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Abstract

Stem cells are defined as undifferentiated cells that are able to unlimitedly renew 
themselves within controlled conditions and to differentiate into a multitude of 
mature cell types. Skeletal muscle stem cells, represented predominantly by satellite 
cells, show a variable capability of self-renewal and myogenic differentiation. They 
were found to be involved not only in the growth of myofibers during neonatal 
and juvenile life but also in the regeneration of skeletal muscles after an injury. 
The microenvironment in which stem cells are nourished and maintained dormant 
preceding division and differentiation is known as “niche.” The niche consists of 
myofibers, which are believed to modulate the active/inactive state of the stem cells, 
extracellular matrix, neural networks, blood vessels, and a multitude of soluble 
molecules. It was observed that changes in the composition of the niche have an 
impact on the stem cell functions and hierarchy. Furthermore, it seems that its lay-
out is variable throughout the entire life, translating into a decrease in the regenera-
tive capacity of satellite cells in aged tissues. The scope of this chapter is to provide a 
detailed view of the changes that occur in the skeletal stem cell niche during life and 
to analyze their implications on tissue regeneration. Future studies should focus on 
developing new therapeutic tools for diseases involving muscle atrophy.
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1. Introduction

Being crucial for the survival, the striated muscle tissue that forms skeletal 
muscles takes up to 40% of the human body weight and is responsible for locomo-
tion, maintaining the posture of the body, breathing, swallowing, micturition, and 
defecation [1, 2]. Furthermore, skeletal muscles were found to present endocrine 
and paracrine functions through the secretion of myokines, as well as thermogen-
esis abilities [3]. Each muscle comprises a multitude of myofibers that organize 
themselves into fascicles by wrapping with a layer of connective tissue known as 
perimysium [4]. Myofibers are long, cylindrical multinucleated cells that are indi-
vidually enveloped in another layer of connected tissue called endomysium [4]. The 
myofibers provide skeletal muscles with contractile abilities and are formed in the 
prenatal life by the fusion of a number of cell progenitors known as myoblasts [2].
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While the myofibers enable the muscle to contract and exert its functions, there 
are other types of cells, known as skeletal muscle stem cells that were proved to 
be responsible for muscle regeneration after injury [5]. Stem cells were defined as 
undifferentiated cells that present self-renewal abilities when proper stimuli exist 
and can generate various mature cell types through differentiation [6]. The environ-
ment in which stem cells are found is known as “niche” and its changes in composi-
tion were found to consequently influence their behavior [1]. Previous research 
regarding the characteristics of the niche found that its composition is highly 
heterogenic, varying not only with age, but also with the demands of the body [7]. 
In general, the muscular niche comprises an extracellular matrix known as the basal 
lamina, various interstitial cells such as fibroblasts and adipocytes, blood vessels, 
neural fibers, and a multitude of growth factors and signaling molecules [5].

Satellite cells, which are the most frequent stem cells found in the skeletal 
muscles, were first observed on the electron microscope by Alexander Mauro over 
50 years ago [8]. They were given this name due to their sublaminar position and 
their close connection to myofibers [2]. Following their discovery, numerous studies 
were conducted in order to uncover the role they play in muscle repair and regen-
eration and how the stem cell niche is modulating their behavior [2]. In addition to 
their involvement in muscle repair, recent studies suggest that the skeletal muscle 
stem cells might even play a secondary role in bone regeneration [9]. Although 
satellite cells are the most frequent and easiest to study, other stem cell populations 
residing either in the skeletal muscle, or in other tissues, were found to possess 
variable muscle regenerative abilities [10]. Satellite cell properties as well as the 
different types of muscle progenitors will be described in detail in this chapter.

Studies showed that the number of myofibers does not change during the first 
stages of life and that the growth of the muscular system is obtained through 
the fusion of satellite cells with myofibers, resulting in an increase in size of the 
latter [2]. After the physiological growth of the organism stops, the skeletal stem 
cells are maintained in an inactivated state by various factors in the stem cell 
niche until they are needed for muscle repair or to participate in the daily muscle 
turnover [11].

The satellite cells are activated by growth stimuli or by the physical trauma 
located in the muscle, leading them to enter the mitotic phase and start to 
divide into myoblasts, which through differentiation will be able to fuse among 
themselves and with other myofibers and repair the damaged muscle [12, 13]. In 
addition, satellite cells can expand their stem cell pool through asymmetric divi-
sion, thus demonstrating their self-renewal abilities and ensuring the continuance 
of the muscle regeneration process [12]. However, with aging and also in various 
degenerative muscle diseases, the regenerative abilities of satellite cells diminish, 
leading to muscle atrophy and the replacement of muscle fibers with connective 
tissue [7, 14]. These changes were attributed to a multitude of changes in the 
composition of the stem cell niche that occur during life, which will be further 
described in this chapter [7, 14].

The alteration of the skeletal stem cell niche and thus of satellite cell functions 
can be seen not only in aged muscle but also in a multitude of degenerative diseases. 
One example is Duchenne muscular dystrophy (DMD), a genetic disorder with no 
existing curative treatment in which a specific gene mutation causes the synthesis 
of an altered protein known as dystrophin, thus leading to progressive muscle 
degeneration and fibrosis which will result in loss of ambulation and cardiorespira-
tory insufficiency [15]. Dystrophin is known to be responsible for the basal lamina-
myofibers connection; however, recent studies showed that it is also involved in the 
modulation of muscle stem cell division [13]. Additional research is needed in order 
to fully understand how satellite cells and their niches are affected by DMD.
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It is crucial to understand all the pathways that are involved in the functioning of 
the skeletal stem cell niche and the way they are altered with the aging of the human 
body in order to be able to develop new treatment strategies for muscle degenera-
tive diseases and maybe delay the effects that time has on the muscular system. 
Extensive research has been made in the field of regenerative medicine, making the 
idea of bioengineered muscle regeneration increasingly plausible. However, there 
are still many unanswered questions that prevent the applications of satellite cell’s 
regenerative and self-renewal abilities to reach their full potential.

2. The skeletal muscle stem cell niche: structure and roles

The stem cell niche concept was first described in 1978 by Schofield, as an expla-
nation to a series of experimental findings focusing on hematopoiesis and the bone 
marrow cells, which outlined notions concerning the anatomic site of reproduction, 
sustenance, and differentiation of the stem cells [16–18]. According to this theory, 
the niche represents a versatile environment, where the states change cyclically, in 
order to either support the quiescence of the stem cells or to activate them, according 
to the local or systemic stimuli [14]. Each type of tissue has a specific support system 
characterized by distinct cellular components; some of the most studied ones belong-
ing to sites which present a high turnover rate such as the skin, with the matrix stem 
cells and the dermal papilla, the gut with the crypt stem cells and the mesenchymal 
and Paneth cells, or the hematopoietic stem cell niche and osteoblasts [14, 19, 20].

The skeletal muscle stem cell niche is also an example of a highly designated 
niche, consisting not only of specialized stem cells such as the satellite cells, but also 
of a complex milieu of elements ranging from the neural-vascular framework and 
surrounding cells to the extracellular matrix and diverse soluble molecules [2, 21]. In 
this chapter, we discuss in detail the cellular structure of the niche and the various 
roles that every type of constituent plays in the muscle behavior in regards to growth, 
maintenance, and regeneration [22].

2.1 Satellite cells and other muscle progenitors

During embryogenesis, the paraxial segmental mesoderm gives rise to the 
somites, which subsequently divide into the dermomyotome, which further gener-
ates the skeletal muscle of the body and limbs as well as the overlying derma, and 
the sclerotome, which contributes to the cartilage and bone formation of the spine 
and rib cage [10, 23, 24]. In the first stages of muscle development, a primary myo-
tome is formed by delamination of muscle progenitor cells, expressing MYf5 and 
Mrf4, from the epithelial dermomyotome [25]. Subsequently, another subtype of 
muscle progenitors that express Pax7 and Pax3 migrate from the central dermomy-
otome toward the primary myotome, where some contribute to the further differ-
entiation and growth and of the muscle, while others maintain a continuous pool of 
muscle progenitors that represent the largest reservoir of adult satellite cells for the 
muscles of the trunk and limbs [26, 27]. During the last decades, extensive research 
has been conducted in order to determine other types of non-somitic muscle stem 
progenitors, concluding that the embryonic dorsal aorta [28] can also serve as origin 
for the stem cells, along with various cells that exhibit myogenic potential such as 
the bone marrow stem cells [29, 30], pericytes [31], mesangioblasts [32], specific 
side population cells [33], and interstitial and mesenchymal cells [34, 35].

The first description of a satellite cell was made in 1961, when Katz and Mauro 
discovered a mononucleated cell positioned at the outer edge of the muscle 
fiber, while studying the muscle tissue in frogs and rats with the help of electron 
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microscopy [8, 36]. Using the same imaging technique, it was established not only 
the cell’s location between the basal lamina and the exterior plasma membrane of 
the myocyte, but also the morphological features: a small nucleus with elevated 
levels of heterochromatin, an abundant cytoplasm, and scarce organelles [37]. 
Since their discovery, extensive efforts have been made in order to demonstrate the 
stem cell characteristics and to identify the role they play in muscle growth and 
regeneration. In this regard, [3H]thymidine labeling and tracing experiments in 
regenerating or growing muscle proved that satellite cells contribute to this process 
by yielding myonuclei to emerging myofibers [38, 39]. To strengthen this evidence, 
in vitro cultures of isolated myofibers and their adjacent satellite cells showed that 
renewed myotubes arise from the satellite cell-derived myoblasts clonal expansion 
and fusion, demonstrating thus the stem cell’s regenerative capacity [40–44].

Regeneration of the muscle tissue is a complex process that can be induced by 
either disease, injury, or exercise, involving a series of events like cellular degenera-
tion, inflammation, further stem cell activation, and differentiation, followed by 
maturation and remodeling of the new fibers and the surrounding environment 
[45–47]. Activation of the satellite cells implies transitioning from the quiescent 
phase to a mitotic phase, event in which a series of signaling pathways and molecu-
lar elements, such as notch signaling pathway and map kinase phosphorylation pro-
cess by the hepatocyte growth factor activation (HGF) and fibroblast growth factor 
2 (FGF2), among others, participate [48–52]. Upon activation, satellite cells start 
expressing MyoD, a transcription factor promoting genes involved in the progres-
sion of the cell cycle, and along with preexisting expression of Pax7, M-cadherin, 
and Myf5, they start dividing [53, 54]. The differentiation process of the newly 
created myoblasts is governed by the Wnt signaling pathway, FGF, myostatin, an 
important regulator of muscle stem cell proliferation [55–57], which works together 
with myogenin and MyoD to generate multinucleated myofibers [58–60].

Apart from the regenerative capacity, satellite cells possess the ability to renew 
themselves, generating thus a continuous pool of stem cells. This theory of self-
renewal was first stipulated in the pulse-chase experiments of Moss and Leblond, 
being further supported by the studies of other lineages such as the skin and gut that 
showed similarities between the transit amplifying cells and satellite cells [38, 61–63]. 
Another study focusing on transplanted myofibers in a myopathic mouse model 
found that a new population of satellite cells was generated after the resident muscle 
stem cells were inactivated by radiation, demonstrating thus the self-regenerating 
ability of the satellite cells [64]. As mentioned before, in restoring muscle tissue, 
satellite cells undergo a transition from a quiescent state to an activated state. Recent 
studies have demonstrated that the reverse process can also take place, as the acti-
vated satellite cells can exit the cell cycle and reenter the quiescent state, replenish-
ing thus the progenitor pool [65–67], still, further research is required in order to 
elucidate the exact mechanisms of the self-renewal process.

Extensive research concluded that the satellite cells do not represent the only type 
of cell capable of muscle regeneration; several other cells exhibiting similar charac-
teristics of which bone marrow stem cells [29, 30], pericytes [31], mesangioblasts 
[32] and specific side population cells [33] are some of the most studied ones. In 
this regard, strong evidence coming from lineage experiments indicated that bone 
marrow-derived stem cells, when administered intravenously or intramuscularly in 
irradiated mice, have the capacity to generate myofibers and to restore the satellite 
cell pool [68]. Following a study regarding the GFP-labeled bone marrow transplan-
tation into mice, LaBarge and Blau et al. also concluded that bone marrow stem cells 
display myogenic potential by reconstructing the stem cell niche [68]. Recent studies 
suggest that pericytes, the contractile cells responsible for the regulation of capil-
lary blood flow, exhibit a multipotent trait, allowing them to differentiate not only 
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toward the skeletal bone and adipose tissue precursors but also into skeletal stem cells 
[69–71]. Prototype experiments involving pericyte transplantation in mice with dys-
trophic muscles proved that pericytes may represent a promising candidate for future 
treatments for similar affliction in humans due to their myogenic potential [31, 72].

2.2 Satellite cell cellular and acellular environment

The skeletal muscle stem cell niche is the biologic environment of the satellite 
cells and other muscle progenitor cells where biochemical and biophysical factors 
sustain cellular processes such as quiescence, self-renewal, multiplication and dif-
ferentiation, necessary for maintenance, and repair of the muscle. Apart from stem 
cells and myofibers, the niche is a home to a variety of other cellular and acellular 
components ranging from the basal lamina, connective tissue, nerves, vessels, 
extracellular matrix, or immune cells that together design the optimal conditions to 
assist the transition through the various processes of the niche.

In this respect, one of the most intimate structures within the niche is the basal 
lamina, a network of extracellular matrix composed of collagen IV, laminin α2, 
fibronectin, and tenascin, linked together through a glycoprotein core of heparan 
sulfate [18, 73, 74]. This structure enables not only the anatomical sustenance of the 
myofibers through integrin linkage but also accumulations of growth factors such 
as FGF, HGF, VEGF, and TGFβ1 [75–77]. Several studies concluded that the loss or 
deficiency of laminin α2 impacts the muscle stem niche quiescence by reducing the 
number of stem cells during development, as well as increased myogenin expres-
sion, inhibiting proper differentiation [78, 79].

Another major component of the niche environment is represented by the 
interstitial cells, of which the most abundant types are the fibroblasts and the adi-
pocytes. Both of these types of cells increase in number due to the transdifferentiat-
ing potential of the myoblasts and satellite cells showed by in vitro studies [80, 81], 
supporting the hypothesis that the muscle is able to sustain a balanced environment 
during regenerative processes. Nevertheless, surplus in number regarding adipo-
cytes and excess connective tissue produced by the fibroblasts have been thoroughly 
linked to conditions, such as aging or muscular dystrophy [82–84].

The vascular network is one of the main nourishment suppliers for the stem 
cell muscle niche, playing an important role not only in angiogenesis but also in 
myogenesis. It has been shown that these two processes emerge simultaneously 
during muscle regeneration, the most important factors involved in this event being 
represented by VEGF, IGF-I, PDGF, and HGF [85]. VEGF has been observed to 
stimulate not only angiogenesis but also cell migration and differentiation, myofi-
ber hypertrophy to prevent apoptosis [86–88].

Several studies have observed that stem cells tend to group around the neu-
romuscular junction, suggesting that the motor neurons interact with the niche 
during specific times. Denervation studies portrayed that the modifications in 
membrane potential, ion channel conductance, and distribution of acetylcholine 
receptors lead to the remodeling of the niche composition, following the activation 
of the muscle stem cells [89]. A combination between the absence of neurotrophic 
factors and a prolonged state of loss in neural communication has been also proved 
to lead to structural alterations, more specifically to myofiber atrophy [90].

This dynamic environment can be also influenced by a number of systemic fac-
tors, some of them being represented by immune cells and inflammation, andro-
gens or nitric oxide [2]. Upon injury, satellite cells release the proinflammatory 
cytokines that promote immune cell migration to the muscle that in turn help the 
stem cells to detach from the basal lamina through a series of diffusible molecules, 
in order for them to further proliferate, differentiate, and repair the muscle in 
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regards to muscle [91]. Androgens seem to impact the satellite cell nice by stimulat-
ing the stem cell activation and proliferation, while nitric oxide has been shown to 
provide a protective effect against fibrosis [92, 93].

3. Alterations of the skeletal stem cell niche during aging

Satellite cells, known as muscle specific stem cells, take the responsibility of gen-
erating new muscle fibers as a response to injury in the adult human body. However, 
the regenerative abilities of an aged muscle are significantly reduced, while the sus-
ceptibility of developing age-related pathologies is increased [14]. In order to better 
understand the mechanisms that contribute to declining stem cell function with age, 
it is important to firstly identify the cell-extrinsic and cell-intrinsic factors that have 
an influence on stem cell activity. Conditions within the niche are extremely impor-
tant in order to maintain stem cell activity, and they need to be conducive to main-
taining stem cell quiescence in the absence of any external activating cues while also 
promoting proliferation, maturation, and ensuring the self-renewal of the stem cell 
pool. Thus, the niche represents an inherently dynamic environment, which switches 
between the quiescent and the activated niche as a response to local and systemic 
influences. Any perturbation between the cell resident in the immediate vicinity 
and in direct contact with the stem cell is predicted to alter stem cell function [94]. 
Some previous research was focused on describing the characteristics of satellite cells 
residing in aged muscle, thus providing critical information on the transformations 
that occur with the passing of time. One study conducted on old mice revealed that 
the nuclear-cytoplasmic ratio is significantly higher compared to other cytological 
features that are almost identical with the ones identified in younger mice [95]. 
During the aging process, satellite stem cells display a delayed response to activating 
stimuli and also have a reduced proliferative expansion due to the fact that some 
progenitors tend to adopt alternate lineages [80, 82, 96, 97]. Furthermore, satellite 
cells were described to have higher apoptosis rates in the aged muscles [98].

In aging muscles, due to the accumulation of toxic products derived from the 
degradation of connective tissue components, some essential functions of the 
basal lamina are compromised. Necrosis is the result of the cleavaged fibronectin 
and elastin products present in the connective tissue of aging mice [99]. Studies on 
aged muscle sections revealed the presence of extra lamina encroaching into the 
satellite cell-myofiber interspace and mononucleated cells completely enveloped by 
the basal lamina [95]. Although the functional consequences of this less intimate 
association of satellite cells with myofibers in aged muscles are still unknown, it is 
believed that this phenomenon can be correlated to the decreasing percent of satel-
lite cells in the later stages of life [82].

Numerous studies were conducted focusing on the molecular mechanisms that 
underline satellite cell aging. Heterochronic satellite cells were transplanted from old 
mice into young specimens, indicating that the mechanisms that modulate the satel-
lite cell regeneration potential may be cell-extrinsic. Furthermore, various changes 
were observed regarding the availability of Wnt, Notch, FGF, and TGF-β-superfamily 
ligands, and also in cytokine signaling through the JAK-STAT pathway. Moreover, the 
self-renewal defects may be cell-intrinsic, as satellite cell aging was associated with an 
increase in stress-induced p38-MAPK signaling and cellular senescence [100].

3.1 Niche composition and functions at birth and in the early life

Myogenesis is a well-controlled process in which the dermomyotome is formed 
from the dorsolateral side of the somite, and from there, the progenitor cells will 
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differentiate in order to form multinucleated myofibers [24, 101, 102]. Even if it was 
thought to be an interrelation between the existence of multipotent cells and tissue 
development, a group of somatic stem cells was discovered both in mature and early 
post-natal skeletal muscle. These are believed to have important contribution in 
regeneration, homeostasis, and muscle growth [103].

The first remarks about a stem cell population that originate in skeletal muscle 
were made by Mauro and Katz in 1961 [8, 104]. They analyzed the muscle samples 
from frog and rat, and using electron microscopy for identification, they postulated 
that satellite stem cells are located in a particular place (between the basal lamina 
and the sarcolemma), and it represents an exclusive niche which preserves and 
regulates the survival and behavior of the stem cell [105]. Satellite cells express 
specific markers: Pax7 and Pax3 (paired box transcription factors) [106, 107], 
M-cadherin [108], FoxK (Forkhead box protein K) [109], NCAM (neural cell adhe-
sion molecule) [110] c-Met (tyrosine-protein kinase Met) [111], VCAM-1 [112], 
CD34 [113], Syndecan 3, Syndecan 4 [114], Sox 8 and Sox 15 [115, 116], Integrin α7, 
Integrin β1 [117], caveolin-1 [118], CTR (Calcitonin receptor) [119], Emerin, Lamin 
A/C [120], Hairy [121], and Dystrophin [122].

During post-natal life, satellite cells are responsible for muscle growth and tissue 
regeneration under the action of appropriate stimuli. This role was confirmed 
by a study which analyzed transgenic mice without satellite stem cells. The mice 
revealed a significant deficiency in skeletal muscle mass, lower body weight, and 
smaller myofiber size [106]. An important decrease in the number of cells was 
observed, from 30% at birth to 5% at 2 months old. In the adult life period, the cell 
number remained constant [123]. Even if the implication of satellite cells in muscle 
regeneration has been well documented and described, their role in muscle growth 
during adult life still needs further studies [124].

3.2 Changes in niche composition throughout the time

Discovering the link between stem cells and their niches presents a great interest 
for the biology field. Although previous reports debating the caring relationship 
between stem cells and signaling molecules deployed by niche cells were published, 
the role of extra-cellular matrix (ECM) into the niche is still unclear. Previous stud-
ies highlighted that at activation, satellite cells are responsible for establishing the 
local reshaping of the ECM, and for the accumulation of laminin-α1 and laminin-α5 
right into the basal lamina of the satellite cell niche. Moreover, genetic modification 
of laminin-α1, integrin-α6 signaling, or blocking matrix metalloproteinase activity 
were shown to prevent the cell capacity of expansion and self-renewal. Remodeling 
of the ECM favors dissemination and self-renewal, and could justify the effect of 
laminin-α1 containing supports on stem cells [5].

Stem cells competence decreases with age, and it is associated with chronic 
diseases in mammals. In diseased or aged muscles, myofibers are replaced by fat and 
fibrous tissues, while the remaining myofibers decrease in mass. During aging, not 
only the percent of satellite cells decreases, but also their expression levels of Pax7, 
consequently leading to a decrease in myogenicity and an increase in apoptosis [125].

4. Implications on muscular regeneration and disease

Skeletal muscles possess contractile properties that are crucial for vital functions of 
the body such as breathing, postural support, and movement while also participating 
in the systemic metabolism and thermogenesis due to their endocrine and paracrine 
functions [3]. Following actions that involve contraction and stretch, micro-lesions 



Background and Management of Muscular Atrophy

8

can occur in the plasma membrane of muscular cells or in the T-tubule organization, 
leading to the organization of specific proteins and lipids which form a repair-patch 
and seal the injury. However, during trauma or surgery numerous contusions, strains 
and laceration can occur, and, in these circumstances, myoblasts fuse between them-
selves or with adjacent myofibers and repair the damaged muscle. One important fact 
is that myoblasts can only fuse with non-lethally damaged muscle cells [126–128].

It is widely known that skeletal muscle has a remarkable capacity for regenera-
tion, which places it second after the bone marrow. The main type of stem cells in 
charge of muscle regeneration is represented by satellite cells. Satellite cells are able 
to remain in a non-dividing state in the unharmed muscle and can be recognized 
by their α7 integrin and Pax7 expression. This specific population of cells gets 
triggered when muscle trauma occurs, thus activating the expression of MYF5 and 
MYOD and becoming fusion-competent myoblasts which will further fuse in order 
to give rise to new muscle fibers [8, 129–132]. During muscle injury, there are satel-
lite cells that do not differentiate, with downregulated MYF5 and MYOD expression 
levels, which were described to replace the satellite cell population, ensuring the 
ability to respond to future muscle damages [2, 67, 133, 134].

Studies showed that alongside with satellite cells, there exist various popula-
tions of non-satellite cells, such as side populations, CD133 + cells, pericytes, and 
mesangioblasts (Mabs) that have myogenic abilities, contributing to regenera-
tion and homeostasis maintenance [31, 135–138]. Their involvement in muscle 
regeneration was not firmly demonstrated and future studies are needed. The 
regenerative capacity of this cell category was demonstrated following some 
experiments on mice [135]. Side population cells were transplanted into mice 
suffering from a form of Duchenne muscular dystrophy, leading to an improve-
ment in muscle function and a restoration of dystrophin expression levels [135]. 
Similar results were obtained by intraarterial or intramuscular injecting CD 133+ 
cells into scid/mdx mice [136, 139]. Two other populations of non-satellite cells 
are pericytes and Mabs, the latter were described to derive from pericytes [31]. 
Pericytes are involved in the in situ regeneration and muscle growth in early life 
[140]. Studies revealed that Mabs can take part in muscular regeneration after 
being engrafted or intraarterial injected in dogs and mice [137, 138]. Researchers 
discovered that the behavior of satellite cells could be highly influenced by 
surrounding cells, growth factors such as the vascular endothelial growth factor 
(VEGF), insulin-like growth factor (IGF)-1, fibroblast growth factor (FGF), 
cytokines, and neighboring cellular matrix [141]. For example, one study showed 
that satellite cells which have grown in vitro for a short period of time partially 
lost their myogenic capacity in contrast to freshly isolated satellite cells [129]. In 
order to sustain a faster and more adequate tissue regeneration, a positive feed-
back loop was described between the endothelial cells and satellite cells located 
near small blood vessels. Endothelial cells enable satellite cell proliferation 
through the secretion of growth factors, while differentiated myoblasts stimulate 
angiogenesis [85].

Lately, two studies, both conducted by injecting diphtheria toxin in mouse 
models, speculated that muscle repair is not possible without satellite cells, even 
under normal physiological conditions [142, 143]. During the experiments, 
neither non-satellite cells, nor the innervation and vasculature were altered. One 
of the studies developed mouse models in which only cells expressing Pax7 were 
killed by the toxin, while the second study crossed murine expressing an inducible 
diphtheria toxin with murine expressing under the control of Pax7 tamoxifen-
inducible conditional recombinase [142, 143] . However, further studies are 
needed in order to undoubtably state that muscle restoration can only take place if 
satellite cells are present.
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4.1 The regenerative muscle stem cell niche

In order to analyze the myogenic mechanism of the skeletal muscle, several 
injury models in mice were developed, including chemical injuries such as intra-
muscular injection of snake venoms notexin, cardiotoxin, and barium chloride, 
together with freeze injury and crash [144, 145]. The following regenerative 
response was found to comprise three phases: an inflammatory phase, a prolifera-
tive phase and, lastly, a differentiation phase.

Instantly after muscular damage, necrotic fibers hyper contract inside their basal 
lamina layer [146]. The remnant basal lamina is reconditioned by matrix remodeling 
enzymes and serves as a pattern for the development of new muscle fibers, and also 
guides the growth cones of motor neurons for reinnervation at original synaptic spots 
[147–153]. The necrosis of muscular fibers releases into circulation damage-associated 
molecular patters (DAMPs) that are tracked by both macrophages and mastocytes 
and mobilize neutrophils which deliver trophic factors to call up the satellite cells 
within 2 hours of damage [10, 154–156]. In this early phase of muscle regeneration, 
muscle tissue is cleansed of necrotic fibers through phagocytosis by macrophages and 
lymphocytes during this high inflammatory response phase [1, 147]. The prolifera-
tive stage is characterized by the expansion of stem cell niche and the generation of 
numerous transiently amplifying myoblasts which are waiting to differentiate [1]. 
The structural configuration of skeletal stem cell niche is modified by the accumula-
tion of diverse components of the regenerative matrix. One of the components is 
represented by fibronectin, secreted by fibroblasts, satellite cells, and many other 
cells in the muscular tissue [157, 158]. Attachment to fibronectin is crucial for the pre-
vention of anchorage-dependent cell’s death, the regulation of asymmetric division 
and satellite cells segregation [159, 160]. Another component of the ECM is collagen 
VI secreted by fibroblasts, which is upregulated during the peak of satellite cells 
expansion and has essential mechanical properties in the skeletal muscle stem cell 
niche [161]. The satellite cells show a considerable proliferative ability in day 2 and 3 
after an injury [10, 147]. Following the activation of satellite cells, monocytes convert 
into macrophages. M1 macrophages also exist in the mitogenic niche and secret 
VEGF, TNFα, IL-6, factors that are responsible for the limitation of early differentia-
tion of myoblasts, stimulating the proliferation of stem cells instead [141, 162, 163]. 
When M2 macrophages become predominant to M1 macrophages, the first myoblasts 
start to differentiate [141, 164]. During the differentiation phase, myoblasts fuse to 
form multinucleated muscle cells and resident satellite cells and start to transit into a 
non-dividing state (quiescent state) [1]. At this point in the process of muscle regen-
eration, the blood vessels that irrigate the new muscle fibers become denser and well 
organized; smooth muscles and pericytes are initiated to sustain their structure, while 
immune cells limit the inflammatory reaction and secret anti-inflammatory cytokines 
to sustain tissue repair, resulting in the restoration of muscular architecture within 
nearly 2 weeks [10, 144, 147, 165–167].

4.2 Muscular stem cell niche in disease

The muscular stem cell niche suffers significant changes in muscle diseases 
such as inflammatory maladies, primary myopathies, and metabolic disorders [1]. 
The most notable, highly studied muscle pathologies are muscular dystrophies, 
defined by progressive muscle weakness caused by mutations in nuclear or sarco-
lemmal proteins such as dysferlin, dystrophin, and sarcoglycans, or by alterations 
of extracellular proteins [156]. Of these, the most common is Duchenne muscular 
dystrophy, an X-linked recessive disorder, diagnosed in early childhood, which is 
characterized by a progressive muscle-wasting process that affects skeletal muscles 
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including diaphragm, limb, and heart muscles, in which death occurs in teenage 
years to 20s by cardiorespiratory failure [168]. In Duchenne disorder, the affected 
gene is dystrophin, which has an important structural function in anchoring the 
muscle fibers to the ECM in the muscular stem cell niche [13]. Moreover, dystro-
phin, which is expressed by satellite cells, is situated near the cell membrane and 
coordinates the flow of signaling molecules; therefore, a low level of dystrophin has 
a direct influence on the downstream cell-intrinsic signaling pathways of satellite 
cells, altering their functions [13, 169].

In most of the muscular dystrophies, the structural architecture of muscle cells 
is fragile, and fibers are doomed to get ruptured during repeated contractions; the 
stem cell niche is changing in such a way that the skeletal muscles get infiltrated 
with fat and fibrotic tissue [156, 170, 171]. Muscle ruptures are followed by protein 
leakage that activates inflammatory cells (lymphocytes, neutrophils, natural killer, 
macrophages) [172]. In muscular dystrophies, the inflammatory response is distinct 
than the one in trauma: there are many foci of injury developed in a continuous 
and asynchronous manner and the inflammatory process becomes chronic, and the 
ECM becomes thick and rigid, altering the muscular stem cell niche [173, 174]. In 
the extracellular environment, researchers discovered an accumulation of collagen 
I, III, IV, V, higher levels of various heparan sulfate proteoglycans and, moreover, a 
distinct regulation of the expression levels of MMPs and their endogenous inhibitor 
(TIMPs), together with various serine proteases and their endogenous inhibitors 
(serpins) [175–182]. Furthermore, the increased levels of matricellular proteins like 
fibrinogen, dermatopontin, asporin, and periostin were observed, together with a 
downregulation of fibrillin and nidogen [183–186]. The muscular stem cell niche is 
also enriched in signaling molecules during this inflammatory process, which influ-
ences the myoblast differentiation and fusion [155, 187]. For example, higher levels of 
prostaglandins, cytokines, and chemokines are described in muscular dystrophy, fact 
that supports the regenerative failure of dystrophic fibers [188–193]. This long-term 
inflammatory process changes the satellite cells in such manner that they can no lon-
ger compensate for the fiber degeneration, leading to an altered muscle functionality.

Diabetes mellitus represents a category of metabolic diseases characterized by a 
deficiency in insulin generation and function, leading to hyperglycemia, a condition 
which decreases the antioxidant level and increases the levels of free radical spe-
cies [194, 195]. Muscle renewal is altered in type 1 and 2 of diabetes mellitus, these 
patients having a poor lesion-healing capacity [194, 196–198]. There is a fibrotic dis-
position of collagen and atypical levels of TNFα, TGFβ and ILs in diabetic or obese 
rats and patients due to the high level of M1 macrophages [199–202]. A sustained 
exposure to glucose generates an accumulation of glycated lipids and proteins that 
have an unfavorable impact on myoblasts from both rats and humans [203].

Another dramatic muscular pathology is cachexia. This state occurs as a conse-
quence of various disorders such as AIDS, COPD, cancer, and heart failure and con-
sists in the heavy and accelerated loss of striate muscle mass [204]. Muscular fibers 
from mice with neoplasms or from cachectic patients present abnormalities in the 
architecture of the basal lamina and in the membrane of the muscle cells, rather than 
infiltration of immune cells like in dystrophies or diabetes mellitus [205, 206]. This 
affected niche together with circulating plasma factors contributes to a hyperactiva-
tion of satellite cells and other non-satellite cells including pericytes. Furthermore, 
satellite cells constantly express Pax-7 self-renewal factor, an action that abolishes 
the differentiation process, leading to regenerative failure of muscular fibers [1].

Collectively, the data reviewed above showed the importance of stem cell niche 
behavior in the muscle regenerative process; yet further studies are required to 
fully understand these complex mechanisms involved in the renewal of normal and 
pathological muscle.
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5. Perspectives

Over the last three decades, researchers found that satellite cells are a heterog-
enous population of stem cells and dedicated progenitors for myogenesis in striate 
muscle. With the development of new technologies, like single cell sequencing, 
mass cytometry, or super resolution imaging, the detailed study of satellite cells 
during growth, differentiation, and quiescence state is continuously improving [1]. 
The progress in discovering personalized therapies is slow and full of challenges, 
especially in the field of rare muscle pathologies, yet the stimulation of endogenous 
repair as a prospective therapy for muscle diseases should be one of the key per-
spectives that should be further looked into [207, 208]. The stem cell niche changes 
in behavior and composition during a lifetime, having tree periods: juvenile, adult, 
and old age. It is known that there are difficulties in muscular stem cells isolation 
and preservation due to the fact that they lose their myogenic ability after growing 
in vitro even for a short period of time [129]. A question that is yet to be answered 
is whether the use of juvenile stem cells instead of adult ones would provide for 
more adequate cell cultures, increasing plasticity and improving muscle regenera-
tive therapies. For this purpose, and for a better understanding of skeletal stem cell 
niche, future challenging studies are needed.

6. Conclusion

The muscular stem cell niche is a remarkable structure that enables satellite 
cells and other non-satellite myogenic cells to repair and regenerate skeletal 
muscles when needed. As previously stated, the niche componence is highly 
variable, depending not only on the age of the body, but also on its well-being 
since a multitude of degenerative muscle disorders can alter the stem cell envi-
ronment, leading to a decrease in the regenerative abilities of satellite cells. One 
of the elements of the niche that was proved to change during aging is the basal 
lamina, a key structure that apparently tends to interpose between the myofibers 
and satellite cells in older muscles, thus altering their communication, a fact that 
is believed to be associated to the latter’s decrease in number. Furthermore, it 
was observed that in aged skeletal muscles, myofibers were decreased in mass, in 
contrast to the number of fibroblasts and adipocytes, which tended to increase. 
Satellite cells displayed diminished myogenic abilities and an accelerated apop-
tosis, probably due to lower expression levels of Pax7. Similar changes were 
described in degenerative muscle disorders, one of the most studied and severe 
being Duchenne muscular dystrophy. The chronic inflammation that appears in 
these diseases is believed to thicken the basal lamina and overflow the satellite 
cells with signaling molecules, impairing their capacity to restore muscle fibers. 
Other chronic disorders like diabetes mellitus and cachexia were also associated 
with niche alterations. Research in the field of regenerative medicine promises to 
innovate the therapies in these pathologies; however, there is a long way ahead 
and additional studies are needed.
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