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Chapter

Energy Production from Forest 
Biomass: An Overview
Ana Cristina Gonçalves, Isabel Malico and Adélia M.O. Sousa

Abstract

As long as care is taken regarding stand and forest sustainability, forest 
biomass is an interesting alternative to fossil fuels because of its historical use as 
an energy source, its relative abundance and availability worldwide, and the fact 
that it is carbon-neutral. This study encompasses the revision of the state of the 
sources of forest biomass for energy and their estimation, the impacts on forests 
of biomass removal, the current demand and use of forest biomass for energy, 
and the most used energy conversion technologies. Forests can provide large 
amounts of biomass that can be used for energy. However, as the resources are 
limited, the increasing demand for biomass brings about management challenges. 
Stand structure is determinant for the amount of residues produced. Biomass can 
be estimated with high accuracy using both forest inventory and remote sensing. 
Yet, remote sensing enables biomass estimation and monitoring in shorter time 
periods. Different bioenergy uses and conversion technologies are characterized 
by different efficiencies, which should be a factor to consider in the choice of 
the best suited technology. Carefully analyzing the different options in terms of 
available conversion technologies, end-uses, costs, environmental benefits, and 
alternative energy vectors is of utmost importance.

Keywords: forest stands, forest residues, potential, bioenergy, conversion 
technologies

1. Introduction

In 2017, the world total primary energy supply was 584.98 EJ, having increased 
almost 60% since 1990 [1, 2]. In this period, the share of renewable energy sources 
had a higher increase than that of fossil or nuclear fuels, but it was still relatively low 
in 2017 (13.6%). Of all the renewable energy sources, renewable waste and biomass, 
especially solid biofuels and charcoal, contribute the most to the world renewable 
energy supply (in 2017, 67.9%). At this point, it is important to distinguish between 
traditional and modern biomass. The former refers to noncommercial wood products, 
charcoal, agricultural waste, and animal dung burned in inefficient equipment [3]. 
The promotion of the so-called modern biomass in countries with untapped poten-
tials and the switch from traditional uses to modern ones are of extreme importance 
for a sustainable development.

Forests are of primordial importance to biomass accumulation and availability 
as an energy source because of tree dimensions and their life spans, especially when 
compared to herbaceous and shrubby plants [4]. In what regards forest structures, 
two main classes can be identified in the context of bioenergy: energy plantations 
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and stands where the main production is woody products. The amount of biomass 
and their effects on system sustainability depend on a set of factors related to stand 
structure, silviculture approaches, and the effects of biomass removal on the system 
resilience.

The evaluation of biomass and residues in a forest area is frequently done with 
forest inventory and/or remote sensing and geographical information systems 
technologies. The accuracy of their estimation is dependent on the methods and 
techniques used, which in turn are area- and scale-dependent.

The goals of the chapter are the characterization and analysis of (i) the current 
demand for biomass for energy generation and its relation with the main biomass-
consuming sectors (Section 2); (ii) the variability of the availability of biomass 
from different stand structures and the effect of its removal in a context of sustain-
able management of the forest stands (Section 3); (iii) the estimation of biomass 
encompassing the analysis of the methods associated to forest inventory, remote 
sensing, and geographical information systems (Section 4); and (iv) the conversion 
of biomass into energy, including the most used technologies and their efficiencies 
(Section 5).

2. Characterization of biomass demand for energy

Primary world energy supply from biofuels and waste was 55.64 EJ in 2017 
[1], 9.5% of the total primary energy supply. The share of these fuels decreased in 
relation to the 1990 value (Figure 1). A contrary tendency has occurred in OECD 
countries, which had 3.3% of their total energy supply met by biofuels and waste in 
1990 and 6.1% in 2017 [1].

Biofuels and waste include a diversity of fuels (e.g., solid biofuels, biogases, 
liquid biofuels, or industrial waste of nonrenewable origin). When only the renew-
able fraction of waste is considered, the share of biofuels and (renewable) waste 
decreases from 9.5 to 9.2% [2]. The global supply of primary solid biofuels was  
48.15 EJ in 2017 [1]. Solid biofuels and charcoal were by far the most consumed 
biomass sources in the world in 2017, because of their importance in developing 

Figure 1. 
Share of biofuels and waste in the world primary energy supply from 1990 to 2017.
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countries (Figure 2) [2]. Their share dropped to around 2/3 in OECD countries, 
where modern uses of biomass are the most significant.

The share of the residential sector in the world consumption of primary solid 
biofuels has been declining in the last decades. However, still more than half of 
the energy coming from primary solid biofuels was consumed worldwide in this 
sector in 2017 (Figure 3) [1]. In that year, the industrial sector was the second 
largest consumer of primary solid biofuels, followed by the power sector. When 
we look at the situation in the OECD countries, the sector that consumed most 
of the primary solid biofuels in 2017 was industry (35%), closely followed by the 
residential sector (32%).

An analysis of the world residential energy consumption (Table 1) shows that in 
2017, biomass and waste were the most used fuels in households, followed by elec-
tricity and natural gas [1]. The biomass and waste demand in the residential sector 
was almost entirely supplied by primary solid biofuels (an exception was China, 
where biogas accounted for 9% of the biomass supply). Primary solid biofuels are 

Figure 2. 
Share of the various biomass sources in the biomass primary energy supply in 2017 in the world and in the 
OECD countries.

Figure 3. 
Share of the various sectors in the world consumption of primary solid biofuels in 2017 in the world and OECD 
countries.
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particularly important in Africa, where they represented 85% of the fuels and energy 
vectors consumed in households in 2017. The reality is very different in developed 
countries, whose households are primarily supplied by electricity or natural gas [1].

Coal Crude 

oil + oil 

products

Natural 

gas

Biofuels 

and 

waste

Other 

renewables

Electricity Heat

World 29.0 11.4 20.1 7.3 0.0 27.3 4.9

Africa 13.1 21.4 18.6 20.9 0.0 26.1 0.0

Asia 
excluding 
China

35.0 15.7 11.7 15.4 0.0 22.1 0.1

China 52.5 5.3 5.7 0.0 0.0 30.0 6.5

Middle East 1.9 25.2 62.7 0.0 0.0 10.1 0.0

Non-OECD 
Americas

8.0 20.1 18.1 0.0 0.0 31.3 22.5

Non-OECD 
Europe and 
Eurasia

19.4 11.1 24.6 1.1 0.0 21.2 22.6

OECD 
Americas

6.4 9.7 43.4 11.2 0.0 27.8 1.5

OECD Asia 
Oceania

19.3 17.2 17.2 6.6 0.1 37.8 1.8

OECD 
Europe

9.8 10.4 30.6 8.9 0.1 34.6 5.7

Table 2. 
Share of world industrial energy consumption by fuel in 2017.

Coal Oil 

products

Natural 

gas

Biofuels 

and waste

Other 

renewables

Electricity Heat

World 3.7 10.4 21.3 34.0 1.6 24.1 4.9

Africa 1.6 4.5 2.9 85.1 0.0 5.8 0.0

Asia 
excluding 
China

1.3 11.7 3.1 67.2 0.2 16.4 0.1

China 14.4 12.7 10.6 23.4 7.8 23.6 7.6

Middle East 0.0 15.1 46.1 0.5 0.2 38.2 0.0

Non-OECD 
Americas

0.1 17.6 14.0 34.7 0.0 33.5 0.0

Non-OECD 
Europe and 
Eurasia

2.9 7.7 41.5 5.9 0.1 14.6 27.3

OECD 
Americas

0.0 7.6 39.6 6.4 0.2 46.2 0.0

OECD Asia 
Oceania

0.6 21.1 27.4 1.8 1.3 45.4 2.3

OECD 
Europe

3.7 11.2 37.4 14.0 1.3 25.3 7.2

Table 1. 
Share of world residential energy consumption by fuel in 2017.
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The world relies on fossil fuels to meet its industry energy demand, with coal 
being the most used energy source (Table 2) [1]. In 2017, biomass was the only 
relevant renewable energy source supplying 7.3% of the world’s industrial energy 
consumption. Primary solid biofuels and, in some regions, industrial waste were 
the main types of biomass consumed by the industry.

3. Biomass availability in different stand structures

In general, in forest stands, biomass increases over time [5]. However, biomass 
accumulation is influenced by a set of factors that encompass stand structure, 
species traits, site quality, individual tree interactions, density, and disturbances. 
Stand structure is determined by the regime (high forest or coppice), composi-
tion (pure or mixed), and structure (even-aged or uneven-aged) [6]. Regime 
influences tree and stand growth, with coppice individuals having higher initial 
growth rates than high forest ones, as they use the existing root system [7]. In 
stands with even-aged (one cohort) structure, biomass increases from instal-
lation to old-growth stage [8]. Inversely, in the uneven-aged structure (two or 
more cohorts), biomass ideally remains approximately constant over time [9]. In 
stands with pure composition (one predominant species), biomass accumulation 
depends on the species traits, such as growth and shade tolerance; spatial arrange-
ments (in regular spacing individual trees have similar growing space and growth 
rates); and density (the higher, the smaller the growing space and the growth 
rate per tree) [10, 11]. In mixed stands, biomass accumulation is determined, in 
addition to the aforementioned factors, by the number of species, their propor-
tion, the interactions among species, and the spatial arrangement of the species. 
The biomass stock increases with species traits complementarity, and with spatial 
arrangements that promote facilitation, while it seems less sensitive to the number 
of species [12, 13]. Biomass stocks increase with site quality and complementarity 
among species, due to the increase of the growing space and tree growth rates. 
This increase is related to a higher availability of (i) light [14] or to their comple-
mentary use [14, 15]; (ii) water, which is also affected by crown cover [16]; and 
(iii) nutrients that can also be promoted by species with complementary traits, 
such as N-fixing [17]. Disturbances have two main effects on standing biomass, 
namely their reduction and their reallocation. In general, disturbances whether 
natural (e.g., storms, fires) or artificial (e.g., harvests, thinnings, prunings) 
reduce standing biomass, especially when woody products are exported from the 
stand [18]. As disturbances release growing space, they increase the tree growth 
rate and thus reallocate biomass stocks to the residual trees [19].

In general, the stand structures with the highest potential for biomass for energy 
are those that accumulate the largest biomass in the shortest time. This goal is 
achieved by energy plantations, which are coppice pure even-aged stands of fast-
growing species, managed in high density stands in very short rotations, sometimes 
fertilized and/or irrigated [20, 21]. Yet, other stand structures are also of interest, 
such as the high forest pure or mixed even-aged stands. In these stands, only the 
biomass without quality for timber or without high market value is used for bioen-
ergy, namely dead trees, trees with timber of bad quality, wood of trees species with 
low or very low market price and forest residues (e.g., tops, branches). The amount 
of biomass for energy increases from pure to mixed stands [22]. The least interesting 
stand structures for bioenergy are the high forest pure or mixed uneven-aged stands. 
This is related with the quantities of residues generated in the harvests and espe-
cially the technical difficulties for removing them without damaging the residual 
stand as well as the associated costs [23].
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Energy plantations’ yield variability seems to be related to site, species, clone, 
climate, density, and rotation. In the literature, a wide range of yields are referred, 
from 0.6 to 50 t ha−1 y−1 [24, 25]. Species and clones’ ecological characteristics are 
expressed by the edaphic and climatic conditions, with yields increasing with site 
quality [26] and water availability [27]. Density and rotation are linked, resulting in 
stands of higher density and shorter rotations [26] or with lower density and longer 
rotations [28].

The viability of removing biomass for energy is linked to stand structure, and 
to environmental, legal, technical, and economic aspects. In energy plantations, 
all aerial biomass is removed [27], while in stands managed for woody products, 
residues are partially removed. The removal proportion ranges from 0 to 80% of the 
above ground biomass [23, 29]. The most frequently used proportions of residues 
removal in relation to above ground biomass range between 13 and 17%, with a 
mean of 15% [29–31]. In even-aged stands, the amounts of residues are larger, so it 
is technically and economically feasible to remove them [23]. Also, spatial distribu-
tion of residues can be scattered in the stand in which case 50% are removed or 
packed where 65% of the residues are removed [30, 32, 33]. In difficult topographic 
conditions, such as steep slopes, collecting residues is technically difficult and 
expensive [34].

The removal of biomass from any forest stand, regardless of their use, has 
always impacts on site and stand productivity and sustainability [35]. Forest 
ecosystems have more or less resilience [36], and management can actively promote 
biomass stocks in the stands [37]. This has led to an ongoing discussion about the 
effects of biomass removal on stand productivity, soil, hydrology, and habitat and 
diversity [38–40]. The impact of the removal of biomass depends on the type of 
biomass removed and their quantity [41]. Biomass removal implies the export, to a 
smaller or larger extent, of nutrients [42, 43]. The larger proportions of nutrients 
are found in the newest tissues, i.e., leaves, twigs, and branches, when compared 
to the oldest, that is, stems or large branches [44, 45]. Thus, removals of stems 
are more sustainable than the all tree harvest [46]. Nutrients’ export is higher in 
coppice than in high forest [45]. Also, the poorer the site, the stronger the nega-
tive effects of biomass residue removal in the soil and stand productivity [41]. 
The latter can be enhanced by maintaining the residues (totally or partially) in the 
stands, especially those with higher nutrient content [43] or alternatively, when 
it is technically and economically feasible, with fertilization with inorganic or 
organic fertilizers [43, 47]. Soil potential productivity is influenced by soil organic 
matter, depending strongly on the inputs (litter) and is species and stand structure-
dependent [48]. In general, high forest stands produce larger amounts of litter 
during more time than coppices, resulting in larger amounts of soil organic matter 
and nutrients, through decomposition [49].

The removal of biomass can contribute to increased runoff and, consequently, 
leaching and erosion [50, 51]. This risk decreases from clear-cut to selective systems 
and with the decrease of residues removal as they have a protection effect on the soil 
[23]. The minimization of the impacts of these three factors can be achieved by the 
maintenance of stumps, reduction of the amount of residues removed, and, when 
possible, compensation fertilization [51].

In general, diversity decreases from high forest mixed uneven-aged to coppice 
pure even-aged stands [17]. The temporal and spatial patterns of biomass removal 
affect differently biodiversity [52]. Biodiversity increases with the increase of rota-
tion length [53] and with the spatial heterogeneity of the removals [7]. The increase 
of biodiversity can have also negative effects on biomass. One example is the 
populations of pest whose breeding material is the biomass residues. This increase 
of diversity is related to a higher risk of pest attacks to living trees. It depends on 
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pest density (increasing with density increase) and tree vigor (increasing with the 
decrease of tree vigor). In this case, if the residues are maintained in that stand, 
their storage in large piles is recommended as the pests colonize more the outer than 
the inner part of the pile, thus decreasing the pest population [54].

4. Biomass estimation

Forest biomass can be estimated at tree or area-level, and the methods can be 
grouped according to the data used.

At tree level biomass can be estimated with direct or indirect methods [55]. 
Biomass estimation with the direct method is based on destructive sampling with 
the determination of the dry weight of biomass, frequently evaluated per com-
ponent: stem, bark, crown (or alternatively branches and leaves) and sometimes 
below ground biomass [56–58]. At tree level, three approaches can be used with 
indirect methods. In the first, biomass is determined with conversion methods, 
usually as function of volume, and wood apparent density [56, 59]. In the second, 
biomass is obtained by allometric functions which were developed with data from 
destructive sampling. These functions frequently have as independent variables 
the diameter at breast height and/or total height [56]. A wide range of allometric 
functions have been developed [60–63]. Yet, as they are specific to the species, 
regime, and site, necessity arises for new biomass functions [25, 64–66]. In the 
third approach, biomass is obtained by fitting functions with data from LiDAR 
high density 3D cloud points, where treetop, crown radii, and crown boundary 
are frequently used as independent variables [67, 68].

At area level, six approaches can be used with indirect methods, all of which 
use, as dependent variable, biomass at plot level (sum of biomass calculated with 
allometric functions at tree level). Forest inventory plot data are frequently used 
[57, 58, 69]. The first approach uses conversion factors based on absolute density 
measures (e.g., volume or number of trees per hectare) with more (exponential) or 
less (coefficient) complex formulas [66, 70]. The second approach uses expansion 
factors, with stand structure, topography, and edaphic and climatic variables as 
independent variables [66, 70, 71]. The third approach uses expansion factors with 
independent variables derived from thematic maps (e.g., stand structure, soil type, 
topographic variables) with k-nearest neighbor methods [57, 72]. In the fourth 
approach, biomass is modeled with independent variables derived from passive 
remote sensing data with several spatial resolutions. The most commonly used 
variables are spectral reflectance, crown diameter and crown horizontal projection 
[73–78], original bands, and/or vegetation indices [79–82]. Among the parametric 
models, the most frequently used are linear regression, both single [80, 83, 84] and 
multiple [80, 83]; and nonlinear regression, power [84–86] and logistic [87]. The 
nonparametric models include regression k-nearest neighbor [88–90], artificial 
neural network [91], regression tree [35, 92, 93], random forest [18, 94–96], sup-
port vector machine [94], and maximum entropy [97]. These functions have been 
developed with satellite imagery of low [98–100], medium [100–103], and high 
[73, 75–77, 104–106] spatial resolution. In the fifth approach, biomass is modeled 
with data from Synthetic Aperture Radar (SAR) with bagging stochastic gradient 
boosting algorithms, backscattering amplitudes, and multivariate linear regression 
[107–109]. L or P bands are better suited for forests with high level of biomass, 
while X and C bands for those with low biomass [109, 110]. In the sixth approach, 
biomass is modeled with data derived from LiDAR metrics of horizontal (crown 
cover) and vertical (mean, standard deviation, and percentiles of height) with 
linear regression, k most similar neighbors, and random forest [109, 111, 112].
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The use of allometric functions at tree level is the most accurate indirect method. 
Yet, it has the disadvantage of being species-, regime-, and site-specific and labor-
demanding [55]. The use of conversion and expansion factors is less labor-demanding, 
and in large areas it can be accurate enough, but accuracy decreases with the increase 
of stand variability [66, 70, 71]. The reduction of pixel size and area increases the 
accuracy of expansion factors with remote sensing data [72, 112]. This approach has 
the advantages of allowing automatic mapping and working at several spatial resolu-
tions. The disadvantages are related with large pixel sizes, different dimensions of 
pixel and plot sizes, and poor correlation between remote sensing data and biomass 
[72]. The accuracy of biomass functions derived from passive sensors data increases 
with the increase of their spatial resolution and homogeneity of the stand structure 
and topographic, edaphic, and climatic conditions [109, 113]. Some shortcomings 
have been pointed out to the use of passive sensor data. Examples are saturation and/
or the impossibility of their use under certain weather conditions, such as clouds 
[109, 111, 113]. These limitations are overcome by LiDAR [109, 114], but not by SAR, 
which also presents signal saturation for high biomass [110, 113, 115]. Biomass func-
tions derived from LiDAR data and their raster maps are accurate, especially those 
from Airborn Laser Scanning data [116, 117].

The combination of data from several passive and/or active sensors has been 
used with several statistical methods to improve the accuracy of biomass estimates. 
Examples are SPOT and LiDAR data [118], LiDAR and Landsat [113, 119], RaDAR 
and Sentinel 1 and 2 [95], SAR and Landsat [120, 121], LiDAR and hyperspectral 
[122], LiDAR and RaDAR [123], Geoscience Laser Altimeter System (GLAS) and 
Modis [124]; LiDAR and airborne imagery of very high spatial resolution image 
[125], or Sentinel 1 (SAR) and Sentinel 2 [126, 127].

5. Conversion of forest biomass into energy

Forest biomass is most commonly converted into energy by thermochemical 
processes, combustion being the most mature and widely used [128, 129]. The 
two other conversion routes that are commercially available are gasification and 
pyrolysis. They transform forest biomass into biofuels. Other primary conversion 
routes are possible but are still at a less developed stage. When biomass is converted 
into power, secondary conversion technologies are needed. Of these, conventional 
steam turbines are the most used [130, 131], but depending on the primary conver-
sion technology or the end-use, other technologies commercially available may be 
more appropriate (e.g., organic Rankine cycles or internal combustion engines). A 
general description of biomass conversion technologies is outside the scope of this 
chapter, but readers should refer, for example, to [131–133] for more information.

Although forest biomass can be used to produce fuels for the transport sector, as 
referred above, currently it is mostly converted to heat and/or to electricity and it is 
used in the residential, industrial, and energy sectors [1]. The next sections describe 
the conversion technologies most frequently used in these sectors.

5.1 Residential sector

As already seen in Section 2, at the world level, energy from solid biomass is 
mostly used in the residential sector. In developing countries, solid biomass is 
often used in households for heating and cooking with the use of very inefficient 
equipment while in developed countries, it is almost exclusively used for heating 
purposes [134]. The supply of bioenergy to households by district heating is also 
common in some countries [135] and will be described in Section 5.3.
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Cooking is not the activity that consumes the most energy worldwide, but it 
is the most universal residential energy service, and therefore, it is of particular 
importance [136]. In developed countries, the use of biomass for cooking is not 
common and is associated with luxury [134]. In developing countries, however, 
cooking is the primary residential use of solid fuels (biomass and coal) [134]. 
Open fires and inefficient traditional cookstoves are the technologies usually 
used [137]. Examples of common wood-fired cookstoves are 3-stone fires, 
semi-open cookstoves, traditional hearths or rocket stoves [134]. Their efficien-
cies range from around 10% for open fires to around 40% for improved types of 
stoves [134, 138–140]. The traditional use of biomass results in severe negative 
impacts on human health [137, 141, 142], and, therefore, strategies to mitigate 
health risks are of utmost importance. The development, promotion, and dis-
semination of improved wood-fired cookstoves are important but have proved to 
be of limited success [137].

Globally, space and water heating are the most energy-consuming activities 
in the residential sector [143]. In most developing countries, however, space 
heating is not the main use of energy in households, because of geography and 
climate (typically in these countries, most energy is spent for cooking) [144]. 
Open fires and traditional stoves are used for heating in lower-income house-
holds in developing countries. In cold regions, the same equipment that is used 
for cooking is frequently used for space heating [142]. The energy efficiencies are 
low, and the negative impacts on human health are high. In developed countries, 
in general, wood is not the most used fuel for space and water heating. However, 
today, wood heating is still popular in many cold and temperate climate zones 
[134]. There is a big diversity of biomass-fired equipment used to produce heat. 
Open fireplaces, stoves, furnaces, and boilers are examples of frequently used 
equipment [132, 145]. They can produce heat locally (the case of small-size 
fireplaces) or centrally (the case of biomass-fired central heating systems). 
The conversion efficiencies is very diverse, depending on the way biomass is 
converted to energy. The use of inefficient fireplaces leads to efficiencies lower 
than 20% [146], while modern wood pellet boilers are very efficient, presenting 
efficiencies above 90% [147].

5.2 Industrial sector

Industry is the sector that consumes most solid biomass in OECD coun-
tries, while globally, it is the second largest final use of biomass (Figure 3). 
Nonetheless, there is still an untapped potential to increase the use of solid 
biomass in industry, but economic viability, high investment costs, guarantee of 
feedstock, and security of supply are factors that often hamper the investment in 
bioenergy [148]. The sector is very diverse both in terms of industrial processes 
and energy conversion technologies used, and, consequently, developing global 
strategies to promote biomass use in the industry is a difficult task [148]. Solid 
biofuels can provide the full range of temperatures needed by the industry, 
which some other renewable energy sources cannot [149]. Therefore, channeling 
biomass into high-temperature industrial processes seems to be a good strategy 
in terms of greenhouse gas emission reduction (for instance, the residential 
sector requires low temperature heat, and, therefore, this is a sector where other 
renewable energy sources can easily penetrate). The share of bioenergy in the 
different industrial sectors and countries is very uneven, but one can say that it 
is essentially used to produce process heat and combined heat and power (CHP). 
Boilers, dryers, kilns, furnaces, and ovens are typical biomass-fired process heat 
generators [150–163]. The most popular technologies for heat generation in the 
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industrial sector are combustion boilers [131], which include fixed bed, bubbling 
fluidized bed, and circulating fluidized combustion [148]. The efficiencies of 
the former are in the range of 60–90%, while that of fluidized bed boilers are in 
the range of 75–92% [164]. CHP systems are also widely used in some industrial 
sectors, such as the pulp, food, and chemical industries [165], mostly integrat-
ing conventional steam turbines as secondary conversion technology [130, 131]. 
Their capacities typically range from 1 to 50 MWe [131, 166], electrical efficien-
cies from 15 to 35% [131], and overall efficiencies are above 80% [167, 168]. 
Co-firing with coal (described in the next section) is also used in some industrial 
sectors [169].

5.3 Energy sector

Biomass use for electricity generation is well developed, biofuels often 
being co-fired with coal [170]. Most systems are based on fixed or fluidized 
bed technologies used in a steam turbine cycle, pulverized boilers also being 
commonly used [171]. Large biomass-fired power plants with capacities of the 
order of 50 MWe have efficiencies of around 40%, while smaller plants typically 
have efficiencies of 20–30% [132]. Generally, biomass power plants are smaller 
than coal ones because of local feedstock availability. Co-firing with coal in 
coal-fired power plants is a possibility that allows for the use of larger capacities 
(and efficiencies). This cost-effective strategy results in a reduction of the GHG 
emissions from conventional solid fuel power plants and is a low-risk option for 
the production of bio-power [170, 171].

In conventional power plants, the rejected heat is wasted, and the overall 
efficiency is low. If this heat is used (CHP) and distributed in district heating 
networks, the overall efficiency of the energy conversion is much higher. Market 
penetration of (biomass) district heating systems is quite different depending 
on the country. In the countries where district heating (independent of the 
energy carrier used) is more popular, it provides heat to around half of building 
stocks [135]. It is in the European Union that most CHP biomass-fired district 
heating plants are in operation [135, 172]. Some biomass heat-only plants 
also exist but are relevant for small-scale district heating systems [173]. The 
technologies used are similar to the ones used for indirect heating in industrial 
applications.

6. Conclusions

Forests can provide large amounts of biomass, which can be used for energy 
generation. The increasing demand of forest biomass for energy brings about 
management challenges since biomass is a limited resource. The amount of residues 
produced is dependent on stand structure, with pure even-aged stands providing 
more biomass than mixed uneven-aged ones. Energy plantations have the highest 
potential for biomass for energy. Biomass can be estimated with high accuracy using 
both forest inventory and remote sensing. Yet, remote sensing enables biomass 
estimation and monitoring in shorter time periods than the forest inventories. 
Forest biomass can be converted into energy using distinct technologies and cover 
different end-uses, resulting in different overall efficiencies. Important variables 
to be considered when choosing the best suited biomass technology are efficiency, 
economic feasibility, and environmental benefits. This choice is not unique and 
is dependent on the region, facts that pose challenges in the management of the 
biomass supply chains.
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