
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter

Mode-I and Mode-II Crack Tip
Fields in Implicit Gradient
Elasticity Based on Laplacians of
Stress and Strain. Part I:
Governing Equations
Carsten Broese, Jan Frischmann and Charalampos Tsakmakis

Abstract

Models of implicit gradient elasticity based on Laplacians of stress and strain can
be established in analogy to the models of linear viscoelastic solids. The most simple
implicit gradient elasticity model including both, the Laplacian of stress and the
Laplacian of strain, is the counterpart of the three-parameter viscoelastic solid. The
main investigations in Parts I, II, and III concern the “three-parameter gradient
elasticity model” and focus on the near-tip fields of Mode-I and Mode-II crack
problems. It is proved that, for the boundary and symmetry conditions assumed in
the present work, the model does not avoid the well-known singularities of classical
elasticity. Nevertheless, there are significant differences in the form of the asymp-
totic solutions in comparison to the classical elasticity. These differences are
discussed in detail on the basis of closed-form analytical solutions. Part I provides
the governing equations and the required boundary and symmetry conditions for
the considered crack problems.

Keywords: implicit gradient elasticity, Laplacians of stress, Laplacians of strain,
micromorphic and micro-strain elasticity, plane strain state

1. Introduction

The most simple constitutive law in explicit gradient elasticity is the model with
equation:

Σij ¼ ijmn εmn � c2ijmn Δεð Þmn KG�Modelð Þ: (1)

Here, Σ ¼ Σ
T is the Cauchy stress tensor, ε is the strain tensor,  is the isotropic

elasticity tensor, Δ is the Laplacian operator, and c2 is a material parameter, with
ffiffiffiffi

c2
p

denoting an internal material length. The components in Eq. (1) are referred to
a Cartesian coordinate system. It seems that the constitutive law (1) has been
introduced for the first time by Altan and Aifantis [1]. These authors (cf. also
Georgiadis [2]) showed that the constitutive Eq. (1) leads to regular strain solutions
at the crack tip of Mode-III crack problems. However, the stress field remains
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singular at the crack tip as in the case of classical elasticity. Moreover, Altan and
Aifantis [1], as well as Georgiadis [2], presented an appropriate isotropic energy
function for the mechanical model in Eq. (1) in the context of Mindlins gradient
elasticity theory (see Mindlin [3] as well as Mindlin and Eshel [4]). An alternative
approach to this model has been proposed in Broese et al. [5], where an analogy
between gradient elasticity models and linear viscoelastic solids is established.
According to this analogy, Eq. (1) is regarded as the gradient elasticity counterpart
of the Kelvin viscoelastic solid. The short hand notation “KG-Model” in Eq. (1)
stands for “Kelvin-Gradient-Elasticity-Model.”

Now, the question arises, if a gradient elasticity model including both, the
Laplacian of stress and the Laplacian of strain, could remove both, the singularities
of stress and the singularities of strain at the crack tip (cf. Gutkin and Aifantis [6]).
The most simple generalization of Eq. (1), including the Laplacians of stress and
strain, reads as follows:

Σij � c1 ΔΣð Þij ¼ ijmn εmn � c2ijmn Δεð Þmn 3� PG�Modelð Þ, (2)

where the same notation as in Eq. (1) applies and
ffiffiffiffi

c1
p

is a further internal
material length. To our knowledge, model (2) has been introduced for the first time
by Gutkin and Aifantis [6]. These authors proposed the gradient elasticity law (2)
ad hoc in an attempt to eliminate the singularities of stress and strain of defects.
Equations of the form (2) are known as models of implicit gradient elasticity (see
Askes and Gutiérrez [7]).

Broese et al. [5] proved that Eq. (2) can be derived as a particular case of
Mindlins micro-structured elasticity, which arises whenever the micro-deformation
of the micromorphic continuum is supposed to be a symmetric tensor. Because the
micro-structured elastic continuum of Mindlin and the micromorphic elastic
continuum of Eringen (see, e.g., Eringen and Suhubi [8] and Eringen [9]) are
essentially equivalent to each other, in the present work we will call both as
micromorphic continua. According to Forest and Sievert [10], the resulting
micromorphic theory is named micro-strain theory. It is shown in Broese et al. [5]
that, in the context of micro-strain elasticity, the 3-PG-Model (2) can be derived as
a combination of elasticity constitutive laws and the equilibrium equation for the
so-called double stress.

On the other hand, Broese et al. [5] showed that Eq. (2) can be established
alternatively by supposing the continuum to be classical, i.e., exhibiting only classi-
cal displacement degrees of freedom, but in the framework of the non-conventional
thermodynamics proposed in Alber et al. [11]. To be more specific, the micro-
deformation variable of the micro-strain approach has to be viewed as an internal
state variable analogous to the inelastic strain in linear viscoelasticity. Eq. (2) then
turns out to be a constitutive law, which is the counterpart in gradient elasticity of
the three-parameter viscoelastic solid. The short hand notation “3-PG-Model”
stands for “3-Parameter-Gradient-Elasticity-Model.” A general analogy to the con-
stitutive laws describing viscoelastic solids can be established by using a nonstan-
dard spring in gradient elasticity corresponding to the dashpot element in linear
viscoelasticity and the Laplacian operator Δ in place of the ordinary time derivative
in the evolution laws of dashpot elements. Using virtual power balance arguments,
Broese et al. [5] derived the same boundary conditions along the lines of the second
approach as in the micro-strain approach. But now the boundary conditions have to
be understood as constitutive boundary conditions, analogous to the constitutive
initial conditions in viscoelasticity.

Because all resulting governing equations and boundary conditions in the two
approaches are equal to each other, we shall proceed further by regarding the
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3-PG-Model as a particular case of the micro-strain elasticity. The present work
(Parts I, II, and III) is concerned with the near-tip fields predicted by the 3-PG-
Model for Mode-I and Mode-II types of crack problems. Unlike statements made
somewhere else (see Part II), we prove that, for the assumptions made here, the
3-PG-Model does not eliminate the well-known singularities of classical elasticity.
Nevertheless, compared with the form of asymptotic solutions in classical elasticity,
there are interesting new aspects, which are discussed in detail in Part II on the basis
of closed-form analytical solutions. Part I provides the governing equations and the
required boundary and symmetry conditions in order to establish the analytical
solutions.

2. Preliminaries: notation

Throughout the paper, we largely use the same notation as in Mindlin [3] and
Mindlin and Eshel [4], in order to facilitate the comparison with these works. The
deformations are assumed to be small, so we do not distinguish, as usually done,
between reference and actual configuration. All indices will have the range of
integers (1, 2, 3), while summation over repeated indices is implied. Explicit refer-
ence to space and time variables, upon which a function may depend, will be
dropped in most part of the paper. Also, we shall not distinguish between functions
and their values. However, if necessary, we shall give explicitly the set of variables
which the function depends on.

Let B be a material body which may be identified by the position vectors x ¼
xi ei, with respect to a Cartesian coordinate system xif g inducing the orthonormal
basis eif g. The body B occupies the space V in the three-dimensional Euclidean
space we deal with. We indicate by n the outward unit normal vector to the surface
∂V bounding the space V. Small Latin indices will be used in conjunction with
Cartesian coordinates and related components. If f is a function of the Cartesian
coordinates xi, then we shall use the notations for partial derivatives as follows:

∂i f ≔
∂f

∂xi
, ∂ij f ≔

∂
2f

∂xi ∂x j
: (3)

Let ∇ ¼ ∂i ei be the nabla operator and a be some vector or higher order tensor.
The gradient, the divergence, and the Laplacian of a are defined, respectively, by
grada � ∇a≔∇⊗a, diva≔∇ � a, and Δa ¼ divgrad a, where � and ⊗ are the
scalar and the tensorial products between two vectors. It is helpful to use notations
for components of the form að Þij… ¼ aij… . Thus, if Aij and Aijk are the Cartesian

components of a second-order tensor A and a third-order tensor A, then, with
respect to the Cartesian basis eif g, we have the following equations:

∇Að Þijk ¼ ∂iAjk, (4)

divAð Þi ¼ ∂ jAji, (5)

ΔAð Þij ¼ ∂kkAij, (6)

divAð Þij ¼ ∂kAkij: (7)

We denote by  the fourth-order isotropic elasticity tensor with Cartesian
components as follows:

ijmn ¼ λδij δmn þ μ δim δjn þ δin δjm
� �

, (8)
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where λ and μ are the Lamé constants and δij is the Kronecker delta. For some
calculations, it will be convenient to use the Young’s modulus E and the Poisson ratio ν,

ν ¼ λ

2 λþ μð Þ , E ¼ 2μ 1þ νð Þ: (9)

Since  satisfies the symmetry properties

ijmn ¼ jimn ¼ mnij ¼ ijnm, (10)

we have for every second-order tensor A, that

ijmnAmn ¼ Amnmnij: (11)

For any tensor a with components ai… jk… p, we write ai… jkð Þ… p for its symmetric

part with respect to the indices j and k. Thus, if A sð Þ is the symmetric part of a

second-order tensor A, then A ijð Þ ¼ A
sð Þ
ij . Corresponding notations apply with regard

to components related to curvilinear coordinate systems. Of particular interest for
our work are cylindrical coordinates r,φ, zf g. We find it convenient to use Greek
indices α, β, … to indicate both, physical components with respect to cylindrical
coordinates and cylindrical coordinates itself. Thus, e.g., we write Aαβ for the

physical components of the second-order tensor A and denote by Aαβ

� �

the matrix

of components,

Aαβ

� �

¼
Arr Arφ Arz

Aφr Aφφ Aφz

Azr Azφ Azz

0

B

@

1

C

A
: (12)

Similar notations hold for any tensor of arbitrary order. The summation con-
vention applies in analogous manner, e.g., we have Aαα ¼ Arr þ Aφφ þ Azz. Because
cylindrical coordinate systems are orthogonal, the algebraic operations between the
corresponding physical components of tensors are identical in form to those with
respect to Cartesian components. Moreover, the physical components of isotropic
tensors are identical to their Cartesian components, e.g., the physical components of
the isotropic elasticity tensor  in Eq. (8) are given as follows:

αβγζ ¼ λδαβ δγζ þ μ δαγ δβζ þ δαζ δβγ
� �

: (13)

The physical components with respect to cylindrical coordinates of ∇A,ΔA and
divA are calculated in A. For partial derivatives of a function f with respect to
cylindrical coordinates, we use notations, in analogy to Eq. (3), of the forms

∂r f ≔
∂f

∂r
, ∂φ f ≔

∂f

∂φ
, ∂z f ≔

∂f

∂z
, (14)

∂rr f ≔
∂
2f

∂r∂r
, … : (15)

3. Governing equations for the 3-PG-Model

This section provides a short overview about the 3-PG-Model in a form which is
adequate for developing analytical solutions.
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3.1 The 3-PG-Model as particular case of micro-strain elasticity

Assume the material body to be a micromorphic continuum. Besides the classical
kinematical degrees of freedom, micromorphic continua are characterized by addi-
tional degrees of freedom due to the deformations of the micro-continua, which are
assumed to be attached at every point of the macro-continuum (see Mindlin [3] and
Broese et al. [5]). Therefore, in the micromorphic continuum theory, a nonclassical
(double) stress and a nonclassical stress power are introduced in addition to the
classical ones, but otherwise the theory is formulated in the framework of classical
thermodynamics.

Let Ψ be the micro-deformation tensor of a micromorphic continuum, u be the
macro-displacement vector, and ε be the macro-strain tensor,

εij � ε ijð Þ ≔
1

2
∂iu j þ ∂ jui
� �

: (16)

All component representations in Section 3 are referred to the Cartesian
coordinate system xif g. Assume Ψ and the so-called relative deformation γ to be
symmetric,

Ψij � Ψ ijð Þ, γij � γ ijð Þ ≔ εij �Ψij: (17)

This means that Ψ and γ are strain tensors and that the components of the
so-called micro-deformation gradient k,

kijk ≔ ∇Ψð Þijk ¼ ∂iΨjk, (18)

exhibit the symmetry property

kijk � ki jkð Þ: (19)

Following Forest and Sievert [10], we denote a micromorphic elasticity theory
based on Eqs. (16)–(18) as micro-strain elasticity.

According to Broese et al. [5], the 3-PG-model can be established as a particular
case of the micro-strain elasticity by assuming the existence of a free energy (per
unit macro-volume) ψ of the form:

ψ ¼ ψ ε, γ, kð Þ ¼1

2
εijijmn εmn þ

1

2

c2 � c1
c1

γijijmn γmn

þ 1

2
c2 � c1ð Þkijkjkmn kimn:

(20)

The components ijmn are defined in Eq. (8) and c1 as well as c2 are scalar
parameters constrained to c2 > c1 >0 with

ffiffiffiffi

c1
p

and
ffiffiffiffi

c2
p

denoting internal material
lengths as noted in Section 1. The Cauchy stress tensor Σ is then given by (cf. Broese
et al. [5]):

Σij � Σ ijð Þ ¼ τij þ σij ¼
c2
c1

ijmn εmn �
c2 � c1
c1

ijmnΨmn, (21)

where

τij � τ ijð Þ ¼
∂ψ

∂εij
¼ ijmn εmn, (22)
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σij � σ ijð Þ ¼
∂ψ

∂γij
¼ c2 � c1

c1
ijmn εmn � ijmnΨmn

� �

: (23)

Further, there exists a double stress μ which satisfies the potential relation

μijk � μi jkð Þ ¼
∂ψ

∂kijk
¼ c2 � c1ð Þ∂iΨmnmnjk: (24)

For static problems, the classical and nonclassical stresses have to satisfy
corresponding equilibrium equations. In the absence of body forces and body dou-
ble forces, these are (see Mindlin [3] or Broese et al. [5])

∂ jΣji ¼ 0, (25)

∂kμkij þ σij ¼ 0: (26)

The concomitant classical and nonclassical boundary conditions are as follows:

Either Pi ¼ n jΣji or ui  class:bound:cond:ð Þ, (27)

and either Tij ¼ nkμkij or Ψij  non� class:bound:cond:ð Þ, (28)

have to be prescribed on the boundary ∂V.
The 3-PG-Model can be obtained from the above equations by first inserting

Eq. (24) into Eq. (26), as follows:

σij ¼ �∂kμkij ¼ � c2 � c1ð Þ∂kkΨmnmnij

¼ � c2 � c1ð Þ ijmn ΔΨð Þmn:

(29)

Then take the Laplacian of Eq. (21), as follows:

ΔΣð Þij ¼
c2
c1

ijmn Δεð Þmn �
c2 � c1
c1

ijmn ΔΨð Þmn, (30)

and use Eq. (21) as well as Eq. (22) in Eq. (29), as follows:

� c2 � c1ð Þijmn ΔΨð Þmn ¼ σij ¼ Σij � ijmn εmn: (31)

The latter together with Eq. (30) yield the following equation:

Σij � c1 ΔΣð Þij ¼ ijmn εmn � c2ijmn Δεð Þmn, (32)

which is nothing but the 3-PG-Model (2).

3.1.1 A useful equation for Ψ

For later reference, we derive a useful equation for the strain Ψ. When seeking
analytical solutions, there are two possibilities, either to find solutions in terms of Ψ
or in terms of μ. In the first case, μ is eliminated at the cost of a higher order partial
differential equation, but no compatibility conditions for Ψ are needed. To be more

specific, assuming 
�1 to exist, we infer from Eqs. (23) and (29) that

εij ¼ Ψij � c1 ΔΨð Þij: (33)
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Further, from Eq. (21), we get the following equation:

εij ¼
c1
c2


�1

� �

ijmn
Σmn þ

c2 � c1
c2

Ψij: (34)

By combining the last two equations, we gain the useful relation as follows:

Ψij � c2 ΔΨð Þij � 
�1

� �

ijmn
Σmn ¼ 0: (35)

For given Σ, this is a (Helmholtz) partial differential equation for the
components of Ψ.

4. Mode-I and mode-II crack problems

In Part II, we consider Mode-I and Mode-II loading conditions for a sharp crack
in the context of plane strain problems and employ cylindrical coordinates r,φ, zf g
as indicated in Figure 1. The aim of this section is to set up all relevant equations
which are needed in Part II.

4.1 Kinematics

Plane strain state of micro-strain continua in equilibrium is characterized by the
assumptions that

uα½ � ¼
ur

uφ

0

0

B

@

1

C

A
, εαβ½ � ¼

εrr εrφ 0

εrφ εφφ 0

0 0 0

0

B

@

1

C

A
, (36)

Ψαβ½ � ¼
Ψrr Ψrφ 0

Ψrφ Ψφφ 0

0 0 0

0

B

@

1

C

A
, (37)

and that u, ε, and Ψ are independent of z,

uα ¼ uα r,φð Þ, εαβ ¼ εαβ r,φð Þ, Ψαβ ¼ Ψαβ r,φð Þ: (38)

On the basis of these assumptions, we conclude (see Section A.2) that the
physical components ∇Ψð Þαβγ � ∇Ψð Þα βγð Þ have the explicit form as follows:

∇Ψð Þrrr ¼ ∂rΨrr, ∇Ψð Þrφφ ¼ ∂rΨφφ, ∇Ψð Þrrφ ¼ ∂rΨrφ, (39)

Figure 1.
Coordinate axes ahead of the crack tip.
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∇Ψð Þφrr ¼
1

r
∂φΨrr � 2Ψrφ

� �

, (40)

∇Ψð Þφφφ ¼ 1

r
∂φΨφφ þ 2Ψrφ

� �

, (41)

∇Ψð Þφrφ ¼ 1

r
∂φΨrφ þ Ψrr �Ψφφ

� �

, (42)

whereas all other components of ∇Ψ vanish,

∇Ψð Þαβz ¼ ∇Ψð Þzαβ ¼ 0: (43)

Similarly, we find (see Section 6.3) for the physical components ΔΨð Þαβ ¼
ΔΨð Þ αβð Þ, that

ΔΨð Þrr ¼ ∂rrΨrr þ
1

r2
∂φφΨrr þ

1

r
∂rΨrr �

4

r2
∂φΨrφ �

2

r2
Ψrr þ

2

r2
Ψφφ, (44)

ΔΨð Þφφ ¼ ∂rrΨφφ þ
1

r2
∂φφΨφφ þ

1

r
∂rΨφφ þ

4

r2
∂φΨrφ þ

2

r2
Ψrr �

2

r2
Ψφφ, (45)

ΔΨð Þrφ ¼ ∂rrΨrφ þ
1

r2
∂φφΨrφ þ

1

r
∂rΨrφ þ

2

r2
∂φΨrr �

2

r2
∂φΨφφ �

4

r2
Ψrφ, (46)

ΔΨð Þαz ¼ 0: (47)

It is well known (see, e.g., Anderson [12], p. 114) that the nonvanishing physical
components of ε are given by the following expressions:

εrr ¼ ∂rur, εφφ ¼ 1

r
ur þ ∂φuφ
� �

, εrφ ¼ 1

2

1

r
∂φur þ ∂ruφ �

1

r
uφ

� �

: (48)

4.2 Cauchy stress: classical equilibrium equations

In view of the assumptions of the last section, we may derive the following
results. We conclude from Eqs. (21)–(23), that

Σαβ ¼ Σαβ r,φð Þ, ταβ ¼ ταβ r,φð Þ, σαβ ¼ σαβ r,φð Þ, (49)

and that

Σαβ½ � ¼
Σrr Σrφ 0

Σrφ Σφφ 0

0 0 Σzz

0

B

@

1

C

A
, ταβ½ � ¼

τrr τrφ 0

τrφ τφφ 0

0 0 τzz

0

B

@

1

C

A
, (50)

σαβ½ � ¼
σrr σrφ 0

σrφ σφφ 0

0 0 σzz

0

B

@

1

C

A
: (51)

Since εzz ¼ Ψzz ¼ 0, we deduce from the elasticity laws (21)–(23) that

Σzz ¼ ν Σrr þ Σφφ

� �

, τzz ¼ ν τrr þ τφφ
� �

, σzz ¼ ν σrr þ σφφ
� �

, (52)

where ν is given by Eq. (9). Thus, as in classical elasticity, once Σrr and Σφφ have
been determined, Σzz is calculated by the first equation of (52).
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Quite similar to the case of classical elasticity (see, e.g., Anderson [12], p. 114),
the matrix of the components of Σ in Eq. (50) and the classical equilibrium condi-
tion (24), expressed in physical components, lead to the following two equations:

∂rΣrr þ
1

r
∂φΣrφ þ

1

r
Σrr � Σφφ

� �

¼ 0, (53)

∂rΣrφ þ
1

r
∂φΣφφ þ

2

r
Σrφ ¼ 0: (54)

4.3 Classical compatibility condition

For the analytical solutions in Part II, we need the classical compatibility condi-
tion for the components of the strain tensor ε (see, e.g., Malvern [13], p. 669)

∂rrεφφ þ
1

r2
∂φφεrr �

2

r
∂rφεrφ �

1

r
∂rεrr þ

2

r
∂rεφφ �

2

r2
∂φεrφ ¼ 0: (55)

The aim is now to rewrite this equation in terms of the physical components of Σ

and Ψ by using Eq. (34). There are various equivalent representations for �1,
depending on the chosen set of elasticity constants. We find it convenient here to

express �1 in terms of the elasticity constants μ and ν. Thus, from Eq. (34),
expressed in physical components,

εrr ¼
c1

2μc2
Σrr � ν Σrr þ Σφφ

� �� �

þ c2 � c1
c1

Ψrr, (56)

εφφ ¼ c1
2μc2

Σφφ � ν Σrr þ Σφφ

� �� �

þ c2 � c1
c1

Ψφφ, (57)

εrφ ¼ c1
2μc2

Σrφ þ
c2 � c1
c1

Ψrφ: (58)

By inserting these equations into Eq. (55), we get

∂rr
c1

2μc2
Σφφ � ν Σrr þ Σφφ

� �� �

þ c2 � c1
c2

Ψφφ

� �

� 2

r
∂rφ

c1
2μc2

Σrφ þ
c2 � c1
c2

Ψrφ

� �

þ 1

r2
∂φφ

c1
2μc2

Σrr � ν Σrr þ Σφφ

� �� �

þ c2 � c1
c2

Ψrr

� �

� 1

r
∂r

c1
2μc2

Σrr � ν Σrr þ Σφφ

� �� �

þ c2 � c1
c2

Ψrr

� �

þ 2

r
∂r

c1
2μc2

Σφφ � ν Σrr þ Σφφ

� �� �

þ c2 � c1
c2

Ψφφ

� �

� 2

r2
∂φ

c1
2μc2

Σrφ þ
c2 � c1
c2

Ψrφ

� �

¼ 0:

(59)

This is equivalent to a vanishing sum of two functions of Ψαβ and Σαβ,
respectively:

0 ¼ χ1 Ψαβ

� �

þ χ2 Σαβ

� �

, (60)
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with

χ1 Ψαβ

� �

≔
c2 � c1
c2

∂rrΨφφ �
2

r
∂rφΨrφ þ

1

r2
∂φφΨrr

	

� 1

r
∂rΨrr þ

2

r
∂rΨφφ �

2

r2
∂φΨrφ




(61)

and

χ2 Σαβ

� �

≔
c1

2μc2
∂rrΣφφ � ν∂rr Σrr þ Σφφ

� �

� 2

r
∂rφΣrφ þ

1

r2
∂φφΣrr

	

� ν

r2
∂φφ Σrr þ Σφφ

� �

� 1

r
∂rΣrr

� ν

r
∂r Σrr þ Σφφ

� �

þ 2

r
∂rΣφφ �

2

r2
∂φΣrφ




,

(62)

The right hand side of Eq. (62) can be simplified by invoking the equilibrium
Eqs. (53) and (54). First recast Eq. (54) to solve for Σrφ,

Σrφ ¼ � r

2
∂rΣrφ �

1

2
∂φΣφφ, (63)

and then take the derivative with respect to φ,

∂φΣrφ ¼ � r

2
∂rφΣrφ �

1

2
∂φφΣφφ: (64)

On the other hand, from Eq. (53),

∂φΣrφ ¼ �r∂rΣrr � Σrr þ Σφφ, (65)

and, after differentiation with respect to r,

∂rφΣrφ ¼ �r∂rrΣrr � 2∂rΣrr þ ∂rΣφφ: (66)

By substituting the latter into Eq. (64),

∂φΣrφ ¼ r2

2
∂rrΣrr �

1

2
∂φφΣφφ þ r∂rΣrr �

r

2
∂rΣφφ: (67)

Finally, by substituting Eqs. (66) and (67) into Eq. (62) and after some
rearrangement of terms, we find that

χ2 Σαβ

� �

¼  
1� νð Þc1
2μc2

½∂rr Σrr þ Σφφ

� �

þ 1

r2
∂φφ Σrr þ Σφφ

� �

þ 1

r
∂r Σrr þ Σφφ

� �

�:
(68)

4.4 Field equations for Ψ

By expressing 
�1 in terms of μ and ν and using Eqs. (50), (37) and (44)–(46),

we can readily obtain from Eq. (35), expressed in physical components, the follow-
ing three equations:
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∂rrΨrr þ
1

r2
∂φφΨrr þ

1

r
∂rΨrr �

4

r2
∂φΨrφ �

2

r2
þ 1

c2

� �

Ψrr þ
2

r2
Ψφφ

þ 1� ν

2μc2
Σrr �

ν

2μc2
Σφφ ¼ 0,

(69)

∂rrΨφφ þ
1

r2
∂φφΨφφ þ

1

r
∂rΨφφ þ

4

r2
∂φΨrφ þ

2

r2
Ψrr �

2

r2
þ 1

c2

� �

Ψφφ

þ 1� ν

2μc2
Σφφ �

ν

2μc2
Σrr ¼ 0,

(70)

∂rrΨrφ þ
1

r2
∂φφΨrφ þ

1

r
∂rΨrφ þ

2

r2
∂φΨrr �

2

r2
∂φΨφφ �

4

r2
þ 1

c2

� �

Ψrφ

þ 1

2μc2
Σrφ ¼ 0:

(71)

4.5 Double stress

4.5.1 Elasticity law for double stress

With respect to physical components, the elasticity law (24) becomes

μαβγ � μα βγð Þ ¼ c2 � c1ð Þ ∇Ψð Þαρζρζβγ

¼ c2 � c1ð Þ 2μ ∇Ψð Þαβγ þ λ ∇Ψð Þαζζ δβγ
n o

:

(72)

Keeping in mind that the physical components of ∇Ψ for a plane strain state are
given by Eqs. (39)–(41), it is not difficult to derive the following results:

μrrr ¼ c2 � c1ð Þ λþ 2μð Þ∂rΨrr þ λ∂rΨφφ

� �

, (73)

μrφφ ¼ c2 � c1ð Þ λþ 2μð Þ∂rΨφφ þ λ∂rΨrr

� �

, (74)

μrzz ¼ c2 � c1ð Þλ∂r Ψrr þΨφφ

� �

¼ ν μrrr þ μrφφ
� �

, (75)

μrrφ ¼ c2 � c1ð Þ2μ∂rΨrφ, (76)

μφrr ¼
c2 � c1

r
2μ ∂φΨrr � 2Ψrφ

� �

þ λ∂φ Ψrr þΨφφ

� �� �

, (77)

μφφφ ¼ c2 � c1
r

2μ ∂φΨφφ þ 2Ψrφ

� �

þ λ∂φ Ψrr þΨφφ

� �� �

, (78)

μφzz ¼
c2 � c1

r
λ∂φ Ψrr þΨφφ

� �

¼ ν μφrr þ μφφφ
� �

, (79)

μφrφ ¼ c2 � c1
r

2μ ∂φΨrφ þΨrr � Ψφφ

� �

, (80)

μrrz ¼ μrφz ¼ μφrz ¼ μφφz ¼ 0, (81)

μzαβ ¼ 0: (82)

4.5.2 Non-classical equilibrium conditions

The physical components of the non-classical equilibrium condition (26) are
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div μð Þαβ þ σαβ ¼ 0: (83)

With the aid of the physical components of μ given by Eqs. (73)–(81) and the
physical components of σ stated by Eq. (51), we can verify that the equilibrium
conditions (83) furnish only four nontrivial equations:

div μð Þrr þ σrr ¼ 0, (84)

div μð Þφφ þ σφφ ¼ 0, (85)

div μð Þrφ þ σrφ ¼ 0, (86)

div μð Þzz þ σzz ¼ 0, (87)

or equivalently (cf. Section A.4)

∂rμrrr þ
1

r
∂φμφrr þ

1

r
μrrr � 2μφrφ
� �

þ σrr ¼ 0, (88)

∂rμrφφ þ
1

r
∂φμφφφ þ

1

r
μrφφ þ 2μφrφ
� �

þ σφφ ¼ 0, (89)

∂rμrrφ þ
1

r
∂φμφrφ þ

1

r
μrrφ � μφφφ þ μφrr
� �

þ σrφ ¼ 0, (90)

∂rμrzz þ
1

r
∂φμφzz þ

1

r
μrzz þ σzz ¼ 0: (91)

4.6 Nonclassical compatibility conditions

Besides the classical compatibility condition for the strain ε in Eq. (55), further
compatibility conditions for the micro-strain Ψ can be established by considering
the following identities:

∂rφΨrr � ∂φrΨrr ¼ 0, (92)

∂rφΨφφ � ∂φrΨφφ ¼ 0, (93)

∂rφΨrφ � ∂φrΨrφ ¼ 0: (94)

From these, we obtain useful relations by involving the physical components
μαβγ with the aid of the elasticity law (24). To illustrate, we recall from Eqs. (39)–

(43) that

∂rφΨrr ¼ ∂r ∂φΨrr

� �

¼ ∂r r ∇Ψð Þφrr þ 2Ψrφ

� �

¼ ∇Ψð Þφrr þ r∂r ∇Ψð Þφrr þ 2 ∇Ψð Þrrφ
(95)

and that

∂φrΨrr ¼ ∂φ ∂rΨrrð Þ ¼ ∂φ ∇Ψð Þrrr: (96)

By inserting these into Eq. (92), we obtain the following equation:

∂φ ∇Ψð Þrrr � ∇Ψð Þφrr � r∂r ∇Ψð Þφrr � 2 ∇Ψð Þrrφ ¼ 0: (97)
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In a similar way, we conclude from Eqs. (93) and (94) that

∂φ ∇Ψð Þrφφ � ∇Ψð Þφφφ � r∂r ∇Ψð Þφφφ þ 2 ∇Ψð Þrrφ ¼ 0, (98)

∂φ ∇Ψð Þrrφ � ∇Ψð Þφrφ � r∂r ∇Ψð Þφrφ þ ∇Ψð Þrrr � ∇Ψð Þrφφ ¼ 0: (99)

In order to involve the components of μ, we invert Eq. (24) to obtain

∇Ψð Þαβγ ¼
1

c2 � c1ð ÞE 1þ νð Þμαβγ � νμαζζ δβγ
� �

, (100)

where E is given by Eq. (9). Explicitly, we get

∇Ψð Þrrr ¼
1

c2 � c1ð ÞE 1� ν2
� �

μrrr � ν 1þ νð Þμrφφ
� �

, (101)

∇Ψð Þrφφ ¼ 1

c2 � c1ð ÞE 1� ν2
� �

μrφφ � ν 1þ νð Þμrrr
� �

, (102)

∇Ψð Þrrφ ¼ 1þ ν

c2 � c1ð ÞE μrrφ, (103)

∇Ψð Þφrr ¼
1

c2 � c1ð ÞE 1� ν2
� �

μφrr � ν 1þ νð Þμφφφ
� �

, (104)

∇Ψð Þφφφ ¼ 1

c2 � c1ð ÞE 1� ν2
� �

μφφφ � ν 1þ νð Þμφrr
� �

, (105)

∇Ψð Þφrφ ¼ 1þ ν

c2 � c1ð ÞE μφrφ, (106)

where in addition use has been made of Eqs. (75) and (80). By inserting these
components into Eqs. (97)–(99), we can verify that

� 1� ν2
� �

r∂rμφrr þ ν 1þ νð Þr∂rμφφφ þ 1� ν2
� �

∂φμrrr � ν 1þ νð Þ∂φμrφφ

� 1� ν2
� �

μφrr þ ν 1þ νð Þμφφφ � 2 1þ νð Þμrrφ ¼ 0,
(107)

� 1� ν2
� �

r∂rμφφφ þ ν 1þ νð Þr∂rμφrr þ 1� ν2
� �

∂φμrφφ � ν 1þ νð Þ∂φμrrr

� 1� ν2
� �

μφφφ þ ν 1þ νð Þμφrr þ 2 1þ νð Þμrrφ ¼ 0,
(108)

�r∂rμφrφ þ ∂φμrrφ � μφrφ þ μrrr � μrφφ ¼ 0: (109)

The last equation is independent of material parameters. In order to rewrite
Eqs. (107) and (108) also in a form independent of material parameters, we add and
subtract them from each other to obtain, respectively,

∂φμrφφ þ ∂φμrrr � μφφφ � μφrr � r∂rμφφφ � r∂rμφrr ¼ 0, (110)

∂φμrφφ � ∂φμrrr � μφφφ þ μφrr � r∂rμφφφ þ r∂rμφrr þ 4μrrφ ¼ 0: (111)

4.7 Boundary conditions

As usually, near-tip field solutions rely upon boundary conditions, which are
imposed only on the crack faces. Especially, we assume the classical traction P (see
Eq. (27)) and the double force T (see Eq. (28)) to vanish on the crack faces. With
regard to Figure 1 this implies that
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Pα½ �φ¼�π ¼ 0, Tαβ

� �

φ¼�π
¼ 0: (112)

Now, we have from Eq. (27), expressed in physical components, that Pα ¼ nβΣβα,
where on the crack faces n½ �φ¼�π ¼ ∓eφ. Therefore, and by virtue of Eq. (50), the

nontrivial classical boundary conditions implied by Eq. (112) are as follows:

Σrφ

� �

φ¼�π
¼ 0, (113)

Σφφ

� �

φ¼�π
¼ 0: (114)

Similarly, we get from Eq. (28), expressed in physical components, that Tαβ ¼
nγ μγαβ, so that the nonclassical part of Eq. (112) implies

μφαβ
� �

φ¼�π
¼ c2 � c1ð Þ ∇Ψð Þφγζ

h i

φ¼�π
γζαβ ¼ 0, (115)

where use has been made of the elasticity law (24). As the isotropic elasticity
tensor  has been assumed to be invertible, we infer from Eq. (115), that

0 ¼ ∇Ψð Þφαβ
h i

φ¼�π
: (116)

Keeping inmindEqs. (39)–(43), the onlynontrivial conditions implied are as follows:

∇Ψð Þφrr
h i

φ¼�π
¼ ∇Ψð Þφφφ

h i

φ¼�π
¼ ∇Ψð Þφrφ

h i

φ¼�π
¼ 0, (117)

or equivalently

∂φΨrr � 2Ψrφ

� �

φ¼�π
¼ 0, (118)

∂φΨφφ þ 2Ψrφ

� �

φ¼�π
¼ 0, (119)

∂φΨrφ þΨrr � Ψφφ

� �

φ¼�π
¼ 0: (120)

4.8 Symmetry conditions

Symmetry conditions are important to classify the near-tip field solutions into
types according to Mode-I and Mode-II crack problems. Each type of loading con-
dition is characterized by the following symmetry conditions.

4.8.1 Mode-I

As in classical elasticity (see, e.g., Hellan [14], p. 10), we suppose for the
macro-displacement the following symmetry conditions:

ur r,φð Þ ¼ ur r,�φð Þ, uφ r,φð Þ ¼ �uφ r,�φð Þ, (121)

i.e., ur is an even function of φ, whereas uφ is an odd function of φ. It follows
from Eq. (48) that the physical components of the macro-strain ε exhibit the
following properties:

εrr r,φð Þ ¼ εrr r,�φð Þ, εφφ r,φð Þ ¼ εφφ r,�φð Þ, (122)

εrφ r,φð Þ ¼ �εrφ r,�φð Þ, (123)
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implying that εrr and εφφ are even functions of φ, whereas εrφ is an odd function
of φ. Since Ψ is also a strain tensor, we assume for its components, in analogy to
Eqs. (122) and (123), that

Ψrr r,φð Þ ¼ Ψrr r,�φð Þ, Ψφφ r,φð Þ ¼ Ψφφ r,�φð Þ, (124)

Ψrφ r,φð Þ ¼ �Ψrφ r,�φð Þ: (125)

Then, it can be verified, with the help of the elasticity law (21), expressed in
physical components, that Eqs. (122)–(125) engender the following conditions for
the components of Σ:

Σrr r,φð Þ ¼ Σrr r,�φð Þ, Σφφ r,φð Þ ¼ Σφφ r,�φð Þ, (126)

Σrφ r,φð Þ ¼ �Σrφ r,�φð Þ: (127)

Further, it can be seen from Eqs. (124) and (125), that

∂rΨrr r,φð Þ ¼ ∂rΨrr r,�φð Þ, ∂φΨrr r,φð Þ ¼ �∂φΨrr r,�φð Þ, (128)

∂rΨφφ r,φð Þ ¼ ∂rΨφφ r,�φð Þ, ∂φΨφφ r,φð Þ ¼ �∂φΨφφ r,�φð Þ, (129)

∂rΨrφ r,φð Þ ¼ ∂rΨrφ r,�φð Þ, ∂φΨrφ r,φð Þ ¼ �∂φΨrφ r,�φð Þ, (130)

and from the elasticity laws (73)–(82), that

μrrr r,φð Þ ¼ μrrr r,�φð Þ, μφrr r,φð Þ ¼ �μφrr r,�φð Þ, (131)

μrφφ r,φð Þ ¼ μrφφ r,�φð Þ, μφφφ r,φð Þ ¼ �μφφφ r,�φð Þ, (132)

μrzz r,φð Þ ¼ μrzz r,�φð Þ, μφzz r,φð Þ ¼ �μφzz r,�φð Þ, (133)

μrrφ r,φð Þ ¼ μrrφ r,�φð Þ, μφrφ r,φð Þ ¼ �μφrφ r,�φð Þ: (134)

4.8.2 Mode-II

We know from classical elasticity (see, e.g., Hellan [14], p. 10), that the radial
component of the displacement vector is an odd function of φ, whereas the cir-
cumferential component is an even function of φ. We assume these symmetry
properties to also apply for the macro-displacement here, i.e.,

ur r,φð Þ ¼ �ur r,�φð Þ, uφ r,φð Þ ¼ uφ r,�φð Þ: (135)

It follows for the macro-strain ε, that

εrr r,φð Þ ¼ �εrr r,�φð Þ, εφφ r,φð Þ ¼ �εφφ r,�φð Þ, (136)

εrφ r,φð Þ ¼ εrφ r,�φð Þ, (137)

which suggest to assume the following symmetries for Ψ:

Ψrr r,φð Þ ¼ �Ψrr r,�φð Þ, Ψφφ r,φð Þ ¼ �Ψφφ r,�φð Þ, (138)

Ψrφ r,φð Þ ¼ Ψrφ r,�φð Þ: (139)

It can be proved, in a similar fashion to Mode-I, that

Σrr r,φð Þ ¼ �Σrr r,�φð Þ, Σφφ r,φð Þ ¼ �Σφφ r,�φð Þ, (140)
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Σrφ r,φð Þ ¼ Σrφ r,�φð Þ, (141)

and that

μrrr r,φð Þ ¼ �μrrr r,�φð Þ, μφrr r,φð Þ ¼ μφrr r,�φð Þ, (142)

μrφφ r,φð Þ ¼ �μrφφ r,�φð Þ, μφφφ r,φð Þ ¼ μφφφ r,�φð Þ, (143)

μrzz r,φð Þ ¼ �μrzz r,�φð Þ, μφzz r,φð Þ ¼ μφzz r,�φð Þ, (144)

μrrφ r,φð Þ ¼ �μrrφ r,�φð Þ, μφrφ r,φð Þ ¼ μφrφ r,�φð Þ: (145)

Before closing this section, we notice here, that the numerical simulations on the
basis of the finite element method in Part III confirm the assumed symmetry
conditions.

5. Concluding remarks

If the implicit gradient elasticity model in Eq. (2), named the 3-PG-Model, is
recognized as a particular case of micromorphic (micro-strain) elasticity, a free
energy and associated response functions and boundary conditions can be assigned.
Part I adopts this conceptual point of view for the 3-PG-Model and provides the
reduced form of the governing equations and boundary conditions for plane strain
problems. This includes, among others, elasticity laws for classical and nonclassical
stresses as well as classical and nonclassical equilibrium equations and compatibility
conditions. It also supplies the required symmetry conditions for asymptotic solu-
tions of Mode-I and Mode-II crack problems. A detailed discussion of such analyt-
ical solutions is given in Part II.
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A. Appendix

This section provides the component representations with respect to cylindrical
coordinates of some space derivatives of a second-order tensor A and a third-order
tensor A. It is easy to find component representations for ∇A and divA in
textbooks, whereas it may be harder to find such representations for ΔA and divA.
But one can calculate them with the help of the relations given below.

A.1 Cylindrical coordinates

We denote by θi
 �

the cylindrical coordinate system with θ1 ¼ r, θ2 ¼ φ and

θ3 ¼ z. The covariant basis induced by θi
 �

is denoted by gi
 �

where g1 ¼
cosφð Þe1 þ sinφð Þe2, g2 ¼ �r sinφð Þe1 þ r cosφð Þe2 and g3 ¼ e3. The contravariant

basis is denoted by gi
 �

, gi ¼ gij g j, where gij are the contravariant metric
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coefficients. The corresponding covariant metric coefficients are gij. All values of gij
and gij are vanishing except for the values g11 ¼ g33 ¼ g11 ¼ g33 ¼ 1, g22 ¼ r2 and

g22 ¼ 1
r2. Moreover, all values of the related Christoffel symbols Γk

ij also vanish except

for the values Γ1
22 ¼ �r and Γ

2
12 ¼ Γ

2
21 ¼ 1

r. Physical components are referred to the

orthonormal basis e< i>f g where e< 1> � er ¼ g1, e< 2> � eφ ¼ 1
r g2 and e< 3> �

ez ¼ g3. According to Section 2, the physical components of a second-order tensor A
are denoted by Aαβ and notations of the form A< 11> � Arr,A< 12> � Arφ, … apply.
Similar notations hold also for any tensor, especially for the third-order tensor A.
Finally, the nabla operator ∇ obeys the representation ∇ ¼ ∂

∂θi
gi.

A.2 The gradient of a symmetric second-order tensor

In the case of a second-order tensor A ¼ Aij gi ⊗ g j, we have (cf. Section 2)

gradA � ∇A≔∇⊗A ¼ gi ⊗ ∂θiA ¼ ∇Að Þ jk
i gi ⊗ g j ⊗ gk, (A1)

where ∇Að Þ jk
i is the covariant derivative of the components Ajk,

∇Að Þ jk
i ¼ Ajk

�

�

�

i
¼ ∂θi A

jk þ Γ
j
imA

mk þ Γ
k
imA

jm
: (A2)

When A is symmetric, A ¼ A sð Þ, we conclude from Eq. (A2), that

∇Að Þ jk
i ¼ ∇Að Þ jkð Þ

i : (A3)

This symmetry also applies with respect to physical components,

∇Að Þαβγ ¼ ∇Að Þα βγð Þ: (A4)

It can be seen that Eq. (A2) furnishes the following physical components of ∇A:

∇Að Þrrr ¼ ∂rArr, ∇Að Þrφφ ¼ ∂rAφφ, ∇Að Þrzz ¼ ∂rAzz, (A5)

∇Að Þrrφ ¼ ∂rArφ, ∇Að Þrrz ¼ ∂rArz, ∇Að Þrφz ¼ ∂rAφz, (A6)

∇Að Þφrr ¼
1

r
∂φArr � 2Aφr

� �

, (A7)

∇Að Þφφφ ¼ 1

r
∂φAφφ þ 2Aφr

� �

, (A8)

∇Að Þφzz ¼
1

r
∂φAzz, (A9)

∇Að Þφrφ ¼ 1

r
∂φArφ þ Arr � Aφφ

� �

, (A10)

∇Að Þφφz ¼
1

r
∂φAφz � Arz

� �

, (A11)

∇Að Þφrz ¼
1

r
∂φArz � Aφz

� �

, (A12)

∇Að Þzαβ ¼ 0: (A13)
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A.3 The Laplacian of a symmetric second-order tensor

The Laplacian of a second-order tensor A is given by (cf. Section 2)

ΔA≔divgradA ¼ ∇ � ∇Að Þ ¼ gm � ∂θm ∇Að Þ
¼ gm � ∂θm Ajk

�

�

i
gi ⊗ g j ⊗ gk

� �

:

(A14)

This may be written as

ΔA ¼ ΔAð Þijgi ⊗ g j, (A15)

where

ΔAð Þij ¼ Aij
�

�

�

km
gkm, (A16)

and Aij
�

�

km
is the second covariant derivative of the components Aij,

Aij
km ¼ Aij

k

� ��

�

�

�

m
¼ ∂θmA

ij
k þ Γ

i
mlA

lj
�

�

�

�

k
þ Γ

j
mlA

il
k � Γ

l
kmAij

�

�

�

�

l
: (A17)

We can calculate the physical components ΔAð Þ
< ij> from Eqs. (A16) and (A17).

For the case that A is symmetric, A ¼ A sð Þ, we can derive, after lengthy algebraic
manipulations, that

ΔAð Þrr ¼  ∂rrArr þ
1

r2
∂φφArr þ ∂zzArr þ

1

r
∂rArr �

4

r2
∂φArφ

� 2

r2
Arr þ

2

r2
Aφφ,

(A18)

ΔAð Þφφ ¼  ∂rrAφφ þ
1

r2
∂φφAφφ þ ∂zzAφφ þ

1

r
∂rAφφ þ

4

r2
∂φArφ

þ 2

r2
Arr �

2

r2
Aφφ,

(A19)

ΔAð Þzz ¼ ∂rrAzz þ
1

r2
∂φφAzz þ ∂zzAzz þ

1

r
∂rAzz, (A20)

ΔAð Þrφ ¼  ∂rrArφ þ
1

r2
∂φφArφ þ ∂zzArφ þ

1

r
∂rArφ þ

2

r2
∂φArr

� 2

r2
∂φAφφ �

4

r2
Arφ,

(A21)

ΔAð Þrz ¼ ∂rrArz þ
1

r2
∂φφArz þ ∂zzArz þ

1

r
∂rArz �

2

r2
∂φAφz �

1

r2
Arz, (A22)

ΔAð Þφz ¼ ∂rrAφz þ
1

r2
∂φφAφz þ ∂zzAφz þ

1

r
∂rAφz þ

2

r2
∂φArz �

1

r2
Aφz: (A23)

A.4. The divergence of a third-order tensor

Let A ¼ A
ijk gi ⊗ g j ⊗ gk be a third-order tensor. Then (cf. Section 2)

divA≔∇ �A ¼ gi � ∂θiA ¼ divAð Þjk g j ⊗ gk, (A24)
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where

divAð Þjk ¼ Aijk
�

�

�

i
, (A25)

and Aijk
�

�

�

m
is the covariant derivative of the components Aijk. If the symmetry

condition Aijk � Ai jkð Þ holds, we can establish, after lengthy algebraic manipula-
tions, the following results for the physical components of divA:

divAð Þrr ¼ ∂rArrr þ
1

r
∂φAφrr þ ∂zAzrr þ

1

r
Arrr � 2Aφrφ

� �

, (A26)

divAð Þφφ ¼ ∂rArφφ þ
1

r
∂φAφφφ þ ∂zAzφφ þ

1

r
Arφφ þ 2Aφrφ

� �

, (A27)

divAð Þzz ¼ ∂rArzz þ
1

r
∂φAφzz þ ∂zAzzz þ

1

r
Arzz, (A28)

divAð Þrφ ¼ ∂rArrφ þ
1

r
∂φAφrφ þ ∂zAzrφ þ

1

r
Arrφ � Aφφφ þ Aφrr

� �

, (A29)

divAð Þrz ¼ ∂rArrz þ
1

r
∂φAφrz þ ∂zAzrz þ

1

r
Arrz � Aφφz

� �

, (A30)

divAð Þφz ¼ ∂rArφz þ
1

r
∂φAφφz þ ∂zAzφz þ

1

r
Arφz þ Aφrz

� �

: (A31)
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