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Chapter

Padé Approximation to Solve the
Problems of Aerodynamics and
Heat Transfer in the Boundary
Layer
Igor Andrianov and Anatoly Shatrov

Abstract

In this chapter, we describe the applications of asymptotic methods to the
problems of mathematical physics and mechanics, primarily, to the solution of
nonlinear singular perturbed problems. We also discuss the applications of Padé
approximations for the transformation of asymptotic expansions to rational or
quasi-fractional functions. The applications of the method of matching of internal
and external asymptotics in the problem of boundary layer of viscous gas by means
of Padé approximation are considered.

Keywords: asymptotic methods, Padé approximation, boundary-value problem of
mathematical physics, boundary layer

1. Introduction

An important drawback of asymptotic methods is the local character of solutions
obtained [1–4]. Since the constructed series are often asymptotic, a simple increase
in the number of terms does not remove this drawback. Essence of the problem
consists of divergence of obtained series. There exist a lot of approaches to these
problems [5, 6]. The method of analytic continuation (e.g., the Euler transform or
generalized Euler transform [7–12]) requires a priori information about the singu-
larities of the searched function in the complex domain [4, 9]. These methods are
useful if a large number of terms of the series are known. In this case, it is possible
to use the Domb-Sykes plot [5, 8]. But usually only a few terms of asymptotic series
are known, and to get information from them, the method of Padé approximations
(PAs) is useful [1, 2, 5, 13–15]. PAs yield meromorphic continuations of functions
defined by power series and can be used even in cases where analytic continuations
are inapplicable. If a PAs converges to the given function, then roots of the denom-
inator tend to points of singularities. One-point PAs give possibilities to improve
convergence of series [16–20]. Two-point PAs (TPPAs) allow matching asymptotics
in transition zones and are widely used in mechanics and physics [1, 2, 4, 14,
21–24]. Overcoming the mentioned limitations of asymptotic methods for practi-
cally important problem is the purpose of this chapter. We consider at the begin-
ning (Section 2) the mathematical bases of asymptotic methods and the use of Padé
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approximants for the summations of the asymptotic series. Section 3 discusses the
method of combining of internal and external asymptotics (matching method) by
means of Padé approximants. In the Section 4, the methods of solving specific
problems of mathematical physics and mechanics of fluid and gas are demonstrated.
Section 5 presents a discussion of the obtained.

2. Mathematical background: summation of asymptotic series

2.1 Analysis of power series

We suppose that by the result of the asymptotic study, one obtains the following
series:

f εð Þ �
X

∞

n¼0

Cnε
n for        ε ! 0: (1)

As is known, the radius of convergence ε0 series (1) is determined by the
distance to the nearest singularity of the function f(ε) on the complex plane. To
define ε0, the Domb-Sykes plot may be useful [8, 10]. In many cases, one can
effectively use the conformal mapping of the series, a fairly complete catalog of
which is given in [9]. In particular, it sometimes turns out to be a successful Euler
transformation [8, 10], based on the introduction of a new variable:

~ε ¼ ε

1� ε=ε0
: (2)

Recast the function f in terms of ~ε, f �
P

∞

n¼0dn~ε
n, transfer the singularity at the

point ~ε ¼ ∞.
A natural generalization of Euler transformation looks as follows:

~ε ¼ ε

1� ε=ε0ð Þα ,

where α is the certain number.

2.2 Padé approximants

“The coefficients of the Taylor series in the aggregate have a lot more
information about the values of features than its partial sums. It is only necessary to
be able to retrieve it, and some of the ways to do this is to construct a Padé
approximant” [11]. Padé approximants (PAs) allow us to transform of power series
to a fractional-rational function. Let us define PAs, following Baker and
Graves-Morris [25].

Suppose we are given the power series:

f εð Þ ¼
X

∞

i¼1

ciε
i, (3)

PAs can be written as the following expression:

f n=m½ � εð Þ ¼ a0 þ a1εþ … þ anε
n

1þ b1εþ … þ bmεm
, (4)
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whose coefficients are determined from the condition

1þ b1εþ … þ bmε
mð Þ c0 þ c1εþ c2ε

2 þ …
� �

¼ a0 þ a1εþ … þ anε
n þO εnþmþ1

� �

(5)

Equating coefficients near the same powers ε, one obtains a system of linear
algebraic equations. In the case where this system is solvable, one can obtain the
Padé coefficients of the numerator and denominator of the PAs.

We note some properties of the PAs [5, 13, 19]. If the PAs at the chosen m and n
exists, then it is unique.

1. If the PAs sequence converges to some function, the roots of its denominator
tend to the poles of the function. This allows for a sufficiently large number
of terms to determine the pole and then perform an analytical continuation.

2. PAs gives meromorphic continuation of a given power series.

3. PAs of the inverse function is treated as the PAs function inverse itself. This
property is called duality and is more exactly formulated as follows. Let

q εð Þ ¼ f�1
εð Þ and f 0ð Þ 6¼ 0, then q n=m½ � εð Þ ¼ f�1

n=m½ � εð Þ (6)

4. Diagonal PAs are invariant under fractional linear transformations of the
argument. Suppose that the function is given by their expansion (3).
Consider the linear fractional transformation that preserves the origin
W ¼ aε= 1þ bεð Þ and the function q(W) = f εð Þ. Then q n=n½ � Wð Þ ¼ f n=n½ � εð Þ,
provided that one of these approximations exist. In particular, the diagonal
PAs is invariant concerning Euler transformation (2).

5. Diagonal PAs are invariant under fractional linear transformations of
functions. Let us analyze a function (3). Let

q εð Þ ¼ aþ bf εð Þ
cþ df εð Þ :

If cþ df 0ð Þ 6¼ 0, then

q n=n½ � εð Þ ¼
aþ bf n=n½ � εð Þ
cþ df n=n½ � εð Þ

provided that there is f n=n½ � εð Þ.

6. PAs can get the upper and lower bounds for f n=n½ � εð Þ. For the diagonal PAs,
one has the following estimate:

f n=n�1½ � εð Þ≤ f n=n½ � εð Þ≤ f n=nþ1½ � εð Þ: (7)

Typically, this estimate is valid for the function itself, that is, f n=n½ � εð Þ in
Eq. (7) can be replaced by f εð Þ.

7. Diagonal and close to them a sequence of PAs often possesses the property of
autocorrection [17, 18]. It consists of the following. To determine the
coefficients of the numerator and denominator of PAs, we have to solve
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systems of linear algebraic equations. This is an ill-posed procedure, so the
coefficients of PAs can be determined with large errors. However, these
errors in a certain sense are of self-consistent, so the accuracy of PAs is high.
This is the radical difference the PAs from the Taylor series, the calculation
error of which only increases with increasing number of terms.

Autocorrection property is verified for a number of special functions. At the
same time, even for elliptic functions, the so-called Froissart doublets phenomenon
arises [26]. Thus, in general, having no information about the location of the poles
of the PAs, but relying solely on the very PAs (computed exactly as you wish), we
cannot say that you have found a good approximated function. Now consider the
question: In what sense the available mathematical results on the convergence of the
PAs can facilitate the solution of practical problems? Gonchar’s theorem [16] states:
If none of the diagonal PAs f n=n½ � εð Þ has poles in the circle of radius R, then the

sequence f n=n½ � εð Þ is uniformly convergent in the circle to the original function f εð Þ.
Moreover, the absence of poles of the sequence of the f n=n½ � εð Þ in a circle of radius R

confirms convergence of the Taylor series in the circle. Since the diagonal PAs is
invariant under fractional linear maps ε ! ε= aεþ bð Þ, the theorem is true for any
open circle containing the point of decomposition, and for any area, which is the
union of these circles. A significant drawback in practice is the need to check all
diagonal PAs. The fact is that if a circle of radius R has no poles only for a subse-
quence of the sequence of diagonal PAs, then the uniform convergence to its original
holomorphic in the disk is guaranteed only with r< r0, where 0:583< r0 <0:584
[27]. How can we use these results? Suppose that there are a few terms of the
perturbation series and one wants to estimate its radius of convergence R. Consider
the interval [0,ε0], where the truncated perturbation series and the diagonal PAs of
the maximal possible order differ by no more than 5% (adopted in the engineering
accuracy of the calculations). If none of the previous diagonal PAs does not have in a
circle of radius ε0 poles, then it is a high level of confidence to assert that R≥ ε0.

3. Matching of limiting asymptotic expansions

3.1 Method of asymptotically equivalent functions

This method was originally proposed by Slepyan and Yakovlev for the inversion
of the integral transformations. Here is a description of this method, following [26].

Suppose that the Laplace transform of a function of a real variable f(t) is

F sð Þ ¼
ð

∞

0

f tð Þe�stds:

To obtain an approximate expression for the inverse transform, it is necessary to
clarify the behavior of the transform to the vicinity of the points s = 0 and s =∞ and
to determine whether the nature and location of its singular points are on the exact
boundary of the regularity or near it. Then the transform F(s) is replaced by the
function F0(s), approximated the exact inversion and satisfying the following
conditions:

1. Functions F0(s) and F(s) are asymptotically equivalent at s ! ∞ and s ! 0,
that is,
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F0 sð Þ � F sð Þ at s ! 0 and s ! ∞:

2. Singular points of functions F0(s) and F(s), located on the exact boundary of
the regularity, coincide.

The free parameters of the function F0(s) are chosen so as to satisfy the condi-
tions of the good approximation of F(s) in the sense of minimum relative error for
all real values s ≥ 0:

max
F0 s, α1, α2, … , αkð Þ

F sð Þ � 1

�

�

�

�

�

�

�

�

! min (8)

Condition (8) is achieved by variation of free parameters αk. Often the
implementation of equalities

ð

∞

0

F0 sð Þds ¼
ð

∞

0

F sð Þds

or F0
0 sð Þ � F0 sð Þ at s ! 0 leads to a rather precise fulfillment of the

requirements (8).
Constructed in such a way function F0(s) is called asymptotically equivalent

function for F(s) (AEF). Let’s dwell on the terminology. In the following sections,
we will use the symbols of ordinal relations. We will give strict definitions of these
concepts.

Let’s consider the function f(x). To describe the ordinal relationships with
respect to another function φ(x), enter the following definitions:

Definition 1. Let us say that f(x) is a value of order φ(x) at x ! x0, that is,

f xð Þ ¼ O φ xð Þð Þ

if ∀δ>0∃A : x� x0j j< δ ) f xð Þj j≤A φ xð Þj j.
Definition 2. Let us say that f(x) is a value of order less than φ(x) at x ! x0, that is,

f xð Þ ¼ o φ xð Þð Þ

if ∀δ>0∃ε : x� x0j j< δ ) f xð Þj j≤ ε φ xð Þj j.
Here A is a finite number, and ε, δ are infinitely small.
Definition 3. Let us say that f (x) is asymptotically equal to φ(x) at x ! x0,

that is,

f xð Þ � φ xð Þ if   f xð Þ
φ xð Þ ! 1:

Here we use the term “asymptotically equivalent function.” Other terms
(“reduced method of matched asymptotic expansions” [28], “quasi-fractional
approximants” (QAs) [29], and “mimic function” [30]) are also used.

3.2 Two-point Padé approximants

The analysis of numerous examples confirms “complementarity principle”: if for
ε ! 0, one can construct a physically meaningful asymptotics, there is a nontrivial
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asymptotics and for ε ! ∞. The most difficult in the asymptotic approach is the
intermediate case of ε � 1. In this domain, typically numerical methods work well;
however, if the task is to investigate the solution depending on the parameter ε,
then it is inconvenient to use different solutions in different areas. Construction of a
unified solution on the basis of limiting asymptotics is not a trivial task, and for this
purpose, one can use a two-point Padé approximants (TPPAs). We give the defini-
tion following [25]. Let

F εð Þ ¼
X

∞

i¼0

ciε
i at ε ! 0, (9)

F εð Þ ¼
X

∞

i¼0

diε
�i at ε ! ∞ (10)

TPPA is a rational function of the form:

f n=m½ � εð Þ ¼ a0 þ a1εþ … þ anε
n

1þ b1εþ … þ bmεm
, (11)

k coefficients which are determined from the condition

1þ b1εþ … þ bmε
mð Þ c0 þ c1εþ c2ε

2 þ …
� �

¼ a0 þ a1εþ … þ anε
n þO εnþmþ1

� �

(12)

and the remaining coefficients from a similar condition for ε�1.

4. Application of Padé approximants

4.1 Using of TPPAs in boundary-value problems

For boundary-value problems, we assume that there exist two asymptotics
for limit values of the parameter. In this case, the method of matching of
asymptotic expansions is usually used [4]. However, for correct application of
the matching method, it is necessary to know the matching point or, at least,
the domain of overlapping of asymptotics. An exact description of the transition
layer 0 <ε< ∞ exists only in the cases where solutions with different behaviors on
opposite sides of the layer can be matched by a special function (e.g., the Airy
function).

For the matching of nonoverlapping asymptotics, a method based on TPPAs has
recently been developed. In [15, 21, 23], this method was applied for the construc-
tion of thermal profiles in a boundary layer of gas. In [2, 6], this method allowed
one to examine the heat exchange in hypersonic boundary layers.

Two-point Padé approximations (TPPAs) are defined in Section 3.2 [see
formulas (2)–(4)]. As an example of application of TPPAs, we consider the Airy
boundary-value problem [4, 10, 31]:

y00 � λ2xy ¼ g xð Þy as λ ! ∞ (13)

with boundary conditions

y 0ð Þ ¼ 1, y ∞ð Þ ¼ 0 (14)
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This boundary-value problem has the form in terms of Airy function U(s):

U00 � sU ¼ 0, U 0ð Þ ¼ 1, U ∞ð Þ ¼ 0 (15)

The asymptotic solution for problems (13) and (14) has the form:

y xð Þ ¼ U sð Þ 1þO �λ�1
� �� �

as s ¼ xλ2=3: (16)

The interior asymptotic (s ! 0) has the form of a power function:

Ui ¼ 1� asþ 1

6
s3 þ O s4

� �

(17)

The exterior asymptotic has the form of an exponential function:

Ue ¼ bs
�1=4 exp � 2

3
s1=2

� �

1� 5

48
s
�3=2 þO s�3

� �

	 


(18)

as a ffi 0:7290,  b ffi 0:7946.

The transition layer is defined by the domain, where x ¼ O λ
�2=3

� �

Airy function approaches with TPPA:

Ua ¼
1� asþ 2

3 s
3=2 � 2

3 as
5=2 þ 32

5 as
4

1þ 32
5
a
b s

12=4
exp � 2

3
s3=2

� �

(19)

The TPPA (19) preserves three terms of the asymptotics at both ends and
provides accuracy with relative error:

Δ ¼ U �Uaj j
U

� 1:5%

Parameters a and b are obtained from the integral equations (relations). The
relations (20) and (21) can be obtained by multiplying Eq. (18) by 1,  s,  s2, … and
then by integrating from 0 to ∞.

U00 ¼ sU )
ð

∞

0

U00ds ¼
ð

∞

0

sUds )
ð

∞

0

U0ð Þ0ds ¼
ð

∞

0

sUds ) U0j∞o ¼
ð

∞

0

sUds

This is the first integral relation.

ð

∞

0

sUds ¼ a (20)

sU00 ¼ s2U )
ð

∞

0

sU00ds ¼
ð

∞

0

s2Uds )
s ¼ t, dt ¼ ds

U00ds ¼ dV, V ¼ U0

�

�

�

�

�

�

�

�

) U0j∞0 �
ð

∞

0

U0ds

¼
ð

∞

0

s2Uds )
ð

∞

0

s2Uds ¼ 1

This is the next integral relation.
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ð

∞

0

s2Uds ¼ 1 (21)

Substituting in Eqs. (20) and (21) instead of U (4) interpolation Ua (7), calculate
using quadrature integration formulas a = 0.7287 and b = 0.7922.

In the same manner, integral relations with weights U, U’ can be obtained by
part integration. Multiplying Eq. (18) by U, U0, U00

… , we get after integration
from 0 to ∞,

UU00 ¼ sU2 )
ð

∞

0

UU00ds ¼
ð

∞

0

sU2ds ) U ¼ t, dt ¼ dU

U00ds ¼ dV, V ¼ U0

�

�

�

�

�

�

�

�

) UU02
�

�

�

∞

0
�
ð

∞

0

U02ds

¼
ð

∞

0

sU2ds ) a�
ð

∞

0

U02ds ¼
ð

∞

0

sU2ds )
ð

∞

0

U02 þ sU2
� �

ds ¼ a

This is the first integral relation for the second method of producing it:

ð

∞

0

U02 þ sU2
� �

ds ¼ a (22)

U0U00 ¼ sU0U )
ð

∞

0

U0U00ds ¼
ð

∞

0

sU0Uds ) U0 ¼ t, dt ¼ U00ds

U00ds ¼ dV, V ¼ U0

�

�

�

�

�

�

�

�

) U02
�

�

�

∞

0
�
ð

∞

0

U0U00ds ¼
ð

∞

0

sU0Uds ) �a2 ¼ 2

ð

∞

0

sU0Uds

)
s ¼ t, dt ¼ ds

U0Uds ¼ dV, V ¼ U2

2

�

�

�

�

�

�

�

�

�

�

�

�

) �a2 ¼ 2
sU2

2

�

�

�

�

∞

0

�
ð

∞

0

U2

2
ds

2

4

3

5)
ð

∞

0

sU2ds

)
ð

∞

0

U2
� �

ds ¼ a2

And this is the next integral relation for the second method of producing it:

ð

∞

0

U2ds ¼ a2 (23)

Using Eq. (19), from Eqs. (22) and (23), we calculate а = 0.7277, and b = 0.7966.
From the given example, it follows that the features of the asymptotic connec-

tion method are the ambiguity of the algorithm, the freedom to choose both the
form of TPPAs, integral relations, and methods for calculating the parameters of the
TPPAs. The question of choosing integral relations is, in fact, a question of control-
ling the asymptotic approximation using weights selected to obtain integral rela-
tions. Choosing the weight allows you to achieve acceptable accuracy in a particular
area of the boundary layer: a weight equal to 1 means that the uniform influence of
the entire layer is taken into account; a weight equal to 1, s, s2, … increases the
influence of the outer region of the layer; and if the desired solution U,U0,U00 is
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chosen as the weight, then its inhomogeneity increases the influence of the local
region where the inhomogeneity is concentrated.

4.2 Quasi-fractional Padé approximants (modification of TPPA)

In the illustrated example (5), Eq. (18) TPPA represents a modified (quasi-
fractional) two-point Padé approximant (10) by an exponential weight function,
the choice of which is dictated by a kind of exterior asymptotics. Evidently, the
TPPAs are not panacea. For example, one of the “bottlenecks” of the TPPAs method
is related to the presence of logarithmic components in numerous asymptotic
expansions. This problem is the most essential for the TPPAs, because, as a rule, one
of the limits ε ! 0 or ε ! ∞ for a real mechanical problem gives expansions with
logarithmic terms or other complicated functions. It is worth noting that in some
cases these obstacles may be overcome by using an approximate method of TPPAs’
construction by tacking as limit points not ε ¼ 0 and ε ¼ ∞, but some small and
large values. On the other hand, Martin and Baker [32] proposed the so-called
quasi-fractional approximants (QAs). Let us suppose that we have a perturbation
approach in powers of ε for ε ! 0 and asymptotic expansions F εð Þ containing, for
example, logarithm for ε ! ∞. By definition, QA is a ratio R with unknown
coefficients ai, bi, containing both powers of ε and F εð Þ. We give this modification
of TPPA [2, 14, 15]. Let the series give for Eq. (5). Then the modification of TPPA is
represented by the irrational function:

F εð Þ ¼
Pm

k¼0akε
k

Pn
k¼0bkε

k
exp �

X

l

k¼0

ckε
k

 !

, (24)

where kþ 1 coefficients ck, k ¼ 0, 1, 2, …ð Þ are determined by means of lþ 1
integral equations for function from Eqs. (20) and (21). We notice that exponential
terms [multiplier in expressions (17) and (18)] give for ε ¼ 0 and ε ¼ ∞ coinci-
dence with TPPA (19). When considering the computational aspects of the connec-
tion method, it should first be assumed that the system of equations for determining
the TPPA parameters is substantially nonlinear. To solve it, we developed a modifi-
cation of the method of solving nonlinear algebraic systems [4, 23, 24].

4.3 Application of TPPAs in problems of incompressible liquid and gas
mechanics

Consider the Blasius equation (45), which describes laminar boundary layers on
a flat plate:

φ‴ þ φφ00 ¼ 0;

φ 0ð Þ ¼ φ0 0ð Þ ¼ 0; φ0
∞ð Þ ¼ 2

(25)

where φ ζð Þ ¼ ψ=
ffiffiffi

x
p

, ψ yð Þ is the stream function, ζ ¼ y
2

ffiffiffiffiffi

Re
x

q

is the automodel

variable, and x and y are the Cartesian coordinates such that the axis x is directed
along the flow. The interior asymptotic (ζ ! 0) has the form:

φ ¼ a2ζ
2 � a22

30
ζ5 þO ζ8

� �

(26)

9

Padé Approximation to Solve the Problems of Aerodynamics and Heat Transfer…
DOI: http://dx.doi.org/10.5772/intechopen.93084



The procedure for obtaining external asymptotics is nontrivial due to the pres-
ence of logarithmic components in the main elements. We describe in detail the
mechanism for obtaining and evaluating both primary and secondary members of
asymptotic. From Eq. (25) follows:

φ‴

φ00 ¼ φ (27)

After integration of Eq. (27) by the coordinate ζ follows:

ln φ00 ζð Þ½ �jζ0 ¼ �
ð

ζ

0

φdζ ) ln φ00 ζð Þ½ � � ln 2a2ð Þ ¼ �
ð

ζ

0

φdζ ) φ00 ζð Þ

¼ 2a2 exp �
ð

ζ

0

φdζ

0

@

1

A (28)

After reintegration of Eq. (28) by the coordinate

ð

ζ

0

φ00 ζ1ð Þdζ1 ¼
ð

ζ

0

2a2 exp �
ð

ζ4

0

φdζ2

0

@

1

Adζ1

follows:

φ0 ζ1ð Þjζ0 ¼
ð

ζ

0

2a2 exp �
ð

ζ4

0

φdζ2

0

@

1

Adζ1

subject to boundary conditions

φ0 ζ1ð Þ ¼
ð

ζ

0

2a2 exp �
ð

ζ1

0

φdζ2

0

@

1

Adζ1 ) φ0 ζ1ð Þ ¼
ð

ζ

0

2a2

φ ζ1ð Þ exp �
Ð

ζ1

0

φ ζ2ð Þdζ2

 !

φ ζ1ð Þ dζ1

) φ0 ζ1ð Þ ¼ 2a2

ð

ζ

0

1

φ ζ1ð Þ d exp �
ð

ζ1

0

φ ζ2ð Þdζ2

0

@

1

A

0

@

1

A

Let us make a limit transition ζ ! ∞ in the last equation and represent the
integration interval as

0, ∞½ Þ ¼ 0, ζ½ �∪ ζ, ∞½ Þ follows:

φ0 ζð Þ ¼ 2þ 2a2

ð

∞

ζ

1

φ ζ1ð Þ d exp �
ð

ζ1

0

φ ζ2ð Þdζ2

0

@

1

A

0

@

1

A

We use the mean theorem in the last equation

φ0 ζð Þ ¼ 2þ 2a2
1

φ ζð Þ exp �
ð

ζ1

0

φ ζ2ð Þdζ2

0

@

1

A (29)
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In the resulting equation, the first compound is the principal member of the
external asymptotics. To obtain the following members of the asymptotic, we will
present the function as

φ ¼ 2ζ � cþ z

where z ! 0, if ζ ! ∞. Given the last expression of the function φ, Eq. (29) is
obtained as follows:

φ0 ζð Þ ¼ 2þ 2a2
2ζ � cþ z

exp �
ð

ζ

0

2ζ1 � cþ zð Þdζ1

0

@

1

A

If z ¼ φ� 2ζ þ c, then

φ0 ζð Þ ¼ 2þ 2a2
2ζ � cþ z

exp �ζ2 þ cζ
� �

exp �
ð

ζ

0

φ� 2ζ1 þ cð Þdζ1

0

@

1

A

In the external domain, where ζ ! ∞ and z ! 0, let us receive an exterior
asymptotic:

φ0 ζð Þ ¼ 2þ 2a2D

2ζ � c
exp �ζ2 þ cζ

� �

þ o
1

ζ2

� �

(30)

where D ¼ exp �
Ð

∞

0

φ� 2ζ þ cð Þdζ
� �

.

To calculate parameter a2, use the procedure of Section 4.1 [see formula (20)],
and using weight equal to 1:

a2 ¼
1

2

ð

∞

0

φ0
a 2� φ0ð Þdζ (31)

At that, in external domain, ζ ! ∞

φ ¼ 2ζ � c, z ! 0ð Þ

Therefore,

c ¼
ð

∞

0

2� φ0ð Þdζ (32)

and

D ¼ exp �
ð

∞

0

φ� 2ζ þ cð Þdζ

0

@

1

A (33)

Type of generalized and normalized TPPA of order (4,4):

φ0
a ζð Þ ¼ 2 1� 1þ α1ζ þ α2ζ

2 þ α3ζ
3 þ α4ζ

4
� �

exp �ζ2 þ cζ
� �

1þ β1ζ þ β2ζ
2 þ β3ζ

3 þ β4ζ
4

" #

(34)
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Species of TPPA taking into account four nontrivial parameters:

α3, β1, β2, β4

Therefore,

φ0
a ζð Þ ¼ 2 1� 1þ α3ζ

3
� �

exp �ζ2 þ cζ
� �

1þ β1ζ þ β2ζ
2 þ β4ζ

4

" #

(35)

Parameter values are determined using local asymptotic and TPPA in the
respective domain. Taking into account the decomposition of the exponent in the
internal domain, we will write down the local equality:

2a2ζ �
a22
6
ζ4 ¼ 2 1�

1þ α3ζ
3

� �

1þ cζ � ζ2 þ cζ�ζ2ð Þ2
2 þ …

� �

1þ β1ζ þ β2ζ
2 þ β4ζ

4

2

6

6

4

3

7

7

5

(36)

Taking into account Eq. (33) in the external domain, we will write down the
second local equality:

2� 2a2D

2ζ � c
exp �ζ2 þ cζ

� �

¼ 2 1� 1þ α3ζ
3

� �

exp �ζ2 þ cζ
� �

1þ β1ζ þ β2ζ
2 þ β4ζ

4

" #

) a2D 1þ β1ζ þ β2ζ
2 þ β4ζ

4
� �

¼ 2ζ � cð Þ 1þ α3ζ
3

� �

(37)

Equalizing the coefficients in Eqs. (36) and (37) at the same degrees ζ, we get

α3 ¼ a2D, β1 ¼ a2 þ c, β2 ¼ � c2

2
þ a2 a2 þ cð Þ, β4 ¼ 2:

Therefore, the TPPA has the form:

φ0
a ζð Þ ¼ 2 1� 1þ a2Dζ3

� �

exp �ζ2 þ cζ
� �

1þ a2 þ cð Þζ þ a22 þ a2cþ c2

2 � 1
� �

ζ2 þ 2ζ4

" #

(38)

After systems (31)–(33) are solved, we will obtain

a2 ¼ 0:6641,

c ¼ 1:7308,

D ¼ 0:3357

(39)

By substituting (39) in (38), we get an explicit expression for the TPPA.

4.4 Combining method of interior and exterior asymptotics for boundary layer
of supersonic flow in compressed viscous gas by TPPA

We consider the boundary layer in hypersonic flow of viscous gas and solve a
model problem which reduces to ordinary differential equations with appropriate
boundary conditions. The TPPAs parameters are calculated and relevant questions
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are discussed. The equations of laminar boundary layer near a semi-infinite plate in
the supersonic flow of viscous perfect gas, as it is known [2, 7], can be reduced to
the form:

φ00 μ

T

� �0
þ φφ00 ¼ 0, (40)

μ
T0

T

� �0
þ σφT0 þ aσ

μ

T
φ002 ¼ 0 (41)

where

φ ¼ ψ
ffiffiffi

x
p ¼ φ ζð Þ, T ¼ T ζð Þ, ζ ¼ η

2
ffiffiffi

x
p , η ¼

ð

y

0

dy

T
, a ¼ 1

4
M2 κ � 1ð Þ

M is the Mach number, σ is the Prandtl number, κ is the adiabatic index, ψ is the
stream function, T is the temperature, μ is the viscosity coefficient, and x and y are
the Cartesian coordinates.

The boundary conditions at the wall are

φ 0ð Þ ¼ φ0 0ð Þ ¼ 0, T 0ð Þ ¼ Ts (42)

At external boundary of layer is

φ0
∞ð Þ ¼ 2, T ∞ð Þ ¼ 1: (43)

Interior asymptotic expansions are for μ ¼ Tn

φ0 ¼ 2a2ζ � n� 1ð Þa2
T1

Ts
ζ2 þ O ζ3

� �

,

T ¼ Ts þ T1ζ � 2aσa22 þ
n� 1ð Þ
2

T2
1

Ts

� �

ζ2 þO ζ3
� �

(44)

where two constants a2 and T1 remain undefined.
Exterior asymptotics for ς ! ∞

lnφ00 ¼ c2 þ cζ þ lnAþ o 1ð Þ,
ln �T0ð Þ ¼ �σζ2 þ σcζ þ lnBþ o 1ð Þ

(45)

where three constants are unknown: c, A, and B.
We solve boundary problems (40) and (41) approximately by connecting

asymptotics (44) and (45) TPPA

φ0
a ζð Þ ¼ 2 1� 1þ Aζ3

� �

exp �ζ2 þ cζ
� �

1þ α1ζ þ α2ζ
2 þ α4ζ

4

" #

(46)

T0
a ζð Þ ¼ ζm � ζ

β0 þ β1ζ
exp σ �ζ2 þ cζ

� �� �

(47)

Boundary conditions (45) and (46) are satisfied if to put

φa ζð Þ ¼
ð

∞

0

φ0
a ζð Þdζ, Ta ζð Þ ¼ Ts þ

ð

∞

0

T0
a ζð Þdζ (48)
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We complement the last equalities (50) and (51) with a normalizing condition:

1 ¼ Ts þ
ð

∞

0

T0
a ζð Þdζ (49)

Following the procedure of the previous section, we will calculate the coeffi-
cients at ζ and ζ

2 in asymptotic expansions (44) and, equating them with the
corresponding expressions from Eqs. (46) and (47), we will obtain equalities, from
which values α1, α2, α4, β0, β1 are expressed through a1, c,T1, ζm:

α1 ¼ a2 þ c,

α2 ¼ � 1

2
n� 1ð Þa2

T1

Ts
� 1þ c2

2
þ a2 a2 þ cð Þ, α4 ¼ 4,

β0 ¼ ζm

T1
, β1 ¼ σc

ζm

T1
� 1

T1
þ n� 1ð Þ ζm

T1
2

(50)

Three parameters in asymptotics (44) are defined in the outer region if the
following condition is met:

β1 ¼ �1=B (51)

A priori at large M numbers, it is known that the temperature profile is
non-monotonic and has a maximum within the layer at point ςm at which, as can
be seen from the second equation of the systems (40) and (41), the following
condition is used:

T00 ζmð Þ ¼ �aσφ002 ζmð Þ (52)

From the convexity condition of the temperature profile in the vicinity of the
point ςm, the following equality is used:

β0 þ β1ζmð Þaσφ002
a ζmð Þ ¼ exp �σ ζ2m � ζm

� �� �

(53)

Let us add the received equations with the integrated ratios received on the basis
of coincidence of TPPAs (46) and (47); in this case, three members in asymptotic
decompositions (50) and (51), the initial system of Eqs. (40) and (41), with
boundary conditions (42) and (43), by using the technique stated in the previous
sections.

a2 ¼
1

2

ð

∞

0

φ0
a 2� φ0ð Þdζ

c ¼
ð

∞

0

2� φ0ð Þdζ

(54)

The integral relation for parameter A is obtained by multiplying Eq. (40) by

exp ζ2 � cζ
� �
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and integrating from 0 to ∞ taking into account Eq. (48):

A ¼ 2a2
μ Tsð Þ
Ts

�
ð

∞

0

φ� μ Tð Þ
T

2ζ � cð Þ
� �

φ00 exp ζ2 � cζ
� �

dζ (55)

Similarly, from Eq. (41), we get

B ¼ σ

ð

∞

0

T0 φ� μ Tð Þ
T

2ζ � cð Þ
� �

þ a2
μ Tð Þ
T

φ002
� �

exp σ ζ2 � cζ
� �� �

dζ (56)

Thus, the integral relations (52) and (55)–(47) form a nonlinear system of
equations for determining the following parameters:

T1, a2, c, A, B:

Integrals of the systems (37) and (42)–(44) solution were approximated using
Simpson quadrature formulas. The behavior of magnitude B proved to be highly
dependent on the behavior of the exponent at large, so the integral relation had to
be replaced by the local condition (52), besides controlling the behavior of the TPPA
near the maximum is more important than the weight of the exponent away from
the wall. Thus, instead of the value of B, we include the value among the parameters
sought, and the value of B is expressed from Eqs. (50) and (51).

5. Results

As an example of TPPA (see Section 3.2) used for matching of limiting
asymptotics, consider the paper by Grasman et al. [33]. They dealt with Lyapunov
exponents which characterize the dynamics of a system near its attractor. For the
Van der Pol oscillator:

€xþ μ _x x2 � 1
� �

þ x ¼ 0 (57)

Similar to the asymptotic approximation of amplitude and period, expressions
are derived for the nonzero Lyapunov exponent λ2 for both small and large param-
eter μ values:

λ2 ¼ �μ� 1

16
μ3 þ 263

18432
μ5 þ … , μ ! 0, (58)

λ2 ¼ � 3þ 4 ln 2

2 3� 2 ln 2ð Þ μþ … , μ ! ∞: (59)

The overlap of these series does not take place. The authors of [33] remark:
“Such an overlap comes within reach if in the regular expansion a large number of
terms is included.” This is not correct, because the obtained series is asymptotic; so,
with increasing of number of terms, the results will be worst. So, one needs a
summation procedure. Some authors [34] proposed to use PAs, but in this case one
needs hundreds of perturbation series terms. That is why we use TPPA. Using two
terms from expansion (58) and one term from expansion (59), one obtains
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L≈� λ2

μ
¼ 1þ 0:14μ2

1þ 0:079μ2
(60)

Expression (60) has a pole at μ ¼ �12:66. Below, one can see some numerical
results.

In Table 1, the second column is made by calculation results by formula (4), the
third column is made by paper data [33]. One can see that TPPA gives good result
for any value of used parameter.

In Section 4.4, the problem was solved for several variants of the Mach number
and the heating temperature: M ¼ 5; 10; 15,Ts ¼ 3; 5; 7 of the streamlined flat plate,
with constant Prandtl number values σ ¼ 0:76, adiabatic index κ ¼ 1:4, and two
values of dynamical viscosity index μ ¼ Tn

: n ¼ 1; 0:76. When the first equation
of the systems (43) and (44) is solved, it becomes independent of the second
equation and can be compared with the known Blasius solution (see Section 3),
which was used as a test when compared to our method [35–40]. Thus, the value of

μ L (4) L (NR)

1 1.057 1.0648

5 1.513 1.4724

10 1.685 1.6358

25 1.759 1.7398

50 1.768 1.7691

Table 1.
Comparison for L of numerical results (NR) from paper by [33] with TPPA formulate (60).

M Ts ςm T1

5 3 0.426 1.340

10 3 0.744 9.127

10 5 0.637 7.929

10 7 0.531 6.676

15 3 0.806 22.00

15 5 0.756 20.82

15 7 0.712 19.75

Table 2.
TPPAs parameters for different Mach numbers M, temperature TS, and n = 1 values.

M 5 10 10

Ts 3 3 5

a2 0.17 0.74 0.56

ςm 0.729 0.714 0.798

c 1.45 1.42 1.38

T1 0.56 8.69 8.16

Table 3.
TPPAs parameters for different Mach numbers M, temperature TS, and n = 0.76 values.
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the parameters according to the exact solution is equal: a2 ¼ 0:664;  c ¼ 1:72. Our
decision gives a2 ¼ 0:6641; c ¼ 1:7308. Of course, such a good match is due to the
fact that these parameters are largely determined by local internal asymptotics,
more precisely, derived from the function on the wall. But also within the transition
area, the deviation from the exact solution does not exceed 1÷2% (for φ0 and T,
respectively). Design values of parameters for determining approximations (37)
and (38) for n = 1 are given in Table 2.

If n ¼ 0:76, this value corresponds to the physical characteristics of the air, and
the constant calculation results for the approximation formulas (49) and (50) are
shown in Table 3.

6. Conclusion

The procedure of constructing the PA is much less labor-intensive than the
construction of higher approximations of perturbation theory. PA can be applied to
power series but also to the series of orthogonal polynomials. PA is locally the best
rational approximation of a given power series. They are constructed directly and
allow for efficient analytic continuation of the series outside its circle of conver-
gence, and their poles in a certain sense localize the singular points (including the
poles and their multiplicities) of the function at the corresponding region of
convergence and on its boundary. PA is fundamentally different from rational
approximations with (fully or partially) fixed poles, including the polynomial
approximation, when all the poles are fixed in infinity. That is the above property of
PA—effectively solving the problem of analytic continuation of power series—lies
at the basis of their many successful applications in the analysis and the study of
applied problems. Currently, the PA method is one of the most promising nonlinear
methods of summation of power series and the localization of its singular points.
Including the reason why the theory of the PA turned into a completely indepen-
dent section of approximation theory, and these approximations have found a
variety of applications both directly in the theory of rational approximations, and in
perturbation theory.

Thus, the main advantages of PA compared with the Taylor series are as follows:

1.Typically, the rate of convergence of rational approximations greatly exceeds
the rate of convergence of polynomial approximation. For example, the
function eε in the circle of convergence approximated by rational polynomials
Pn(ε)/Qn(ε) in 4п times better than an algebraic polynomial of degree 2n. More
tangible, it is property for functions of limited smoothness. Thus, the function
|ε| on the interval [�1,1] cannot be approximated by algebraic polynomials so
that the order of approximation was better than 1/n, where n is the degree of

polynomial. PA gives the rate of convergence � exp �
ffiffiffiffiffi

2n
p� �

.

2.Typically, the radius of convergence of rational approximation is large
compared with the power series. Thus, for the function arctan xð Þ, Taylor
polynomials converge only if εj j≤ 1, and PA is everywhere in С\((- i∞, - i]
∪ [i, i∞)).

3.PA can establish the position of singularities of the function.

TPPA allows to overcome the locality of asymptotic expansions, using only a few
terms of asymptotics. Unfortunately, the situations when both asymptotic limits
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have the form of power expansions are rarely encountered in practice, so we have
to resort to other methods of AEFs construction, for example, the method
quasirational approximation which is described in [23]. The method of combination
(combining method) of asymptotics by using TPPA is alternative to the well-known
matching method [6]; it is useful in local domains of transition layers where
asymptotics are not uniform. This method was tested on well-known problems
of mathematical physics, in particular, problems of fluid dynamics. The main
advantage of the method is that it has an analytic form.
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