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Chapter

Seeking Accuracy in Forecasting 
Demand and Selling Prices: 
Comparison of Various Methods
Zineb Aman, Latifa Ezzine, Yassine Erraoui, 

Younes Fakhradine El Bahi and Haj El Moussami

Abstract

The need for a good forecast estimate is imperative for managing flows in a supply 
chain. For this, it is necessary to make forecasts and integrate them into the flow 
control models, in particular in contexts where demand is very variable. However, 
forecasts are never reliable, hence the need to give a measure of the quality of these 
forecasts, by giving a measure of the forecast uncertainty linked to the estimate 
made. Different forecasting models have been developed in the past, particularly 
in the statistical area. Before going to our application on real industrial cases which 
highlights a prospective study of demand forecasting and a comparative study of 
sales price forecasts, we begin, in the first section of this chapter, by presenting the 
forecasting models, as well as their validation and monitoring.

Keywords: forecasts, accuracy, quality of forecasts, demand forecasting, selling price 
forecasting

1. Introduction

For most companies, forecasting is a prerequisite for effective supply chain 
management. As explained by Lai et al. [1], forecasting is the basis of all production 
management systems. The entire supply chain is based on the data from forecast 
models.

In Ref. [2], the authors show the usefulness of forecasting and planning as a 
decision-making tool for organizing the supply chain across all horizons of time and 
at all levels.

In the academic field, forecasting occupies an important place. Given the pri-
mordial role of forecasting, we understand why many models have been developed 
since the beginning of the twentieth century. Research mainly developed from the 
1950s onward with the use of mathematical models. A review of the literature was 
carried out by Stadtler [3]. We find there the interest of forecasting for the global 
supply chain in order to integrate the different organizations and coordinate their 
flows in order to satisfy the end consumer.

The various sources for making these forecasts are located throughout the supply 
chain, including the commercial part of the business. It is the analysis of this source 
that will help build the basis for future forecasting. In the end, the sources used to 
build the forecasts are therefore multiple.
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2.  Application to prospective approach: modeling and forecasting 
demand using the ARIMA models

In the manufacturing sector, forecasting demand is one of the most crucial 
problems in inventory management [4]; it can be used in various operational plan-
ning activities during the production process: capacity planning and management 
of used product acquisitions [5].

For both types of push/pull supply chain processes, demand forecasting 
forms the basis of all CS planning. The “pull” processes in the SC are performed 
in response to the client’s request, while all the “push” processes are performed 
in anticipation of the client’s request [6]. A business needs to know many factors 
related to forecasting demand. Some of these factors are listed below:

• past requests;

• product delivery time;

• planned advertising or marketing efforts;

• state of the economy;

• price reduction planned; and

• actions undertaken by competitors.

Businesses need to understand these factors before they can choose an appropriate 
forecasting method as it can be difficult to decide which method is the most suitable 
for forecasting. Forecasting methods are classified into the following types: time 
series, causal, qualitative, and simulation [6].

A time series is considered to be a set of observations cited in chronological 
order [7]. To forecast demand, time series forecasting models are based on historical 
data. These mathematical models used are based on the assumption that the future 
is an expansion of the past [8].

Numerous studies on demand forecasting by time series analysis have been car-
ried out in several fields. They include demand forecasts for food sales [9], tourism 
[10], spare parts [4, 11], electricity [12, 13], automobiles [14], and some other goods 
and services [15–17].

In this section, we forecast the demand for a product in a food manufacturing 
operation based on real data, as well as the precision and characteristics of these 
forecasts.

Our study will be carried out according to the three stages of the Box-Jenkins 
approach: identification, estimation, and verification. We present the model 
relating to product demand from January 2010 to December 2015 as shown in 
Figure 1.

2.1 Identification of model

This refers to the initial preprocessing of the data to make it stationary and to the 
choice of p and q values that can be adjusted during model fitting.

We present the ACF and PACF diagrams of the series in Figures 2 and 3, respec-
tively. We find that this series oscillates, respectively, around an average value, 
and its autocorrelation function decreases to zero point rapidly, which proves the 
stationarity of the time series studied.
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Moreover, to assess whether the data come from a stationary process, we can 
perform the unit root test: Dickey-Fuller test for stationarity. After carrying out the 
test on the Xlstat software, the results are grouped in Table 1.

H0: The series has a unit root.
H1: The series does not have a unit root. The series is stationary.
The null hypothesis H0 cannot be rejected since the calculated p value is greater 

than the significance level α set at 0.05. We calculated the risk of rejecting the null 
hypothesis H0, while it is true. The risk is 84.38%.

Figure 1. 
Evolution of the final product’s sales.

Figure 2. 
ACF correlograms of the demand series.
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In our study, we checked the stationarity of the series, and we noted from 
the ACF and PACF correlograms that our model cannot be pure RA or pure MA. 
Therefore, we tested several models to identify the most suitable for our series.

2.2 Estimation of model coefficients

Using the ARIMA procedure of the SPSS time series module [18], we can esti-
mate the coefficients of our model by providing the parameters p, q, and d [19–22].

The best model is as simple as possible and minimizes certain criteria, namely 
AIC criteria (Akaike criterion), SBC (Bayesian criterion of Schwarz), variance, and 
maximum likelihood [23–25]. The chosen model is that of ARIMA (0, 1, 1). For 
other models, either the Student “T-RATIO” test values are found in the range of 
±1.96, or one of the values of the minimization criteria is higher than that found for 
the ARIMA model (1, 0, 1) with the constant value.

Table 2 presents the values of the different models. From this table, we choose 
the appropriate model on which we will base ourselves to make our forecasts.

It is clear from Table 2 that the ARIMA model (1,0,1) is selected because all 
the coefficients are significantly different from 0 according to the Student test 
(|T-RATIO|) ≥ 1.96) with an acceptable level of adjustment.

The model residue is stationary and follows a white noise process in the range 
of ±40. The residue histogram shows whether the distribution of residues approxi-
mates a normal distribution. In our case, we have residues that distribute relatively 
normal around zero and with a relatively low dispersion at a 5% risk.

Figure 3. 
PACF correlograms of the demand series.

Tau (observed value) −1.350

Tau (critical value) −0.717

p (unilateral) 0.844

α 0.05

Table 1. 
Test results.
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Characteristics Models

ARIMA (1,0,2) ARIMA (2,0,2) ARIMA (1,0,1) ARIMA (1,0,0) ARIMA (0,0,1) ARIMA (1,0,1) without constant

AR (1) α1 0.92913 0.71371 0.90792 0.49434 −0.41704 0.99755623

SEB 0.104616 0.761758 0.094852 0.1074471 0.1119989 0.00444769

T value 8.8813204 0.9369292 9.571955 4.600820 −3.723567 224.28617

p value 0.00000000 0.35216008 0.000000 0.00001823 0.00039384 0.0000000

MA (1) θ1 0.52269 0.31779 0.63880 0.71392452

SEB 0.167073 0.741595 0.161531 0.08579173

T value 3.1284995 0.4285186 3,954655 8.32160

p value 0.00258711 0.66964815 0.00018319 0.0000000

AR (2) α2 0.19759

SEB 0.659442

T value 0.2996279

p value 0.76538859

MA (2) θ2 0.17062 0.30202

SEB 0.142258 0.409353

T value 1.1993429 0.7377864

p value 0.23455708 0.46322050

Constant Cte 124.42969 124.52640 125.53260 128.53887 129.22650

SEB 12.608189 12.601296 11.785537 6.5715235 4.8971088

T value 9.8689581 9.8820312 10.651411 19.559981 26.388326

p value 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

AIC 688.86593 690.82312 688.77347 689.37103 693.59055 692.04831
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Characteristics Models

ARIMA (1,0,2) ARIMA (2,0,2) ARIMA (1,0,1) ARIMA (1,0,0) ARIMA (0,0,1) ARIMA (1,0,1) without constant

SBC 697.9726 702.20645 695.60347 693.92437 698.14388 696.60164

Log likelihood −340.43297 −340.41156 −341.38674 −342.68552 −344.79527 −344.02415

Error 28.034898 28.221721 28.214812 28.576249 29.443759 28.461048

Table 2. 
Coefficients of different models.
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The chosen model parameters are presented in Table 3.
The developed model is given by Eq. 1.

 
1 1 1 1− −= δ + − +α θ ε εt t t ty y   (1)

With:

• ty , 
1−ty : sales of periods t and t–1, respectively.

• 
1

, −ε εt t : residuals of periods t and t–1, and constitute a white nose.

• α1, θ1: coefficients of autoregressive and moving average processes, 
respectively.

We can easily extract from Table 3 the coefficients of the autoregressive 
 processes and moving averages and inject them into Eq. (1), which becomes:

 
1 1

125,524 0,90792 0.6388− −= + − εt t ty y   (2)

2.3 Accuracy of ARIMA (1, 0, 1) model

In order to assess the accuracy of the developed model, we compare the experi-
mental and simulated sales during the same period. This comparison is drawn up 
in Table 4 and reveals that the model selected has great precision and an ability to 
simulate dynamic sales behavior. Therefore, this model can be used to analyze and 
model the demand in this food manufacturing.

Figure 4 shows that the model is validated since the predicted demand fluctu-
ates around the adjustment and the forecast demand, which remained between the 
upper limit and the lower limit.

The error varies, but it is within the tolerance range. In order to minimize this 
error, we are opting for other approaches in our future work.

2.4 Forecast

Once the appropriate model is defined and validated, we must do the forecasting, 
using the IBM SPSS forecasting. Table 4 and Figure 5 present the results of the 

AR (1) α1 0.90792

SEB 0.094852

T value 9.571955

p value 0.00000000

MA (1) θ1 0.63880

SEB 0.161531

T value 3.954655

p value 0.00018319

Constant Δ 125.53260

Table 3. 
ARIMA model parameters.
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sales forecasts that we obtained by applying our ARIMA model (1, 0, 1) for the next 
10 months from January 2016 to October 2016.

The chosen model can therefore be used to model and forecast future demand 
in this food manufacturing. However, each time we have to feed historical data with 
new data to enrich it and thus improve the new model and forecasts.

The accrue forecasts presented facilitated the production decision in this busi-
ness. Indeed, the model allowed us to forecast demand and make precise forecasts. 
Once we have a forecast of demand, it will be much easier to clearly plan the 
production and thus eliminate the heavy cost losses.

Figure 4. 
Sales, fit, LCL, and UCL.

Figure 5. 
Sales, fit, LCL, UCL, and forecasting.

Model 73 74 75 76 77 78 79 80 81 82

Sales-

Model_1

Prévision 95.12 97.92 100.46 102.77 104.86 106.77 108.49 110.06 111.49 112.78

UCL 151.41 156.21 160.35 163.95 167.08 169.83 172.25 174.38 176.26 177.93

LCL 38.83 39.63 40.57 41.59 42.64 43.70 44.74 45.75 46.71 47.63

Table 4. 
Forecast sales from January 2016 to October 2016.
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3.  Application to comparative approach: comparison of the quality of 
forecasts obtained in the context of forecasting selling prices

Our second industrial application is devoted to a modeling study and compara-
tive forecast of sales prices using ARIMA models, artificial neural networks, and 
support vector machines.

In this section, we will model the actual fuel price data named “SSP” in order to 
make important predictions to determine future selling prices. The model shown in 
Figure 6 is based on the price of “SSP” fuel in a petroleum production from January 
2012 to December 2016.

3.1 Forecasting using ARIMA models

3.1.1 Determination of the differentiation parameter

Under SPSS, we have drawn the autocorrelation function (ACF) and the partial 
autocorrelation function (PACF), the results found are presented in Figures 7 and 8.

The series has a large number of positive shifts for the autocorrelation function, 
so it must be differentiated.

The next step is to differentiate the series. You have to differentiate it enough to 
make it immobile but not drag with an excessive differentiation, which will cause a 
loss of information and therefore unstable models. In our case, we just had to take 
d = 1 because of the linearity of the trend.

Besides, to decide if the data come from a stationary process or not, we can carry 
out the unit root test: Dickey-Fuller test for stationarity. After performing the test 
on the Xlstat software, we grouped the results in Table 5.

H0: The series has a unit root.
H1: The series does not have a unit root. The series is stationary.
The null hypothesis H0 must be rejected, and the alternative hypothesis H1 must 

be accepted since the calculated p value is less than the significance level α set at 
0.05. We calculated the risk of rejecting the null hypothesis H0, while it is true. The 
risk is less than 0.92%.

We conclude that our model will have an order of differentiation d = 1. We also 
note that the T-RATIO for the constant of model μ is less than 2 in absolute value. We 
must therefore deduct it from the model before determining the parameters p and q.

Figure 6. 
Selling price of “SSP.”
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3.1.2 Determination of the autoregressive parameter

Figures 9 and 10 show the residue curve and the ACF and PACF diagrams of the 
residues of the ARIMA model (0, 1, 0), respectively.

We can clearly see from Figures 9 and 10 that the partial autocorrelation has a 
significant peak at offset 2, and we can then deduce that the differentiated series 
comprises an autoregressive signature. The parameter p is therefore equal to 1.

However, the T-RATIO for the autoregressive parameter φ1 is lower in absolute 
value than 2. So, we cannot retain this model. Similarly, the ARIMA model (2, 1, 0)  
presents the autoregressive parameters whose T-RATIO is less than 2 in absolute value.

Figure 7. 
ACF correlogram for the sales price series.

Figure 8. 
PACF correlogram for the sales price series.
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3.1.3 Determination of the moving average parameter

Now, the T-RATIO for the moving average parameter θ1 is lower in absolute 
value than 2. So we cannot retain this model. Similarly, the ARIMA model (0,1,2) 
presents moving average parameters whose T-RATIO is less than 2 in absolute 
value.

3.1.4 Mixed ARIMA model

After several iterations and tests, we concluded that only the ARIMA model 
(1,1,1) had higher T-RATIOS in absolute value than 2. This is the model we should 
use to make forecasts.

With the coefficients obtained now, we can write the equation of the model 
retained as follows:

 ( )1 1 2 1
0.928 0.873− − − −= − − + +ε εt t t t t ty y y y  (3)

Table 6 lists the forecasts obtained for the first quarter of 2017.
The graph in Figure 11 proves the adequacy of the ARIMA model (1,1,1) devel-

oped, which is very close to the real model.
Table 2 allows us to admit that the chosen model can be used to model and 

forecast future sales in this petroleum production.

Tau (observed value) −4.0325

Tau (critical value) −0.7648

p (unilateral) 0.0092

α 0.05

Table 5. 
Test results.

Figure 9. 
Residue curve.
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3.1.5 Forecasting using artificial neural networks

The goal here is to develop a relationship between experimental data collected 
from authentic sources to estimate the selling prices of fuel. We are trying to apply 
RBF radial-based neural networks, which are based on machine learning approaches 

Figure 10. 
ACF and PACF diagrams of the residues of the ARIMA model (0,1,0).

Fortnight Real price Model % error

1Q January 1072 1042.49 −2.752798507

2Q January 1074 1043.05 −2.881750466

1Q February 1072 1043.59 −2.650186567

2Q February 1082 1044.21 −3.492606285

1Q March 1084 1044.81 −3.615313653

2Q March 1064 1045.48 −1.740601504

Table 6. 
Forecast results for the ARIMA model (1,1,1) [26].
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due to the complex relationships between the input parameter and the output 
parameter. In this section, we present the modeling approach using this technique to 
precisely compare it with the ARIMA model used in the previous section.

3.1.6 Model development

The radial basis ANN model (comprising two layers) is trained for implement-
ing the back propagation algorithm to minimize the mean squared error with 
one parameter (time) as the input and the desired output (fuel selling price). As 
presented on the visualization of the network shown in Figure 12, the first layer has 
radial basis transfer functions with the maximum number of 80 neurons, and the 
second layer has a linear transfer function, in order to build a consistent model for 
providing accurate forecasts [27].

Feature selection is one of the core concepts in machine learning, which hugely 
impacts the performance of our model. Irrelevant or partially relevant features can 
negatively impact model performance. Feature selection and data cleaning should 
be the first and most important step of our model designing. However, in our case, 
this step may be omitted as long as our point cloud is significant. Subsequently, the 
dataset was randomly divided into two disjoint subsets of training set (60% of total 
dataset), which help us train our dataset to find the adequate model and testing set 
(40% of total dataset) to validate the model found. The training set is applied in 
order to develop the network. After the training phase, the reliability and accuracy 

Figure 11. 
Results of the ARIMA model (1,1,1) [26].

Figure 12. 
Visualization of the RBF network.
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of the network were perused with the test data. Besides, in our study, we imple-
mented radial basis network of the MATLAB toolbox (i.e., “nwrb”). Furthermore, 
the Gaussian function is the main kernel function implemented here with the width 
parameter of 1 [27].

After executing the learning phase, we obtain Figures 13 and 14 that represent 
the learning of our database. Figure 15 represents the error in the training phase. 
During the test phase, we gave values to the input variable to visualize the results of 
the output and thus simulate our model.

3.1.7 Error optimization

Optimizing the error consists of a compromise to be made between the various 
parameters of the network, namely the speed, the objective, the number of neu-
rons, and the number of neurons to be added to the hidden layer. This compromise 
is made on the basis of several tests of the different combinations carried out. Some 
of these combinations are presented in Table 7.

After making different combinations, we find that the error is considerable for 
all the compromises. Consequently, no model can adapt to the time series, especially 
in the long term. The reason behind this result is not only the large fluctuations in 

Figure 13. 
Training of the RBF network.
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the selling price of the fuel but also the percentage of the total dataset used in the 
training stage (60%). In fact, this percentage will not allow us to predict 40% of the 
total dataset. We will have to increase the percentage of training. In the next step, 

Figure 14. 
Training graph of the RBF network.

Figure 15. 
The graph of error.

Parameters

Goal Spread MN DF

0 .01 1.5 25 25

0.01 1 25 30

0.01 2 30 30

0.01 0.8 12 30

0.01 1.57 10 30

Table 7. 
Part of different combinations made.
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we will consider 80% of the total dataset for the training phase and 20% for testing 
the model. Table 8 summarizes the different combinations [27].

The combination that minimizes the error is therefore:

• goal = 0.01;

• spread = 1;

• MN = 20; and

• DF = 30.

We can conclude that learning with 80% of the database gives increased results 
in comparison with the other case (learning with 60%) since the error is mini-
mized. The output is calculated and presented in Table 9.

From Table 9, we can clearly see that the selected model can be used to model 
and forecast future sales in this petroleum manufacturing. As a last part, we will use 
the methodology of support vector machines to see that this is going to give a result.

3.1.8 Forecasting using support vector machines (SVMs)

The aim of our current work is to develop a relationship between experimental 
data collected from authentic sources to estimate the selling price of fuel. We are 
trying to apply support vector machines based on machine learning approaches 
because of the complex relationships between the input parameter and the output.

We prepared our database and then developed the program in Python language, 
which will be compiled on Spyder software.

We imported our dataset, which is the actual price of our fuel studied, created, 
and indexed the location of values from the database. Then, we standardized the 
data so that it corresponds to the learning process that will be carried out using 
the SVR function. In fact, we have divided our database into a learning part and 
another for the test. We tried two main distributions: (1) 60% of our database used 
in the learning phase and 40% used in the testing phase and (2) 80% of our data-
base used in the learning phase and 20% used in the testing phase. We have kept 
the second distributions based on the results obtained after compiling the program. 
After that, we learned “Train X” and “Train Y” and executed the test to finally cal-
culate the average of the errors and obtained the values  predicted in the test phase, 
which are grouped in Figure 16.

The average error is equal to 26.882361, which represents 2.53%. The error graph 
is shown in Figure 17.

Parameters Relative error (%)

Goal Spread MN DF

0.01 1 10 30 9.37

0.01 0.25 25 25 7.61

0.01 0.5 30 20 5.29

0.01 0.8 30 20 3.21

0.01 1 20 30 1.95

Table 8. 
Error comparison for several combinations of parameters.
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It is clear that the model chosen can be used to model and forecast future sales for 
this petroleum industry since the error observed (2.53%) respects the allowable margin 
of error set by the company at 3%. In addition, the SVR function is a useful tool, which 
guarantees good precision and minimizes the error compared to the ARIMA model.

Input (time) Real value of output Predicted value of output % error

83 1038 1027.2 1.04046243

84 1043 1044.8 −0.1725791

85 1035 1033.4 0.15458937

86 1040 1034.3 0.54807692

87 1016 1034.7 −1.84055118

88 1015 1034.8 −1.95073892

89 1010 1034.9 −2.46534653

90 1001 1034.9 −3.38661339

91 1031 1034.9 −0.37827352

92 1033 1034.9 −0.1839303

93 1036 1034.9 0.10617761

94 1030 1034.9 −0.47572816

95 1000 1034.9 −3.49

96 1042 1034.9 0.68138196

97 1072 1034.9 3.4608209

98 1074 1034.9 3.6405959

99 1072 1034.9 3.4608209

100 1082 1034.9 4.35304991

101 1084 1034.9 4.5295203

102 1064 1034.9 2.73496241

Table 9. 
Predicted value of output after using the RBF model.

Figure 16. 
Results of the SVR function.
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3.2 Synthesis

In the first industrial application of this chapter, we modeled demand using 
ARIMA models. The model we have obtained will allow the company to forecast 
demand and make precise forecasts.

In the second application, we studied the selling prices of the SSP via three 
methodologies: ARIMA, RBF, and SVMs.

First, we developed an ARIMA model based on historical data. This study 
allowed us to determine the ARIMA model (1,1,1), which gives gasoline price 
forecasts close to the margin to reach for the first quarter of the current year with 
an average margin of error 2.855%. Second, we used the RBF technique to improve 
the modeling and forecasting of the selling price of fuel. It was found that this 
technique has proven its strength manifested in the error, which has been further 
minimized: 1.95% instead of 2.85% for the ARIMA model. Finally, we used the SVM 
function. The forecasts made are quite satisfactory because they respect the margin 
tolerated by the company. The error of the SVM function is around 2.53%.

As a summary, the SVM function has proven its strength manifesting itself 
in the error, which has been further minimized: 2.53% instead of 2.885% for the 
ARIMA model, but which remains higher than the error obtained using the RBF 
technique.

4. Conclusion

For most companies, forecasting is a prerequisite for effective supply chain 
management. Forecasting is the basis of all production management systems. The 
entire supply chain is based on data from forecast models.

In this chapter, we have presented the study of forecasting demand and selling 
prices in industrial companies. We also carried out a comparative study aimed at 
minimizing the error to guarantee increased forecasts.

In the first part, we modeled the future demand for a food company using 
ARIMA models based on the Box-Jenkins methodology. The model we have 
obtained will allow the company to forecast demand and make precise forecasts. 

Figure 17. 
Error graph.
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We can clearly see that the chosen model can be used to model and forecast future 
demand for this agribusiness, but each time we need to populate the historical data 
with the new data.

Second, we carried out a study, which consists in comparing the quality of the 
forecasts obtained in the context of forecasting selling prices. We presented the 
application of three different methodologies allowing us to make sales forecasts in a 
company operating in the petroleum sector.

We have developed an ARIMA model based on historical data. This study allowed 
us to determine the optimal autoregressive, moving average, and differentiation 
parameters in order to make predictions. We found that the ARIMA model (1,1,1) 
gives gasoline price forecasts close to the margin to reach for the first quarter of the 
current year with an average margin of error of 2.855% included within the margin 
of error tolerated by the company (plus or minus 3% as margin of error). In addition, 
the hypothesis that the residues are white Gaussian noise has always been verified.

Then, we tried forecasting selling prices via the RBF technique in order to 
improve the modeling and forecasting done before. To do this, we have developed 
an RBF network based on historical data to come up with conclusions in terms of 
superiority of forecast performance. Consequently, the use of this technique has 
proven itself and has allowed us to minimize the error, which is 1.95% versus 2.85% 
for the ARIMA model.

Finally, we studied the SSP selling prices via the SVM function. We prepared 
our database and then developed the program in Python language, which will be 
compiled on Spyder software. The forecasts made are quite satisfactory with regard 
to the constraint imposed by the company (plus or minus 3% margin of error). The 
error of the SVM function is around 2.53%. Consequently, the SVM function has 
proven its strength manifesting itself in the error, which has been further mini-
mized: 2.53% instead of 2.855% for the ARIMA model, but which remains higher by 
comparing it with the error obtained if we had opted for neural networks.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
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