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Chapter

Mode-I and Mode-II Crack Tip
Fields in Implicit Gradient
Elasticity Based on Laplacians of
Stress and Strain. Part III:
Numerical Simulations
Carsten Broese, Jan Frischmann and Charalampos Tsakmakis

Abstract

A two-dimensional formulation of the 3-PG Model of implicit gradient elasticity
has been developed in Part I. The predicted near-tip fields for Mode-I and Mode-II
crack problems have been derived in Part II. It has been found that both the classical
Cauchy stress and the nonclassical double stress are singular with the order of

singularity r�
1
2. In the present chapter, the two-dimensional model formulation is

implemented in a finite element code. For verification of the resulting finite ele-
ment model, a square section with a circular hole subjected to displacement-
controlled tension loading is considered and discussed. The main concerns of the
chapter are, on the one hand, to validate the analytical solutions of Part II. On the
other hand, the chapter aims to investigate the effect of nonclassical material
parameters on the stress intensity factors.

Keywords: implicit gradient elasticity, finite elements, square section with a hole,
mode-I and mode-II crack problems, stress intensity factors, angular functions

1. Introduction

Mode-I and Mode-II crack problems have been discussed analytically in Part II
for the 3-PG Model of implicit gradient elasticity. Solutions for the near-tip fields
have been obtained by employing the method of asymptotic expansion of Williams’
type (see Williams [1]). It has been proved that both the classical Cauchy stress and

the nonclassical double stress are singular with the order of singularity r�
1
2. Even

more, the first two terms in the asymptotic expansion of the Cauchy stress are
identical to those in the context of classical elasticity. The leading terms of the
asymptotic expansions of the classical and the nonclassical stresses are represented
by the so-called stress intensity factors.

The present chapter deals with numerical simulations that employ the 3-PG
Model to solve crack problems of Mode-I and Mode-II types. A finite element model
for plane strain is developed in the framework of a weak formulation based on the
principle of virtual work. To verify the finite element formulation and implemen-
tation, a representative example is considered: a square section with a circular hole
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subjected to tension loading. The predicted stress concentration factors are com-
pared with the corresponding stress concentration factors predicted by classical
elasticity. The main objectives are to confirm the assumptions and the analytical
results of Part II as well as to assess the effect of the nonclassical material parame-
ters of the 3-PG Model on the stress intensity factors for Mode-I and Mode-II crack
problems. It is perhaps of interest to remark that similar investigations for the case
of micropolar elastic continua are provided in Diegele et al. [2].

The scope of the chapter is organized as follows: Section 2 gives some details about
the implementation of the 3-PGModel in a finite element code. A square section with
a circular hole subjected to tension loading is discussed in Section 3. The numerical
simulations verify the finite element model and its ability to predict length scale
effects. Further, they provide a first comparison to classical elasticity by calculating
the corresponding stress intensity factors. Section 4 is devoted to an analysis of edge-
cracked specimens. The analysis comprises, among others, the effect of material
parameters on the stress intensity factors. Moreover, it indicates a very good agree-
ment between the numerical and the analytical solutions of the angular functions.
This confirms, a posteriori, the assumed symmetry conditions of the micro-
deformation. The chapter closes with some concluding remarks in Section 5.

Throughout the chapter, the same notation as introduced in Part I applies.

2. Finite element formulation

The following formulations refer to three dimensions and apply especially to
two-dimensional cases when conditions for plane strain are imposed. Let us con-
sider once more the equilibrium equations (see Section 3:1 “The 3-PG Model as
particular case of micro-strain elasticity” in Part I) to be solved,

∂iΣij ¼ 0, (1)

∂iμijk þ σjk ¼ 0, (2)

and specify the corresponding boundary conditions (see Section 4:7 “Boundary
conditions” of Part I) as follows:

ui ¼ u0i on ∂Vui , n jΣji ¼ P0
i on ∂VPi , (3)

Ψij ¼ Ψ
0
ij on ∂VΨij , nkμkij ¼ T0

ij on ∂VTij , (4)

with

∂Vui ∪ ∂VPi ¼ ∂V, ∂Vui ∩ ∂VPi ¼ Ø, (5)

∂VΨij ∪ ∂VTij ¼ ∂V, ∂VΨij ∩ ∂VTij ¼ Ø: (6)

These equations reflect Dirichlet boundary conditions for the macro-
displacement and the micro-deformation and Neumann boundary conditions for
the Cauchy stress and the couple stress.

The first step toward a finite element formulation is to elaborate a weak form of
the above boundary value problem.

2.1 Weak form of the boundary value problem

Let the fields ui xð Þ and Ψij xð Þ as well as the so-called virtual fields δu j xð Þ and
δΨjk xð Þ belong to the following function spaces:
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ui ∈S≔ ui jui ∈H1 V
� �

, ui ¼ u0i on ∂Vui
� �

, (7)

Ψij ∈ T ≔ Ψij jΨij ∈H1 V
� �

, Ψij ¼ Ψ
0
ij on ∂VΨij

n o

, (8)

δu j ∈V≔ δu j jδu j ∈H1 V
� �

, δu j ¼ 0 on ∂Vui
� �

, (9)

δΨjk ∈W≔ δΨjk jδΨjk ∈H1 V
� �

, δΨjk ¼ 0 on ∂VΨij
� �

: (10)

Now, multiply Eq. (1) by δu j and Eq. (2) by δΨjk and take the integrals over V,

ð

V
δu j ∂iΣijdv ¼ 0, (11)

ð

V
δΨjk ∂iμijk þ σjk

� �

dv ¼ 0: (12)

Next, add up these two equations, use partial integration, the divergence
theorem, and the boundary conditions (3) and (4) to receive

ð

V
∂iδu j

� �

Σijdv�
ð

V
δΨjk

� �

σjkdvþ
ð

V
∂iδΨjk

� �

μijkdv

�
ð

∂VP
δu j

� �

P0
j da�

ð

∂VT
δΨjk

� �

T0
jkda ¼ 0:

(13)

As usually, in favor of a short notation, we use the integral over ∂VP to indicate

the summation of single integrals over ∂VPi , which generally do not coincide. The

meaning of the integration over ∂VT is analogous. Eq. (13) is the weak form of the
boundary value problem and is the starting point of the finite element formulation.

2.2 Discretization

According to the finite element method (see, e.g., Hughes [3]), the domain V is
approximated by nel finite elements Ve, so that

V ≈Vh ≔ ⋃
nel

e¼1
Ve: (14)

The elements are connected to each other at selected points called nodal points,
or simply nodes, and the following notation holds.

Ku: Set of global node numbers with macro-displacement degree of freedom.

KΨ: Set of global node numbers with micro-deformation degree of freedom.
The exact solutions ui and Ψij are approximated by

ui xð Þ≈ uhi xð Þ≔
X

A∈Ku

Nu

A xð ÞuAi , (15)

Ψij xð Þ≈Ψ
h
ij xð Þ≔

X

A∈KΨ

NY

A xð ÞΨA
ij , (16)

where uAi and Ψ
A
ij are the unknown values of ui and Ψij at node A. The so-called

shape functions Nu

A and NΨ

A belong to finite-dimensional function spaces Sh and T h,
which approximate the function spaces S and T , respectively. Similarly, δu j and
δΨjk are approximated by
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δu j xð Þ≈ δuhj xð Þ≔
X

B∈Ku

Nu

B xð ÞδuBj , (17)

δΨjk xð Þ≈ δΨh
jk xð Þ≔

X

B∈KΨ

Nu

B xð ÞδΨB
jk, (18)

with δuBj and δΨB
jk being constants. The functions δuhj and δΨh

jk are elements of

finite-dimensional function spaces Vh and Wh, which approximate the function
spaces V and W, respectively.

Wemay use the above approximations (17) and (18) to rewrite Eq. (13) in the form

X

nel

e¼1

ð

Ve

∂iN
u

B

� �

δuBj Σijdv�
ð

Ve

NΨ

B δΨ
B
jk σjkdvþ

ð

Ve

∂iN
Ψ

B

� �

δΨB
jkμijkdv

�

�
ð

∂VP

e

Nu

B δu
B
j P

0
j da�

ð

∂VT

e

NΨ

B δΨ
B
jkT

0
jkdag ¼ 0,

(19)

with the meaning of ∂VP

e and ∂VT

e being obvious.
We next employ the elasticity laws (see Section 3:1 “The 3-PG Model as

particular case of micro-strain elasticity” of Part I)

Σij ¼
c2
c1

ijmn εmn �
c2 � c1
c1

ijmnΨmn, (20)

σjk ¼
c2 � c1
c1

jkmn εmn � jkmnΨmn

� �

, (21)

μijk ¼ c2 � c1ð Þ∂iΨmnmnjk, (22)

in order to replace the stresses Σij and σjk as well as the double stresses μijk in Eq. (19):

X

nel

e¼1

ð

Ve

∂iN
u

B

� �

δuBj
c2
c1

ijmn ∂mun �
c2 � c1
c1

ijmnΨmn

	 


dv

�

� c2 � c1
c1

ð

Ve

NΨ

B δΨ
B
jk jkmn ∂mun � jkmnΨmn

� �

dv

þ c2 � c1ð Þ
ð

Ve

∂iN
Ψ

B

� �

δΨB
jk ∂iΨmnmnjkdv

�
ð

∂VP

e

Nu

B δu
B
j P

0
j da�

ð

∂VT

e

NΨ

B δΨ
B
jkT

0
jkdag ¼ 0:

(23)

Finally, we use the approximations (15) and (16), to find

X

nel

e¼1

ð

Ve

∂iN
u

B

� �

δuBj
c2
c1

ijmn ∂mN
u

A

� �

uAn � c2 � c1
c1

ijmnN
Y

AΨ
A
mn

� �

dv

�

þ c2 � c1
c1

ð

Ve

NΨ

B δΨ
B
jk jkmn ∂mN

u
A

� �

uAn � jkmnN
Ψ

AΨ
A
mn

 �

dv

þ c2 � c1ð Þ
ð

Ve

∂iN
Ψ

B

� �

δΨB
jk ∂iN

Ψ

A

� �

Ψ
A
mnmnjkdv

�
ð

∂VP

e

Nu

B δu
B
j P

0
j da�

ð

∂VT

e

NΨ

B δΨ
B
jkT

0
jkda

)

¼ 0,

(24)
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or equivalently,

X

nel

e¼1

δuBj
c2
c1

ð

Ve

∂iN
u

B

� �

ijmn ∂mN
u

A

� �

dv

� �

uAn

�

�δuBj
c2 � c1
c1

ð

Ve

∂iN
u

B

� �

ijmnN
Ψ

A dv

� �

Ψ
A
mn

�δΨB
jk

c2 � c1
c1

ð

Ve

NΨ

B jkmn ∂mN
u

A

� �

dv

� �

uAn

þδΨB
jk

c2 � c1
c1

ð

Ve

NΨ

B jkmnN
Ψ

A dv

� �

Ψ
A
mn

þδΨB
jk c2 � c1ð Þ

ð

Ve

∂iN
Ψ

B

� �

∂iN
Ψ

A

� �

jkmndv

� �

Ψ
A
mn

�δuBj

ð

∂VP

e

Nu

BP
0
j da

" #

� δΨB
jk

ð

∂VT

e

NΨ

B T
0
jkda

" #)

¼ 0:

(25)

The form of this equation suggests to define the element stiffness matrices:

K
uu, eð Þ
jBnA ≔

c2
c1

ð

Ve

∂iN
u

B

� �

ijmn ∂mN
u

A

� �

dv, (26)

K
uΨ, eð Þ
jBmnA ≔ � c2 � c1

c1

ð

Ve

∂iN
u

B

� �

ijmnN
Ψ

A dv, (27)

K
Ψu, eð Þ
jkBnA ≔ � c2 � c1

c1

ð

Ve

NΨ

B jkmn ∂mN
u

A

� �

dv, (28)

K
ΨΨ, eð Þ
jkBmnA ≔

c2 � c1
c1

ð

Ve

NΨ

B jkmnN
Ψ

A þ c1 ∂iN
Ψ

B

� �

∂iN
Ψ

A

� �

jkmn

 �

dv, (29)

and the element force vectors:

F
u, eð Þ
jB ≔

ð

VP

e

Nu

BP
0
j da, (30)

F
Ψ, eð Þ
jkB ≔

ð

VT

e

NΨ

B T
0
jkda, (31)

and to recast Eq. (25) as

X

nel

e¼1

δuBj K
uu, eð Þ
jBnA uAn þ K

uΨ, eð Þ
jBmnAΨ

A
mn � F

u, eð Þ
jB

h in

þδΨB
jk K

Ψu, eð Þ
jkBnA uAn þ K

ΨΨ, eð Þ
jkBmnAΨ

A
mn � F

Ψ, eð Þ
jkB

h io

¼ 0:

(32)

As δuBj and δΨB
jk may be chosen arbitrary, we obtain the system of equations:

X

nel

e¼1

K
uu, eð Þ
jBnA uAn þ K

uΨ, eð Þ
jBmnAΨ

A
mn � F

u, eð Þ
jb

h i

¼ 0, (33)

X

nel

e¼1

K
Ψu, eð Þ
jkBnA uAn þ K

ΨΨ, eð Þ
jkBmnAΨ

A
mn � F

Ψ, eð Þ
jkb

h i

¼ 0: (34)
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This means, that the solution of the boundary value problems (1)–(6) is reduced
to the solution of the systems (33) and (34).

The proceeding approximation of the weak form, constrained to plane strain
states, has been implemented in the finite element code FEAP. Isoparametric
elements are employed, that is, the space coordinates are represented by using the
shape functions, Nu

A,

xi ≈ xhi ≔
X

A∈Ku

Nu

Ax
A
i , (35)

where xAi are constants.

3. Square section with a circular hole

The main objective of this section is to validate the implemented finite element
code. To this end, we consider the plane strain problem shown in Figure 1a, where
the square section with a circular hole, located at the center of the section, is
stretched in the y-direction. The length of the section is b ¼ 5mm, while the radius
of the hole is r ¼ 0:25mm. With respect to the Cartesian coordinate system x, yf g,
the boundaries x ¼ � b

2 are assumed to be free of classical and nonclassical tractions.

At the boundary y ¼ � b
2, the macro-displacement component uy, the component Px

of the classical traction, and the nonclassical traction components Tij are assumed to

vanish. At the boundary y ¼ b
2, the macro-displacement in the y-direction is given by

uy ¼ 0:1 mm, while Px ¼ 0 and Tij ¼ 0 are imposed. The whole circular hole is
assumed to be free of classical and nonclassical tractions. For a small circular hole, a
nearly uniform stress component

Σ0 ≔ Σyy

 �

y¼b
2

(36)

will be required to realize the given boundary conditions.
The most simple case in classical elasticity, analogous to the boundary value

problem above, is to consider the square section in the context of a plane stress
problem subjected to the traction boundary condition Σyy

 �

y¼b
2
¼ Σ0. Attention is

focused on the distribution of Σyy along the section A-A (see Figure 1a), as a
function of the local coordinate

a≔ x� r, (37)

with x≥ r. A so-called stress concentration factor k is defined by

k≔
Σ

∗
yy

Σ0
, Σ

∗
yy ≔Σyy a ¼ 0, y ¼ 0ð Þ, (38)

and turns out to be k ¼ 3 (see, e.g., Gould [4], p. 124).
Now consider the square section in Figure 1a in the context of a plane strain

problem with the boundary conditions stated in the first paragraph within classical
elasticity. The stress distribution along the sectionA-A has been determined by
employing the standard elastic element of FEAP using the classical material parameters

E ¼ 100 GPa, ν ¼ 0, 3: (39)

6
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As depicted schematically in Figure 1b, a radial mesh of 16 stripes of quadratic
elements with reduced integration, that is, elements with 8 nodes, is used. Every
stripe consists of 180 elements and the elements are chosen to decrease in size the
closer to the circular hole the elements are placed. In the context of classical elas-
ticity, a mesh consisting of 720 such stripes is used, whereas the mesh for the
simulations of the 3-PG Model only needs 72 such stripes of elements.

Figure 2 illustrates the distribution of the dimensionless stress
Σyy

Σ0
along the

section A-A. The value of
Σyy

Σ0
at a ¼ 0 represents the stress concentration factor k

and turns out to be k ¼ 3, 14 for classical elasticity.
We consider next corresponding distributions predicted by the 3-PG Model. To

this end, we employ the finite element model developed in the last section. The
classical material parameters are given by Eq. (39). For the purposes of the present
chapter, we find it convenient to use the nonclassical parameters c1 and

c3 ≔
c2 � c1
c1

: (40)

Note that since c2 > c1 >0 (see Section 3:1 “The 3-PG Model as particular case of
micro-strain elasticity” of Part I), the constrain c3 >0 applies. It becomes apparent,
from the elasticity laws (20)–(22), that for c3 ! 0, the 3-PG Model will approach to

classical elasticity. Hence, we expect the distributions of the dimensionless stress
Σyy

Σ0

along the section A-A to be close to the classical one whenever c3 is sufficiently
small. Indeed, Figure 2 confirms this expectation: It can be seen, that for suffi-
ciently large values of a, the two graphs almost coincide. Another way to illustrate
this issue is to consider the effect of the nonclassical material parameter c3 on the
values of the stress concentration factor k. We expect that for c1 ¼ const: and c3 !
0, the values of k will approach to the classical value k ¼ 3, 14. This is exactly what
we can observe in Figure 3. Alternatively, we can consider the effect of the material
parameter c1 on the values of the stress concentration factor k. For the assumed
geometry of the specimen, the imposed boundary conditions and for a fixed value
c3 ¼ 1, the effect of c1 on k is illustrated in Figure 4 by the graph referred to as

Figure 1.
Plane strain problem of a square section with a circular hole subjected to displacement-controlled tension
loading. (a) Geometry and loading conditions. (b) Mesh (schematically).
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specimen 1. A convenient way to illustrate the effect of c1 is to consider further
boundary value problems. Thus, we consider in addition three further problems,
denoted as specimen 4, 20, and 200, which arise by multiplying the given geometry
of the specimen and the imposed boundary conditions with the factors n ¼ 4, 20
and 200, respectively. The corresponding graphs of k as a function of c1 are
displayed in Figure 4 and are referred to as specimens 4, 20, and 200, respectively.
Keeping in mind, that

ffiffiffiffi

c1
p

is an internal material length, we rescale the abscissa c1
by considering the graphs of k as a function of c1

n2. We expect, that all distributions

should coincide, and in fact this is shown in Figure 5.

Figure 2.
Distribution of the dimensionless stress Σyy=Σ0 along the section A-A with E ¼ 100GPa, ν ¼ 0, 3,
c1 ¼ 0, 2 mm2, and c3 ¼ 10.

Figure 3.
Distribution of the stress concentration factor k predicted by the 3-PG model.

8
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Altogether, the calculated responses reflect the expected results, which in turn
provides a validation of the developed and implemented finite element approxima-
tion of the 3-PG Model.

4. Finite element analysis of crack problems

4.1 Edge-cracked specimen

The remaining analysis is referred to the edge-cracked specimen shown in
Figure 6a. The assumed width and length of the specimen are, respectively,

Figure 4.
Effect of the material parameter c1 on the stress concentration factor k (c3 ¼ 1).

Figure 5.
Distribution of the stress concentration factor k as a function of c1=n

2 (c3 ¼ 1).
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b ¼ 11 mm and 2h ¼ 20 mm, while the crack length is chosen to be a ¼ 1 mm. The
origin of the Cartesian and the cylindrical coordinate systems, to which we refer, is
located at the crack tip.

The specimen is discretized by two meshes (see Figure 6b), a rectangular mesh
for the main part of the specimen, consisting of 320 quadratic eight-node elements
(with reduced integration) and a radial mesh around the crack tip. The radial mesh,
schematically shown in Figure 6c, consists of 16 stripes of quadratic elements with
reduced integration, that is, elements with eight nodes, are used. Every strip con-
sists of 45 elements, which decrease in size the closer to the crack tip they are
placed. The elements, which contain the crack tip itself, are singular and are the so-
called quarter point elements. That means, that one edge of each quadratic element
degenerates into a point and two intermediate nodes of two adjacent edges are
repositioned. To be more specific, they are moved to a position only a quarter of the
edge length away from the crack tip, as indicated in Figure 6d. Due to this
repositioning, the corresponding shape functions differ from those of regular

Figure 6.
Edge-cracked specimen with finite width b, length 2h and crack length a. (a) Geometry. (b) Mesh. (c) Radial
mesh around crack tip. (d) Singular elements around crack tip.

10
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8–node elements. Specifically, the shape functions of quarter point elements consist
of linear shape functions extended by a term proportional to the square root of the
corresponding component of the position vector (see Henshell and Shaw [5] or
Barsoum [6]).

For all calculations in the remainder of the chapter, the values of the classical
material parameters E and ν are given by Eq. (39) and the following Dirichlet
boundary conditions are imposed:

ur½ �r¼0 ¼ uφ
 �

r¼0
¼ 0, uφ

 �

r¼10 mm,φ¼0
¼ 0, (41)

which excludes the possibility of rigid body motions.
The crack faces are subjected to the following boundary conditions for the

classical stress: Mode-I near-tip fields are produced by imposing an internal pres-
sure p ¼ 100 MPa to act, while Mode-II near-tip fields are enforced by subjecting
the crack faces to a shear stress loading of 100 MPa. All nonclassical traction
components are supposed to vanish for both Mode-I and Mode-II crack types.

4.2 Stress intensity factors

Finite element simulations of Mode-I and Mode-II crack problems allow to
verify, numerically, the order of singularity and the angular functions as well as to
determinate the stress intensity factors. First, we verify the order of singularity and
show how to determine stress intensity factors numerically. Motivated by the ana-
lytical solutions in Section 5 “Discussion of the asymptotic solutions” of Part II,
assume that the stress Σ and the double stress μ in the vicinity of the crack tip are
given by

Σαβ ¼ 2π rð Þp�1 ~KI f
I
αβ φð Þ þ ~KII f

II
αβ φð Þ

h i

, (42)

μαβγ ¼ 2π rð Þp�1 ~LI g
I
αβγ φð Þ þ ~LII,1 g

II,1
αβγ φð Þ þ ~LII,2 g

II,2
αβγ φð Þ

h i

: (43)

Then,

Σφφ

 �

φ¼0
¼ 2π rð Þp�1 ~KI, (44)

Σrφ

 �

φ¼0
¼ 2π rð Þp�1 ~KII, (45)

μφrφ
 �

φ¼0
¼ 2π rð Þp�1 ~LI, (46)

1

2
μφrr þ μφφφ
 �

φ¼0
¼ 2π rð Þp�1 ~LII,1, (47)

1

2
μφrr � μφφφ
 �

φ¼0
¼ 2π rð Þp�1 ~LII,2, (48)

and hence

log Σφφ

 �

φ¼0
¼ p� 1ð Þ log 2π rð Þ þ log ~KI, (49)

log Σrφ

 �

φ¼0
¼ p� 1ð Þ log 2π rð Þ þ log ~KII, (50)

log μφrφ
 �

φ¼0
¼ p� 1ð Þ log 2π rð Þ þ log ~LI, (51)
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log
1

2
μφrr þ μφφφ
 �

φ¼0

	 


¼ p� 1ð Þ log 2π rð Þ þ log ~LII,1, (52)

log
1

2
μφrr � μφφφ
 �

φ¼0

	 


¼ p� 1ð Þ log 2π rð Þ þ log ~LII,2: (53)

These equations indicate, respectively, a linear respone with slope p� 1ð Þ. This
means that, as in the case of classical elastic fracture mechanics, one can fit the
exponent p on the basis of values of stress components calculated by the finite
element method at the nodes ahead of the crack tip (see, e.g., Figure 7). Computed
responses with the finite element model have confirmed the value p ¼ 1

2 with great

accuracy. Therefore, the value p ¼ 1
2 will be fixed, to avoid errors owing to inaccu-

rate numerical determination of p when discussing predicted responses. All stress

intensity factors are determined from Eqs. (49)–(53) for the fixed value p ¼ 1
2 by

applying the least square method. It can be recognized from Figure 7, that the linear

response of the stress applies for a radius r∈ 10�7, 10�1
 �

. The numerical determi-

nation of the angular functions below is referred to a fixed radius r ¼ 5 � 10�6mm.
The verification of the angular functions and the effect of material parameters on
the stress intensity factor is discussed seperately for Mode-I and Mode-II crack
problems.

4.3 Results for mode-I

Figures 8–11 display plots of the angular functions f Iαβ, h
I
αβ and gIαβγ for both the

analytical and the finite element solutions. The plots of the latter are constructed by

dividing the values of Σαβ, Ψαβ � Ψαβ, and μαβγ at a radius r ¼ 5 � 10�6mm by
~KI
ffiffiffiffiffiffi

2π r
p ,

r
2π

~LI

c2�c1ð Þ2μ � r
2π

~LI

c1 c3 2μ
and

~LI
ffiffiffiffiffiffi

2π r
p , respectively. The stress intensity factors ~KI and ~LI

have been determined by least square fitting as described in the last section. In the

finite element computations, the values c1 ¼ 10�4mm2 and c3 ¼ 1 for the

nonclassical material parameters are chosen. The values of Ψij are determined to be

Figure 7.
Least square fitting of the distribution of Σφφ

 �

φ¼0
computed by the finite element model in the vicinity of the

crack tip.
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Ψ11 ¼ 0, 001374, Ψ22 ¼ 0, 00359, and Ψ12 ¼ 0. The general observation is that there
is good agreement between the analytical and the finite element predictions. The

nonvanishing values of Ψij � Ψ
I
ij verify the existence of this constant terms. The fact

that the analytical and the numerical results of the angular functions hIαβ agree very

well verifies the assumed symmetry conditions for Ψαβ (see Section 4:8 “Symmetry
conditions” in Part I).

It is worth remarking that even though the asymptotic solutions of Σαβ have the
same form as the ones of classical elasticity, the corresponding values the stress

Figure 8.

Graphs of the angular functions f Iαβ φð Þ of mode-I for φ∈ �180∘, 180∘½ �.

Figure 9.

Graphs of the angular functions hIαβ φð Þ of mode-I for φ∈ �180∘, 180∘½ �.
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intensity factors ~KI and ~KII of the 3-PG Model will be, in general, different from the
stress intensity factors KI and KII of classical elasticity. This difference results from
the fact that the 3-PG Model and the classical elasticity imply, in general, different
distributions of the components Σαβ for identical classical boundary conditions.

Recall also, that the 3-PG Model includes two material parameters more than the
classical elasticity, namely, c1 and c3. The effect of these nonclassical material
parameters is illustrated in Figures 12 and 13. These figures reveal that for c3 ¼
const: and very large values of c1 or for c1 ¼ const: and very small values of c3, the

values of ~KI converge to the values of KI. In other words, the responses of the 3-PG
Model approach the ones according to classical elasticity.

The effect of c1 and c3 on the nonclassical stress intensity factor ~LI is illustrated
in Figures 14 and 15. The principal observation is that for smaller values of c3, the

value of ~LI gets smaller as well. On the other hand, if c3 ¼ const:, then the values of
~LI increase with increasing values of c1.

Figure 10.
Graphs of the angular functions gIrαβ φð Þ of mode-I for φ∈ �180∘, 180∘½ �.

Figure 11.
Graphs of the angular functions gIφαβ φð Þ of mode-I for φ∈ �180∘, 180∘½ �.
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Figure 12.

Effect of the material parameter c3 on the stress intensity factor ~KI of mode-I.

Figure 13.

Effect of the material parameter c1 on the stress intensity factor ~KI of mode-I.

Figure 14.

Effect of the material parameter c3 on the stress intensity factor ~LI of mode-I.
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4.4 Results for mode-II

The graphs of the angular functions f IIαβ for both the analytical and the finite

element solutions are shown in Figure 16. It can be seen that the graphs fit very
well.

Since there are two stress intensity factors of Mode-II, ~LII,1, and ~LII,2, we find it
convenient, in the vicinity of the crack tip, to consider the angular distributions of

Ψαβ � Ψαβ and μαβγ themselves instead of the corresponding distributions of the

angular functions hII,1αβ , h
II,2
αβ , g

II,1
αβγ, and gII,2αβγ . For r ¼ const:, Figures 17–19 illustrate

angular distributions of Ψαβ and μαβγ for both the analytical and the numerical

solutions. Once more, we can recognize, that the analytical and the numerical
results agree with great accuracy, which also verifies the assumed symmetry

Figure 15.

Effect of the material parameter c1 on the stress intensity factor ~LI of mode-I.

Figure 16.

Graphs of the angular functions f IIαβ φð Þ of mode-II for φ∈ �180∘, 180∘½ �.
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conditions of Mode-II for Ψαβ (see Section 4:8 “Symmetry conditions” in Part I).

Further, the values of Ψij have been determined to be Ψ11 ¼ 0, Ψ22 ¼ 0, and Ψ12 ¼
0, 00391 and this, in turn, verifies the existence of the constant terms Ψij � Ψ

II

ij .

The effect of c1 and c3 on ~KII is illustrated in Figures 20 and 21 and is similar to

the effect of c1 and c3 on ~KI (cf. Figures 12 and 13).

The effect of c1 and c3 on the nonclassical stress intensity factors ~LII,1 and ~LII,2 is
illustrated in Figures 22–25. Again, this effect is quite similar to the effect of c1 and

c3 on ~LI, but the stress intensity factors ~LII,1 and ~LII,2 both are negative in contrast to

the positive stress intensity factor ~LI.

Figure 17.
Graphs of the angular distributions of Ψαβ of mode-II for a sufficiently small radius r ¼ const: (in vicinity of
the crack tip).

Figure 18.
Graphs of the angular distributions of μrαβ of mode-II for a sufficiently small radius r ¼ const: (in vicinity of
the crack tip).
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With regard to Mode-II crack problems, it is of interest to recall that the general

solutions of Ψ 0ð Þ
αβ depend on three constants of integration, that is, B 0ð Þ, E 0ð Þ, and F 0ð Þ.

By virtue of the boundary conditions on the crack faces, we obtained the relation

�F 0ð Þ ¼ E 0ð Þ, which is independent of the crack geometry, that is, the crack length.

We do not know further conditions to relate B 0ð Þ and E 0ð Þ with each other. However,

Figure 19.
Graphs of the angular distributions of μφαβ of mode-II for a sufficiently small radius r ¼ const: (in vicinity of
the crack tip).

Figure 20.

Effect of the material parameter c3 on the stress intensity factor ~KII of mode-II.
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keeping in mind that, in general, stress intensity factors depend on the crack geom-
etry and the applied loading conditions, one may ask if there exists a relation

between B 0ð Þ and E 0ð Þ, or equivalently between ~LII,1 and ~LII,2, which is independent
of the crack length. To clarify this question, we consider the effect of the crack

length a and the applied shear stress Σ ∗
rφ on the ratio

~LII,1

~LII,2
. Evidently, this ratio will

depend on the material parameters c1 and c3. The effect of a and Σ
∗
rφ is illustrated in

Figure 26a–d. In all figures, the width b and the length 2h of the specimen are the

Figure 21.

Effect of the material parameter c1 on the stress intensity factor ~KII of mode-II.

Figure 22.

Effect of the material parameter c3 on the stress intensity factor ~LII,1 of mode-II.
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Figure 23.

Effect of the material parameter c1 on the stress intensity factor ~LII,1 of mode-II.

Figure 24.

Effect of the material parameter c3 on the stress intensity factor ~LII,2 of mode-II.

Figure 25.

Effect of the material parameter c1 on the stress intensity factor ~LII,2 of mode-II.
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same and equal to the values given in Section 4.1. However, a and Σ
∗
rφ are different

for each figure. It can be recognized from Figure 26a and b that the ratio
~LII,1

~LII,2
does

not depend on the applied loading, Σ ∗
rφ, which might be expected, for the problem is

linear. But the ratio
~LII,1

~LII,2
depends on the crack length, a, as can be seen by comparing

Figure 26a and c or Figure 26b and d. This result may be seen as a justification of

considering ~LII,1 and ~LII,2 as different stress intensity factors.

Figure 26.

Effect of the crack length a and the applied shear stress Σ ∗
rφ on the ratio

~LII,2

~LII,1
for mode-II crack problems.

(a) a ¼ 1 mm, Σ ∗
rφ ¼ 100 GPa. (b) a ¼ 1 mm, Σ ∗

rφ ¼ 200 GPa. (c) a ¼ 2 mm, Σ ∗
rφ ¼ 100 GPa. (d) a ¼

2 mm, Σ ∗
rφ ¼ 200 GPa.
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5. Concluding remarks

A finite element model for the 3-PGModel has been developed and verified with
reference to the expected responses of a square section with a hole subjected to
displacement-controlled tension loading. Then, the finite element model has been
employed to discuss Mode-I and Mode-II crack problems. From these investiga-
tions, one can draw the following conclusions.

1.The finite element and the analytical solutions fit with good accuracy.

2. In particular, the finite element simulations confirm the order of singularity,

r�
1
2, and the assumed symmetry conditions for the micro-deformation very

well. Further, they confirm the existence of a constant term in the asymptotic
expansion of the micro-deformation.

3.By using numerical simulations with the developed finite element model, the
effect of the nonclassical material parameters on the classical and the
nonclassical stress intensity factors has been investigated. Especially, limiting
cases of material parameters leading to responses of classical elasticity have
been analyzed.

4.For Mode-II loading conditions, two independent stress intensity factors have
been assumed to be present in the near-tip fields of the double stress. The
numerical investigation seem to verify this remarkable feature.
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