the effects will be useless or harmful (toxic), 
respectively [1]. These substances responsible for the actions of medicines are 
named as active compounds.

Most of the active compounds used in medicine were consumed together 
with the organism which contained them, most frequently plants. As chemistry 
advanced, scientists succeed in isolating these compounds and described their 
chemical structure. In consequence, laboratories started to synthesize these 
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substances and others with a similar structure that should be tested in research 
laboratories before using them to treat diseases in humans [2].

Nowadays, pharmacological research has grown beyond treatments for infec-
tious agents, covering diseases related to the alteration of the normal functioning 
of the central nervous system (CNS). There are medications to treat disorders such 
as depression, anxiety, chronic pain, attention deficit and hyperactivity disorder, 
epilepsy, and Parkinson’s disease, and new drugs are desperately sought to stop 
Alzheimer’s disease. On the other hand, one of the most important current health 
problems is related to the addictive behaviors triggered by the consumption of 
certain substances and the side effects of these addictions: respiratory and cardio-
vascular diseases in the case of tobacco, metabolic diseases in the case of alcoholism 
and addictive consumption of refined sugars, infectious diseases in the case of 
injected drugs, and many others that are not mentioned here. Without losing sight 
of the fact that addiction is itself a disease of the nervous system with devastating 
effects per se on the patient’s quality of life. In several countries, prescription of 
different therapeutic agents acting on the CNS to treat psychiatric disorders, such as 
antidepressants, antipsychotics, and stimulants, has increased [3, 4] as in the case 
of methylphenidate and amphetamines in different countries such as United States 
[5] and the Netherlands [6]. The same way, antidepressant users have increased 
markedly around the world in countries such as Norway, Sweden, and Denmark 
[7], among others. Additionally, the use of different substances of abuse such as 
tobacco [8] and marijuana has increased in the population [9]. Also, the develop-
ment of new technologies and products has a significant impact on mental health as 
the discovery of Internet addiction [10] and the addictive consumption of refining 
sugar [11, 12], which impacts on the behavior of subjects. All these make important 
the continuous development of behavioral pharmacology in order to cope with the 
challenges in mental health.

2. Development of behavioral pharmacology

Behavioral pharmacology, also known as psychopharmacology, has developed as an 
interdisciplinary science that comprises fields such as neuroethology, neurochemistry, 
pharmacology and neuropharmacology, psychophysiology, neurophysiology, experi-
mental analysis of behavior, and several other fields related to neurosciences [13]. 
Behavioral pharmacology is founded on systematic research with precise methods 
for assessing and interpreting the effects of chemical, hormones, and drugs on the 
behavior in humans and experimental animals in order to establish its potential as 
therapeutic agents or pharmacologic tools to explore how the brain functions and 
the underlying neurobiological mechanism of cognition, emotions, and behavior. 
Behavioral pharmacology must thus be an integral component of many neurosci-
ence research programs [14].

In this sense, the development of behavioral pharmacology comprises the 
development of areas as pharmacology and psychology, experimental analysis of 
behavior, and recently neuroscience. For a historical review, see [14–16]. However, 
research in behavioral pharmacology can be summarized in: (1) the development 
of procedures to screen pharmacological agents for potential clinical effective-
ness. (2) Perfecting behavioral techniques to explore the mechanisms of action 
of behaviorally active drugs and using these chemicals and drugs as tools for the 
analysis of complex behaviors (i.e., when drugs reinforce behavior and when drugs 
serve as discriminative stimuli) [16] (see Table 1). Therefore, drugs are not only a 
subject of study, because of its behavioral effects but are also a piece of technology 
that helps to elucidate how behaviors are controlled by living organisms.



3

New Developments in Behavioral Pharmacology
DOI: http://dx.doi.org/10.5772/intechopen.93700

3. Measuring behavior

Behavior is a biological property of organisms, which remarks on the signifi-
cance of the study of drug-behavior interactions [15]. Maybe, a great example of 
the impact of behavior beyond psychology is the research by ethologists K. Lorenz, 
N. Tinbergen, and K. von Frisch, which focused on the analysis of behavior in 
several species including fish, insects, and birds, and the importance of which made 
them worthy of the Nobel price of medicine in 1973 “for their discoveries concerning 
organization and elicitation of individual and social behaviour patterns.”

The first step in all behavioral sciences has been to define what is behavior; it 
could seem an easy task, but historically many different definitions of behavior have 
been used by scientists over the time, and even the knowing of a unique definition 
is elusive and may be useless for every different area such as psychology, ethology, 
and experimental analysis of behavior, among others; for review see [26, 27]. As 
mentioned before, one of the directions of behavioral pharmacology was the devel-
opment of procedures to screen the effects of pharmacological agents on specific 
behaviors under controlled environments. This approach allows scientists to work 
with operational definitions of specific behaviors, for example, exploration can be 

Year Description Reference

1936 Selye H. described the impact of several types of adverse stimuli on animal 

health, in the form of a syndrome characterized by three phases: alarm, 

adaptation, and exhaustion, which can lead to death if stimuli are maintained. 

This syndrome was later named as the stress response which has been intensively 

studied and strongly associated with the impairment of brain function in 

animals or the development of mental disorders in humans

[17]

1972 The first study to administrate Delta-9-tetrahydrocannabinol in humans to test 

the effects on sleep patterns is carried out. The results show a decrease in sleep 

onset latency. To date, there are controversial results about the positive effects 

the cannabis on sleep quality

[18]

1977 The forced swim test is proposed as a behavioral tool to explore the effects of 

antidepressant drugs in rats and mice that are exposed to a stressful inescapable 

condition that triggers despair behavior (immobility)

[19]

1986 Elevated plus maze is developed as a tool to measure anxiety-like behaviors of 

the rat and test substances with potential anxiolytic effects

[20]

1988 Modafinil was prescribed for the first time for the treatment of narcolepsy and 

idiopathic hypersomnia in patients

[21]

2005 This study explored the behavioral and neuronal response to stress in 

ovariectomized rats (OVX). These rats were more sensitive to stress, which 

was associated with a low concentration of steroid hormones. This effect was 

prevented by restitution with 17-β estradiol

[22]

2006 Anxiety-like behavior is dependent on the post-ovariectomy time frame. At 

12-week post-ovariectomy there is more anxiety-like behavior than a 3-week 

post-ovariectomy

[23]

2016 The first systemic review and meta-analysis that discuss the effects of the orexin 

agonist Suvorexant for the treatment of insomnia. Suvorexant improved some 

sleep parameters, but some adverse effects were reported

[24]

2019 In this study, it was identified that at 3-week post-ovariectomy appears anxiety-

like behavior, but from 6-week post-ovariectomy in addition to anxiety-like 

behavior, also increases depression-like behavior in rats, supporting an 

experimental model of surgical post-menopause

[25]

Table 1. 
Emblematic research in behavioral pharmacology.
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measured by scoring ambulation, rearing or nose approaching to an object; sexual 
behavior can be measured by conditioned place preference, number of mounts, 
latency and number of ejaculations. All these behaviors are normally studied under 
controlled environments that are designed specifically to the required behavioral 
display and every feature of the environment; the experimental subjects or chemical 
agents with probed effects on humans have been studied in this environment with 
the purpose of establishing these manipulations as models of a specific behavior 
(see Table 2) as spatial learning and memory, or models of specific pathologies 
behaviorally expressed as is the case of anxiety [28], depression [29], obsessive 
compulsive disorder [30], Parkinson [31], epilepsy [32] or addictive behaviors [33], 
and sleep deprivation [34], among others.

3.1 Behavioral models of brain disorders

Animals are used as proxies for human phenomena throughout the literature, and 
the exact definition of what constitutes a “model” can be confusing. In behavioral 
pharmacology, a field that intersects between psychology, neuroscience, and phar-
macology [42], different uses are attributed to different epistemic operations and, as a 
consequence, to different definitions of validity [43, 44]. One of the most basic defini-
tions is that by Paul Willner, which defined screening tests as those uses of animal 
behavior that are capable of discriminating between different drug effects (i.e., possess 
high predictive validity); behavioral bioassays as those uses of animal behavior that 
are capable of shedding light on the neural basis of normal behavior (i.e., possess high 

Research area Description

Hormone 

restitution 

therapy

This review discussed, 25 years ago, the importance of steroid hormones in the 

regulation of behavior and some psychiatry disorders; particularly depression 

associated with premenstrual syndrome and the transition to menopause. Also, it 

discusses some research about the role of hormone restitution therapy in ameliorating 

depression symptoms [35]

Sexual 

dimorphism

This review discusses preclinical and clinical research that show how hormones are 

involved in the sex differences in some psychiatric disorders like anxiety, and their 

interactions between fear, stress, and gonadal hormones [36]

Behavioral 

animal models

This research reviews the relevance of non-mammalian models in behavioral 

pharmacology with application in the development of biological psychiatry [37]

Behavioral 

model of 

menopause

This review highlights the importance of animal models of menopause in the 

understanding of neurobiological changes associated with the long-term absence of 

ovarian hormones. To then elucidate novel perspectives and interventions to improve 

the life quality in the menopausal women under a translational context [38]

Sleep and 

insomnia

This review describes the efficacy of new drugs in the treatment of insomnia such as 

melatonin, Remelteon, Tasimelteon, and Suvorexant, among others [39]

Hormones and 

behavior

This review discusses the influence of hormones on brain function and behavior, and 

integrate information to explain how the brain and the body communicate reciprocally 

via hormones and other mediators, and in ways that influence brain and body health 

but which can also accelerate diseases processes when the mediators of allostasis are 

dysregulated [40]

Addiction A review of the most popular behavioral models for the study of addictions such 

as conditioned place preference and self-administration and new models to study 

behavioral addictions as gambling and exercise addiction [33]

Sleep disorders This review describes the Pitolisant (Wakix®), first-in-class antagonist/inverse agonist 

of the H3 receptor for the treatment of narcolepsy with or without cataplexy [41]

Table 2. 
Current topics in behavioral pharmacology.
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face validity); and simulations as those uses of animal behavior that can inform on the 
etiology, pathophysiology, and treatment of human (mental) disorders (i.e., possess 
high construct validity). Further developments of this framework [45] advance the 
theory of validity, therefore improving the capability of researchers to evaluate animal 
models.

Screening tests show good predictive validity in that they are able to detect the 
effects of drugs, which are already known to have clinical efficacy; as a result, they are 
likely to be able to predict the effect of new drugs, which show similar biochemical or 
behavioral effects in the test [42, 43]. Examples include most uses of the tail suspension 
test and forced swim tests, which are commonly referred to as models of depression 
but actually do not simulate the etiological and pathophysiological aspects of human 
depression. When used without any further manipulations of the animal (i.e., lesions, 
genetic manipulations, or other stressors which are thought to be causally related 
to depression), these tests are good at discriminating drugs which act as serotonin 
reuptake inhibitors and reasonably good at predicting antidepressant efficacy. Since 
screening tests rely mostly on predictive validity, current approaches to modeling in 
behavioral pharmacology view them as limited. Moreover, producing models which 
show good construct validity in at least some domains (i.e., epidemiology, symptom-
atology and natural history, genetics, biochemistry, etiology, histological alterations, 
or endpoints) has been proposed as a way to indirectly increase predictive validity 
[46], as drugs which improve performance in a test that simulates at least some aspects 
of the target disorder.

Behavioral bioassays are tests that use nonhuman animals to try to understand 
the histological, electrophysiological, biochemical, and genetic bases of neurobe-
havioral functions [42, 43]. Usually, bioassays are used to understand normal 
functioning, instead of pathological alterations in these psychological processes. 
They rely on face validity—that is, how much performance in the test “resembles” 
the target human function. Of course, taken “as is,” face validity runs a great risk of 
anthropomorphism, and the resemblance should not be sought at the topography 
level, but at the functional level [47]. For example, the elevated plus-maze, when 
used as a test per se (and not as an endpoint in a simulation), is interpreted as a 
behavioral bioassay of anxiety due to the functional role of thigmotaxis in rodent 
defensive behavior [48, 49]. Of course, this comparison only makes sense if we con-
sider that anxiety is a normal mechanism that is associated with defensive behavior 
[50, 51]. Thus, the face validity of a test is only as good as our psychological/
behavioral theory about a given function (i.e., anxiety, fear, memory, and attention, 
among others) [47].

Finally, simulations are tests, which use nonhuman animals to try to understand 
a human disorder from the point of view of etiology and pathophysiology [42, 43]. 
Most approaches to psychopathology currently frame disorders in a diathesis-stress 
theory [45], which assumes that vulnerabilities (general or specific; genetic, devel-
opmental, or temperamental) increase the probability of developing a specific dis-
order when the individual passes through general or specific stressors. In analogy, to 
develop a simulation of a mental disorder in a nonhuman animal, the vulnerabilities 
and stressors should be modeled, transforming an “initial organism” into a “vulner-
able organism” and this latter into a “pathological organism,” in which behavioral 
endpoints are assessed and biomarkers evaluated [44, 45]. From all senses of “behav-
ioral model,” the simulation is the one that better approaches the idea of modeling 
a disease [42, 44], but is also the more time-consuming. Moreover, to increase the 
construct validity of a simulation, aspects such as etiology and pathophysiology 
should be taken into consideration, but sometimes these aspects are unknown and 
are precisely what is under investigation [42]. Thus, high construct validity needs to 
be balanced against practical constraints, and therefore no behavioral simulations 
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with optimal characteristics exist [52]. In the next pages some examples of these 
“behavioral models” are described in order to introduce the present book.

4. Behavioral models in zebra fish

Under the framework discussed above for behavioral models, interesting 
approaches have appeared using non-rodent species. While mice and rats are still 
the most widely used model organisms in behavioral pharmacology [53], zebra fish 
(Danio rerio Hamilton 1822) come in an honorable third place, quickly “swimming 
into view” as a relevant model organism in this field [54]. The “classical” criteria 
for selecting a model organism in genetics and developmental biology—small size, 
fast (and external) development, easy reproduction, low cost, genetic tractability 
[55]—are present in zebra fish [37]. Moreover, other advantages are also described 
by zebra fish researchers: phylogenetic position; intermediate complexity in 
physiology and throughput; availability of tools to study neurocircuitry and to 
interfere in normal function (i.e., expression vectors, pharmacogenomic tools, and 
advanced microscopy); a productive community of researchers; and accumulation 
of significant data and methodological developments [37]. The combination of 
these characteristics suggested that zebra fish could be a suitable model organism in 
behavioral pharmacology.

Currently, very few true simulations exist in zebra fish, and most behavioral 
tests that are used to study psychiatric disorders in this species are actually screen-
ing tests or behavioral bioassays. This is a consequence of an extensive focus of the 
research in the field in the last 20 years on developing behavioral tests. This step, of 
course, was necessary to galvanize research in the field. Notable exceptions exist, 
but—as is the case with most initial work on using model organisms to study disor-
ders and investigational treatments—these are still limited. However, past research 
has identified and allowed to control factors that affect zebra fish behavioral tests. 
Now it is clear how chemical properties of the water, illumination, number of fish 
per tank and routes of administration modify pharmacological effects. For example, 
administration by immersion is useful for chronic treatments but lacks a precise 
control of the doses absorbed [56], on the other hand, intraperitoneal administra-
tions ensure the absolute control of doses but are not useful for chronic treatments 
due to the stress that produce [57]. Oral administration through drugs incorporated 
in the food is useful for chronic treatments and controlling the doses is easier than 
immersion [58], however chemical properties of the drug determine their ability to 
hold into the food until swallowed and oral metabolism must be considered. With 
the standardization of the proper protocols these factors can be controlled, and its 
effects limited so, behavioral pharmacology research with zebra fish is still a suit-
able and growing field.

The zebra fish light/dark test [59] and the novel tank test [60] are widely used to 
test the effects of different drugs on anxiety-like behavior in this species. These tests 
rely on natural preferences observed in the wild, and display excellent remission 
validity—that is, they are sensitive to drugs which affect anxiety in clinical settings, 
and not sensitive to drugs which do not affect anxiety [61]. As a result, these tests 
were used as screening tests to investigate new drugs, including drugs derived from 
natural products and plants, for example, refs. [62, 63]. These tests have also been 
used to study the neural mechanisms of anxiety-like behavior [64–68]. Thus, these 
tests can be used both as screening tests and as behavioral bioassays.

The behavior of adult zebra fish is more complex than the behavior of larvae, but 
its throughput is smaller. Throughput can be increased by testing larval behavior 
in microplates [69]. Light levels and stimuli can be delivered simultaneously to 
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many larvae at once, increasing throughput and reproducibility. For example, the 
photo-motor response (a stereotypic series of motor behaviors that are elicited by 
high-intensity light) is sensitive to a wide range of psychoactive drugs and able to 
predict mechanisms of action of drugs, which were previously not investigated in 
rodents [70]. A battery of assays has been proposed in larval zebra fish that is highly 
sensitive to antipsychotics and able to identify haloperidol-like compounds [71]. 
While suffering from the low face and construct validity these assays show very 
good predictive validity, and therefore are suitable as screening tests.

Examples of simulations can be found in the field of neurological disorders 
[72]. An interesting example is the generation of mutants with differences in genes 
known to be associated with diseases. In humans, mutations in the SCN1A gene, 
which encodes a voltage-gated sodium channel, causes Dravet syndrome, charac-
terized by severe intellectual disability, impaired social development, and drug-
resistant seizures. The scn1Lab mutant zebra fish displays spontaneous seizure-like 
electroencephalogram activity, convulsive-like motor patterns, and hyperactivity 
[73]. These mutants have been used to investigate drugs, which could be used to 
treat Dravet syndrome in human patients; drugs that affect the serotonergic system 
have been found to ameliorate the symptoms in the mutants [74], and suggest 
interesting avenues for human patients.

Now, we will review the role of behavioral pharmacology on a subject extensively 
explored in human trials: sleep.

5. Behavioral pharmacology and sleep disorders

Pharmacological treatment of sleep disorders is still partially known and not 
well understood. Currently, extensively pharmacological research is focused in two 
sleep disorders: insomnia and narcolepsy. Insomnia is defined as the individual’s 
inability to fall asleep, manifested by a long latency to sleep onset and frequent 
nighttime awakenings experienced three times per week or more, for at least 1 
month [75]. Insomnia causes emotional disturbances, impairs cognition, and 
reduced quality of life [76, 77]. Most epidemiologic studies have found that about 
one-third of adults (30–36%) report at least one symptom of insomnia, like dif-
ficulty initiating sleep or maintaining sleep [78]. Currently, benzodiazepines or 
Z-drugs (zopiclone, zolpidem, or zaleplon) are the first options to treat insomnia. 
These drugs act as positive allosteric modulators at the GABAA binding site, 
potentiating GABAergic inhibitory effects [79]. However, short-term or long-term 
treatment with these drugs has undesirable effects such as cognitive or memory 
impairment, the rapid development of tolerance, rebound insomnia upon discon-
tinuation, car accidents or falls, and a substantial risk of abuse and dependence 
[39, 80, 81], which make necessary research on new potential therapeutic agents.

According to the new evidence-based clinical practice guidelines for the treatment 
of insomnia [75], new pharmacology agents for insomnia management are imple-
mented (Table 3).

On the other hand, Type 1 narcolepsy (narcolepsy with hypocretin deficiency) 
is a chronic neurodegenerative sleep disorder caused by a deficiency of hypocretin-
producing neurons in the lateral hypothalamus (LH). Hypocretin neurons are 
involved in the control of the sleep-wake cycle [87]. Treatment of narcolepsy is 
traditionally based on amphetamine-like stimulants that enhance dopaminergic 
release to improve narcoleptic symptoms. Nonetheless, a new group of drugs is 
arising as a forthcoming treatment of narcolepsy.

Pitolisant (Wakix®) is an inverse agonist of the histamine H3 auto-receptor 
that not only blocks the braking effect of histamine or H3 receptor agonists on 
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endogenous histamine release from depolarized synaptosomes but also enhances 
histamine release over the basal level (even at low nanomolar concentrations) in the 
structures as hypothalamus and cerebral cortex [88]. The administration of 20 mg/kg 
of Pitolisant promoted wakefulness, and decreased abnormal direct REM sleep onset 
in narcoleptic hypocretin knockout mice by enhancing histaminergic and noradren-
ergic activity [89]. Pitolisant seem a safe therapeutic option since doses of 120 mg 
once a day in the morning, that represent six times the therapeutic, doses did not pro-
duce adverse effects and plasma levels reduced at the end of the day, ensuring a lack 
of waking effect during the night [90]. Additionally, adverse effects due to metabolic 
drug-drug interaction are low since Pitolisant is metabolized by two distinct CYP450 
isoforms. For example, the administration of 40 mg of Pitolisant together with 10 mg 
of Olanzapine to a group of healthy volunteers did not change drug plasma levels 
compared to only one drug administration [91].

6.  Behavioral pharmacology of steroid hormones in a model of surgical 
menopause

Any chapter on behavioral pharmacology would be incomplete without a section 
reviewing the effects of certain hormones. Behavioral, emotional and affective 
states are influenced by plasma and brain concentration of steroid hormones 
in diverse organisms. Particularly, in nonhuman primates and humans there is 
significant sexual dimorphism respect to behavior and emotional states. Initially, 
the attributed properties of steroid hormones were related to the maintaining of 
secondary sexual characters and reproductive function, but some decades ago, it 
has been established that steroid hormones also influence behavior and some psy-
chiatric disorders. Expression of anxiety- and depression-related behaviors depends 
on plasma and brain levels of steroid hormones; which in vulnerable subjects could 
predispose to development of some psychiatric disorder [92].

In humans, anxiety and depression symptoms are more frequent in women than 
men in a proportion of 3:1. These differences have been attributed to differences in 
the concentration of steroid hormones. Particularly in women, a high incidence of 
anxiety and depression symptoms has been identified during physiological states 

Drugs Site of action Therapeutic effect

Antidepressant (trazodone, 

mirtazapine, olanzapine, and 

quetiapine)

Agonists of the serotonin 

receptor 5-HT2A and 

5-HT2C

Moderate improvement in 

subjective sleep

Little improvement in sleep 

efficiency [82]

Antiparkinsonian ropinirole Agonist of the dopamine 

receptor D2

Improvement in efficiency of sleep 

and total time slept [83]

Suvorexant Antagonist of the orexin 

receptor

Improvement of sleep onset and 

subjective total slept time compared 

to placebo [84]

Ramelteon Dual agonist of both 

MT1 and MT2 melatonin 

receptors

Improvement in latency to 

persistent sleep, total sleep time and 

sleep efficiency [85]

Diphenhydramine Agonist of the 

histaminergic receptors

No clear beneficial impact on  

sleep [86]

Table 3. 
New drugs used to insomnia management.
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characterized by low concentration of steroid hormones (i.e., estradiol, progester-
one and their reduced metabolites) as naturally occur during premenstrual period, 
post-partum period, and transition to menopause [93, 94]. However, it also occurs 
when women are subjected to a surgical procedure to remove the ovaries (i.e., 
oophorectomy) with or without the uterus (i.e., hysterectomy), where an abrupt 
reduction in steroid hormones concentrations occurs [95] affecting behavioral 
response. Apparently, the significant reduction of steroid concentration produces 
anatomical, physiological, and neurochemical changes in the brain, that negatively 
impact on behavior, emotional, and affective states [96, 97].

Preclinical research with laboratory animals has made possible identify the 
behavioral and emotional changes associated with a reduced concentration of 
steroid hormones when rats are undergoing to an extirpation of both ovaries 
(i.e., ovariectomy), which increases vulnerability to stress that can be reverted by 
injection of severe doses of estradiol [22]. The long-term ovariectomy (> 8 weeks 
post-ovariectomy) is considered then as a surgical menopause model that explores 
the behavioral, neurobiological, emotional and affective changes associated with 
oophorectomy that occurs in women [98]. In the long-term ovariectomized rats 
display higher anxiety- and depression-like behavior in experimental models 
such as elevated plus maze and forced swim test, respectively. These behavioral 
changes are correlated with a reduced neurochemical activity on serotonergic, 
noradrenergic, dopaminergic, and GABAergic pathways; in addition to a reduction 
in the number of dendritic spines and neuronal activity in some brain structures 
(i.e., hippocampus, amygdala, lateral septum, prefrontal cortex, among others). 
Through behavioral analysis is possible identifying the gradual changes associ-
ated with surgical menopause in rats. It was observed that after 3-week post-
ovariectomy, rats showed high anxiety-like behavior (i.e., there is a reduction of 
exploration of the open arms) in the elevated plus maze with respect to cycling rats 
with intact ovaries, but after 6-week post-ovariectomy, additionally to anxiety-like 
behavior, rats also displayed high depression-like behavior in the forced swim test 
(i.e., increase in the total time of immobility), which negatively correlates with 
the Fos-immunoreactive cells in limbic brain structures such as the lateral septal 
nucleus [25]. The behavioral and neurochemical characterization of long-term 
ovariectomy allows the pharmacological research of different substances that 
could be potentially relevant to the development of pharmacological therapies to 
ameliorate anxiety and depression symptoms that occur during natural or surgical 
menopause.

As mentioned before, anxiety-like behavior is dependent on the post-ovariectomy 
time frame in rats. After 12-weeks post ovariectomy rats show high anxiety-like 
behavior respect to rats at 3-weeks post-ovariectomy in the burying behavior parading. 
This high anxiety-like behavior is reduced after injection of 1–2 mg/kg diazepam, 
a typical anxiolytic benzodiazepine drug [23]. Similarly, i.p. injection of 0.5 and 
1 mg/kg phytoestrogen genistein (a secondary metabolite obtained from soybeans) 
significantly reduces anxiety-like behavior in rats at 12-week post-ovariectomy in the 
light/dark behavioral paradigm through action on the estrogen receptor-β [99, 100]. 
Additionally, s.c. injection of 0.9 or 0.18 mg/kg genistein exerts similar anxiolytic-
like effects in the elevated plus maze than 17β-estradiol in rats subjected to surgical 
menopausal model. This is consistent with clinical observations that estradiol reduces 
anxiety symptoms associated with natural and surgical menopause, and additionally 
supports the potential use of phytoestrogens as an alternative therapy to ameliorate 
emotional symptoms associated to menopause.

Research in behavioral pharmacology has contributed to the study of pharmacolog-
ical actions of natural products. In rats at 12-weeks post-ovariectomy, 50 mg/kg by oral 
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rout of the aqueous crude extract of Montanoa tomentosa, a Mexican plant tradition-
ally recommended for the treatment of anxiety and other illness of women, reduces 
anxiety-like behavior in the elevated plus maze [101]. Said actions have been related 
with pharmacological actions on the GABAA receptors [102]. Additionally, second-
ary metabolites from plants, for example, the flavonoids are reported with anxiolytic 
properties in behavioral models in rats. In this way, 2 and 4 mg/kg, i.p., of the flavonoid 
chrysin produces anxiolytic-like effects in rats with surgical menopause subjected to 
the elevated plus maze and the light/dark test [103]; the said effects were produced 
through action on the GABAA receptor because the pretreatment with 1 mg/kg picro-
toxin, a noncompetitive antagonist of the GABAA receptor, cancels the anxiolytic-like 
effect of chrysin.

7. Conclusion

As mentioned before, behavioral pharmacology is an interdisciplinary field. 
The present chapter tried to reflect briefly the essence of behavioral pharmacology 
through an anecdotical review of its developments in areas familiar to the authors. 
All findings mentioned above underline the importance of the research in behav-
ioral pharmacology on the understanding of the neurobiology of different disorders 
and the mechanism of action of drugs used to treat such disorders, and at the same 
time, provide a perspective on the current research done in this growing area, which 
is and will be a cornerstone in the understanding of human behavior and mental 
health.
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