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Abstract

Being one of the major cereal crops, rice has a great effect on food security of 
the world population. But worldwide rice production faces severe threat due to 
a combination of factors like uncontrolled human rise, limited agricultural land 
and increasing environmental stresses. Coping with this situation is an urgent call 
for meeting the challenge. For overwhelming rice production by battling with this 
condition, scientists and researchers try their best to develop such rice varieties 
which can adapt to adverse climatic conditions. But, the majority of the research 
efforts are given on above ground parts of rice to make it stress tolerant. Root, one 
of the major parts of plant, remains unnoticed although it has immense possibility 
of adaptation under stress conditions. Fruitful and efficient utilization of limited 
resources are possible through healthier and competent root systems. Selection 
and breeding of rice genotypes with extensive root systems may contribute to 
more efficient use of soil nutrient resources and this ultimately influences the yield 
stability of rice.

Keywords: Oryza sativa L., root system, osmotic stress, adaptive mechanisms,  
lateral roots

1. Introduction

Rice is such an agricultural commodity that covers the third-highest worldwide 
production making it one of the most important cereal crops [1]. With its wide 
geographic distribution extending from 50°N to 35°S, rice is expected to be the most 
vulnerable cultivated crop to changing climates in future [2, 3]. Rice production 
is dwindled mainly because of biotic and abiotic stresses due to the complexity of 
interaction between the stress factors and various molecular, biochemical and physi-
ological phenomena affecting plant growth and development [4, 5]. To battle with 
these situations, development of adaptive rice varieties is one of the best strategies. 
Since aboveground parts are often taken into consideration for making stress tolerant 
varieties, root study remains backward in this aspect. Roots, the hidden portion 
of the plant have not yet been much focused. Because exploring the root traits of 
the plant are much more difficult compared to its above-ground traits. But when 
it comes to the fact of studying the optimal developmental plasticity system and 
characteristic features of plant growth, the root system is given the first priority [6]. 
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Root system is the site of water and nutrient uptake from the soil, a sensor of abiotic 
and biotic stresses, and a structural anchor to support the shoot. The root system com-
municates with the shoot, and the shoot in turn sends signals to the roots [7]. Soil type, 
moisture and nutrients all strongly influence the architecture of the root system [8–10]. 
Recently it has been emphasized that root architectural traits play a decent role for the 
adaptation of crop varieties under different abiotic stresses [11, 12]. Root interaction 
with changing environment is a complex phenomenon that differs with genotypes 
and intensity of stress [13–17]. For that, different species and also genotypes under 
the same species may respond contrarily under stress conditions and show dif-
ferent magnitudes of tolerance or susceptibility to stress. These diversities can be 
exploited by plant breeders to improve stress tolerance in plants. Scientists assume 
that selection for yield will indirectly select for varieties with the optimum root 
system. But the fact is, more directed selection for specific root architectural traits 
could enhance yields for different soil environments [18]. As by 2035, a predicted 
26% increase in rice production will be essential to feed the rising population [19], 
it is imperative to develop high yielding rice cultivars with efficient root systems for 
better exploitation of natural resources under stressed conditions.

2. Progress in root study of rice under osmotic stress

2.1 Reasons why root study has become the topic of interest

Being the hidden half of the plants, the root system performs several functions 
like water and nutrient acquisition, mechanical support to the plant and storage 
of reserve assimilates [7]. In plant, roots are the first organ for sensing the water 
limitation and the roots are also the signal transmitter to other plant parts through 
xylem sap and phytohormone which is known as one of the most important root-
shoot stress signal mechanism [20–23]. Development of the root system is a major 
agronomic trait and proper architecture in a given environment permits plants 
to survive in water and nutrient deficit conditions and gives the ability to utilize 
minimum resources efficiently [6].

Crop loss in rice production has become severe now-a-days due to abiotic 
stresses. Therefore, having a clear knowledge about the architecture and develop-
ment of roots of rice toward optimizing water and nutrient uptake has become 
crucial for exploitation and manipulation of root characteristics for enhancing yield 
under unfavorable conditions [24, 25]. In general, root study comprises the study 
of the entire root system or a large portion of the plant’s root system [26, 27]. To 
understand the functional characteristic of root system and the necessity to exploit 
heterogeneous environment, root architecture study has become crucial in plant 
productivity as root system architecture is strongly linked with plasticity to the 
plant through which plant can alter its root structure according to its heterogeneous 
environment [26].

2.2 Root system architecture of rice

Elongation and branching are the mode of plant root growth. Local environ-
mental conditions, physiological status of the plants and the type of root determine 
the magnitude and direction of root elongation [6]. Root system architecture (RSA) 
is thus the three-dimensional geometry of the root system including the primary 
root, branch roots, and root hairs [6, 26, 28, 29]. Topological, distributional and 
morphological features combine to form the root system architecture [8, 26, 30]. 
Topology denotes the branching pattern of individual roots including features like 
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lengths and diameters, number of roots originating from a node, root insertion 
angles, magnitude and the altitude of root [31, 32]. Measures of the spatial distribu-
tion of roots simplify the dissection of root systems [26]. Root morphology refers 
to the external features of a root axis and may include properties of roots hairs, 
root diameter and trend of secondary root emergence. Acceleration or inhibition of 
primary root growth, increment of lateral roots (LRs) and a rise in root hairs and 
also the formation of adventitious roots are the ways of modification of root system 
architecture. The primary root is formed during embryogenesis. This primary root 
produces secondary roots those in turn produce tertiary roots [6, 33]. Root system 
architecture has proved to be a critical factor in plant survival, contributing to 
water and nutrient acquisition efficiency and competitive fitness in a given environ-
ment [34]. Composition of soil specially water and mineral nutrients availability 
and plant species have impact on root architecture [6].

Monocot cereals have a complex fibrous root system consisting of an adventi-
tious root (ARs) bunch. Adventitious roots originate from the shoot or subterranean 
stem. This type of root is sometimes referred to as a nodal or crown root [35]. Root 
systems of rice plants (Oryza sativa L.) comprise numerous nodal roots of relatively 
short length: a mature rice plant usually has several hundreds of nodal roots, most 
of which are less than 40 cm in length [36]. Rice (Oryza sativa L.) is a model cereal 
crop with seminal roots that die during the growing period [36]. Thus, lateral roots 
and adventitious roots are the key determinants of nutrient and water use efficiency 
in rice [37].

Several embryonic and postembryonic roots including the radicle, the embry-
onic crown roots, the postembryonic crown roots, the large lateral roots (L-type), 
and the small lateral roots (S-type) [38] form the rice root systems (see Figure 1). 
Lateral rice roots can appear on any primary root, including embryonic and crown 
roots, and can be classified into two main anatomical types [39]. Numerous small 
lateral roots (S-type) are thin with determinate growth that can be formed from 
large lateral roots (L-type) and they never bear any lateral roots. Whereas large 
lateral (L-type) roots are few in number, thinner compared to primary roots that 
show indeterminate growth. Additionally, lateral elongation of small lateral roots 
and downward elongation of large lateral roots indicate non-responsiveness of the 
small lateral roots to gravity. Higher orders of branching can also be observed in  
the large lateral roots of the crown roots that emerge at later growth stages [40].  

Figure 1. 
A typical root system architecture at the tiller axis of Oryza sativa L. Black disks indicate individual root 
bearing phytomer with progressive development chronologically from top to downward. Root hairs form on 
main axis and all the lateral roots [41].
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These small and large lateral roots exhibit differential growth and lateral root 
 bearing pattern signifying unlike purposes for these two types of lateral roots [37].

2.2.1 Phytomer concept

The concept of a phytomer was established around 6–7 decades ago [40, 42]. 
Clear knowledge about phytomer is required for better understanding of plant 
development and architecture. Many higher plants, including rice, are composed of 
successive stem segments called phytomer [43–45]. Each phytomer consists of an 
internode of the stem with one leaf, one tiller bud and several adventitious (nodal) 
roots [36]. The phytomer concept has long been recognized among grass scientists 
[46, 47]. The coordinated development of stem, tiller bud, and adventitious roots 
in each phytomer corresponds to the phyllochronic time in rice [43, 44, 48]. This 
indicates that genotypic variation in root-and-shoot growth can be ascribed to the 
variation of stem and adventitious root development at the phytomer level [49].

Detailed study of root morphology and architecture at the phytomer level 
become more obvious with the attainment of new knowledge about segmental 
architecture of poaceous crops [50–53]. As the higher plant structure is formed by 
the repetitive unit of plant growth called phytomer [54], so phytomer formation, 
its growth and senescence ultimately determine development of plant canopy [47]. 
Therefore the phytomer components have become the interest of the plant breeder.

2.2.2 Lateral roots

Root axes of rice plants serve functions of anchorage and typically establish 
overall root system architecture [55]. The lateral roots are the functionally active 
part of the root system involved in nutrient acquisition and water uptake. The 
size, type and distribution of lateral roots eventually decide the ultimate length 
and surface area of an individual root and finally of a whole tiller. Understanding 
morphology of the lateral roots is therefore important to develop rice cultivars with 
an efficient root system [11, 56].

In rice, there are two types of lateral roots; long and thick roots, and short and 
slender roots [57–59]. It has been designated that the first type as L-type and the 
latter as S-type [60]. The L-type lateral roots are usually long and thick and are 
capable of producing higher-order lateral roots, whereas S-type ones are short, slen-
der, and non-branching. In rice plants, these two types of lateral roots are visually 
distinguishable. The L-type lateral roots show basically identical tissue arrangement 
with seminal and nodal roots, whereas S-types are anatomically different wherein 
their vascular systems are simplified [35].

In rice plants, the observed average diameter of S-type lateral roots (first-order) 
that were produced on mature nodal roots of a one-month-old plant was 80 μm, 
whereas that of L-type roots was almost double that, i.e., 159 μm. Average length 
was 7.6 mm for S-type and about 30 mm for L-type. The S-type laterals were almost 
similar in length, and only very few S-type laterals exceeded 10 mm in length. The 
L-type laterals varied greatly in length and some of them elongated to more than 
300 mm [60]. The small laterals are less effective in water and nutrient uptake than 
even root hairs [61].

The changes in lateral root development were triggered by changes in water 
status in the root zone, and these developmental changes were induced by genetic 
[62, 63] and environmental factors. With regard to the environmental factors, it 
is shown that phenotypic plasticity promoted lateral root development and that 
nodal root production was the key trait that ensured stable growth of rice plants 
grown under changing soil moisture levels [64]. As far as the literature explored, 
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developmental morphology of the individual roots with special reference to different 
lateral root branches was not studied in detail, probably due to lack of the most 
appropriate tools and methods [11].

2.2.3 Root hairs

Root hairs are tubular-shaped cells that arise from root epidermal cells called 
trichoblast; they are thought to increase the absorptive capacity of the root by 
increasing the surface area [65]. Root hairs contribute as much as 77% of the root 
surface area of the cultivated crops, forming the major point of contact between the 
plant and the rhizosphere. Root hair is a long and narrow tube like structure origi-
nating from a single cell through tip growth (the deposition of new membrane and 
cell wall material at a growing tip). For being the major water and nutrient uptake 
site of plants, root hairs form a progressively significant model system for develop-
ment studies and cell biology of higher plants [66]. Root hairs had the highest 
contribution toward total length and surface area of an individual root whereas main 
axis and first order laterals mostly contributed root volume [11].

Root hairs are localized for many water channels [67], phosphate [68], nitrogen 
[69], potassium [70], calcium [70], and sulfate transporters [71], all of which are 
beneficial to water and nutrient uptake by plants [72]. There is significant inter- 
and intra-specific variation exists for root hair traits, and this has been linked to 
P uptake. Plants with longer, denser root hairs exhibit greater P uptake and plant 
growth in P-deficient soils [73–75]. So, the root hair traits, especially root hair length 
can be exploited in breeding for improved nutrient uptake and increased fertilizer 
use efficiency [76]. Considerable researches support an important role for root hairs 
in P attainment [73–75, 77, 78]. Root hair length and root hair density (which is 
usually correlated with root hair length) have clear value for the acquisition of P and 
probably other diffusion-limited nutrients such as K and ammonium [79].

Usually root hair traits have a low heritability and their expression is influenced 
by soil type resulting in lack of research in this field [6, 80, 81]. It has been proposed 
that plasticity in root epidermis development as a response to a variety of environ-
mental conditions might reflect a function of root hairs in sensing environmental 
signals, after which plants adjust themselves to the stress conditions, such as by 
increasing nutrient acquisition and water uptake or by helping to anchor the plant 
to the soil [82–87]. Root hair elongation increases root surface area. Root surface 
area increment is a common phenomenon when the plants are subjected to the 
stress condition like salinity, drought or other abiotic stresses [79, 88–91].

2.3 Research progress of rice root study till date under osmotic stress

Plants recurrently face several stresses like salinity, drought, submergence, low 
temperature, heat, oxidative stress and heavy metal toxicity while exposed to the 
nature. Growth and grain production in cereals is often limited by these stresses 
under field conditions. All these stresses either directly or indirectly impose osmotic 
stress to plants that ultimately affect the final yield of rice. Root is the first part 
which can sense these stresses better than other plant parts. So researchers prioritize 
the fact of understanding the root adaptive responses of plants upon osmotic stress. 
In the last 30 years, comprehensive studies have been performed focusing on archi-
tecture and developmental morphology of roots and their genetic and molecular 
basis [11]. Morphological and anatomical development of the rice root system was 
thoroughly reviewed [92] whereas the mystery of root length was also reviewed [93]. 
A recent study highlighting the growth, development and genetic reasons of root 
morphology and function of crop plants was provided by [94]. An outstanding study 
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on root system architecture and its molecular and genetic background also greatly 
contributed to the relevant literature recently [37]. The physiological background 
of root branching was also studied [7, 33]. The root parameters that are focused by 
the studies comprising root anatomy, plant height, root-shoot ratio, length, diam-
eter, density, surface area and volume of root, root elongation rate, root branching, 
expansion of root regarding tiller development, maximum root depth, distribution 
pattern of root in soil column, root hydraulic conductivity, hardpan penetrability, all 
of which possess innumerable functional implication [95]. Roots of large diameter 
show greater penetration ability [96–98] and branching [8, 99] because of having 
larger radii of xylem vessel and poorer axial resistance to water flux [100].

2.3.1 Plasticity of root traits under drought

Water is essential for survival and plant growth. As a sessile organism, plants con-
stantly encounter water deficit, which is the most severe environmental stress limiting 
plant growth and productivity in natural and agricultural systems [101, 102]. Thus, 
water stress tolerance has been a fundamental scientific question in plant biology.

Plants have evolved complex adaptive mechanisms that enable them to survive 
drought conditions. Over more than five decades, researchers have identified 
osmotic adjustment, antioxidant protection, and stomatal movement as key adap-
tive mechanisms for survival where both osmotic adjustment and reactive oxygen 
species (ROS) are involved in this plastic development process [103]. To cope with 
the changing water status in the growing environment, plants have evolved various 
adaptive mechanisms by which plants can modify root allocation and root system 
architecture to obtain more water [104].

Numerous studies have provided evidence to show that when plants are sub-
jected to water stress, root growth is strongly inhibited, although root development 
is less sensitive to water stress than that of shoots [105–107].

Root system architecture is regulated by osmotica [108]. The osmotic potential 
of the soil alters the depth of the root system, its overall mass, the rate of root 
elongation and the number of lateral roots in many plants, including Arabidopsis 
[8, 9, 107, 109, 110].

Root length, root dry weight, and root production are limited by drought stress 
[111, 112]. Roots are the significant plant part which increase plant adaptability 
power to soil water deficits by maintaining water uptake under dry conditions 
[113]. Root and other root components such as root hair, root-shoot ratio, and root 
length are found to be decreased in drought sensitive varieties. But the resistant 
varieties which possess tolerance capacity against drought showed increase in root 
hair, high root to shoot ratio and root length [114]. Roots are considered as the most 
efficient plant organ which helps plant to uptake water and minerals from the soil 
and during drought stress. Root proliferation and changes in root parts occurs to 
take more water from deeper regions of the soil [25]. Different types of changes 
are observed in root growth of drought resistant rice varieties such as a deeper 
and highly branched root system than drought- sensitive varieties [115]. Plant also 
extends its roots for more nutrients (such as phosphorus) and water uptake which 
results in more root to shoot ratio [116]. In recent years breeding for developing 
larger and more efficient root systems has become the hotspot in research in some 
crops such as rice, as there is a relation between root system size and tolerance to 
water stress [81, 117].

The change in lateral root development, i.e. in the plasticity of the root system, 
exhibited under water deficit conditions may play an important role in drought 
stress tolerance [35]. From an agronomical view, the knowledge about lateral root 
development is useful for breeding varieties with drought stress tolerance [118].
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2.3.2 Modification of root system components under submergence stress

The importance of root system structure is particularly recognizable when its 
significance in relation to its function is clearly identified. The significance of root 
system structure in nutrient and water uptake was stressed in previous study [119].

Under waterlogged conditions, the plant roots have to function in anaerobic soil, 
and there are at least two morphological adaptations that roots exhibit in response 
to anaerobiosis, i.e., development of new adventitious roots [120, 121] and super-
ficial rooting (i.e., the concentration of new root growth in the upper layers of the 
soil) [122]. Nodal root production (increase in number) continued to take place, 
however, in the sense that when adventitious roots in the lower nodal position of 
the plant’s stem die due to waterlogging injury, new adventitious roots appear at the 
next highest nodal position. There appears to be a direct relationship between the 
death of older adventitious roots and the development of new ones. Progressively 
waterlogged plants generally show smaller root system size than those grown in 
a well-drained condition. It is considered that the turgor pressure affects the cell 
elongation and growth of plants [123, 124]. Aerobic cultivars of rice have greater 
ability for plastic lateral root production than irrigated lowland cultivars under 
transient moisture stresses [125].

2.3.3 Plasticity of root traits under salinity stress

We have a little understanding of the responses of roots and root hairs to salin-
ity stress and their function in stress tolerance. The efficient root system can either 
avoid or lessen the osmotic stress. Usually, growth, morphology, and physiology 
of the roots alter first under salinity stress and the whole plant is then affected. 
Therefore, the responses and characteristics of the roots under saline conditions 
are of primary importance for plant salt-tolerance [126]. It is supposed that root 
morphology affects salt accumulation around the roots impeding uptake of water 
from saline areas. Modification of root morphology has a big potential to develop 
crop salt tolerance [127]. Root hairs have higher sensitivity to salt than other root 
traits and shoots [128]. Environmental factors also regulate the root hair develop-
ment [128]. The development of root epidermal cells has great plasticity where 
the differentiation programs can be switched from one to another in response to 
external factors [17]. Plasticity in development of root epidermis as a response 
to a variety of environmental conditions might reflect a function of root hairs in 
sensing environmental signals, after which plants adjust themselves to the stress 
conditions [82, 84–87, 129].

Root hair growth and development and their physiological role in response 
to salt stress are largely unknown [128]. The development of root epidermis cells 
has great plasticity where the differentiation programs can be switched from one 
to another in response to external factors [17]. Root hairs have higher sensitivity 
to salinity than do roots and shoots [128]. Systematic study on root hair plasticity 
induced by salt stress and the possible role in plant adaptation/tolerance to salinity 
is still lacking [128]. Usually root hair traits have a low heritability and their expres-
sion is influenced by soil type resulting in lack of research in this field [6, 80, 81].

2.4 Varietal differences in rice root morphological characteristics

Earlier many scientists had reported root morphology and its distribution were 
greatly varied based on genotypes of plant species [13–16]. There is widespread 
evidence that root architecture and different root characteristics of many crop species 
varies among genotypes [14, 130–133]. In a few quite recent studies, the importance 
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of studying root architectural traits has been emphasized for the adaptation of the 
crop varieties to various abiotic stress conditions. Genotypic variation has a signifi-
cant role in adapting the adverse environmental and edaphic effects [14]. Inter- and 
intra-species variations in root architectural traits are very useful to breed the crops 
for root features optimum for diverse environmental conditions [134–136].

Root anatomical and morphological traits have been well studied in rice 
[92]. Varietal differences in root morphological characteristics such as length 
and thickness have been reported in cultivated rice (Oryza sativa L.) in various 
studies [11, 14, 41, 137]. In general, the roots of upland rice cultivars are thicker 
and penetrate more deeply into the soil than those of lowland cultivars [14]. Root 
distribution has also been quantitatively characterized by using several traits, 
including root length, volume, and density in the soil at different depths, and 
these characteristics differed among cultivars [92, 138–140].

3. Future prospects of rice root study

Understanding and improvement of root system and its genetics plays a pivotal 
role to become self-sufficient and to achieve sustainability in rice production. 
Actually more yields from the limited input rely on our capability to unambiguously 
manipulate the plants. And exploring the diversity of root architecture both in 
genetic and phenotypic basis will directly connect to this concern. Although great 
strides have been made to understand the root morphology but in future, more 
intense investigations to elucidate the functional implication of root morphological 
variation may aid in selection of root system with anticipated characteristics.

Future exploration of stress responses regulated by roots at cellular or tissue level 
will open the door of further breeding research. Besides the modern gene pools, 
exploration of genes and alleles in wild relatives and landraces will also provide inter-
esting features that will be easier to transfer to cultivated rice. Further it is important 
to have a better understanding on the epigenetic regulation of roots and root develop-
ment under stressful conditions. There will be a need for high throughput phenotyp-
ing systems coupled with automated data analysis for accelerating the development. 
Endorsement of approaches including both root ideotype-based screening and 
selection for grain yield may establish a fruitful screening system. Alongside design-
ing new genetic screening methods based on a better knowledge of the integrated 
stress responses will be also appreciated. Dynamic root/soil interaction modeling will 
aid in integrating different functional parameters (e.g. water uptake per length of 
root) under a variety of environmental conditions. Overall the root system being less 
accessible and more complex than other agronomic traits, achieving the ambitious 
goal of future rice root research, coordinated effort and joint resources are required. 
The sensible and appropriate efforts will have a crucial role to play in future crop 
production in vulnerable climate and resource scarcity prioritizing the objective of 
serving food to 9 billion world populations by the year 2050.
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