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Chapter

A New BEM for Modeling and
Simulation of Laser Generated
UltrasoundWaves in 3T Fractional
Nonlinear Generalized Micropolar
Poro-Thermoelastic FGA
Structures
Mohamed Abdelsabour Fahmy

Abstract

In this chapter, we introduce a new theory called acoustic wave propagation of
three-temperature fractional nonlinear generalized micropolar poro-
thermoelasticity and we propose a new boundary element technique for modeling
and simulation of laser-generated ultrasonic wave propagation problems of func-
tionally graded anisotropic (FGA) structures which are linked with the proposed
theory. Since it is very difficult to solve general acoustic problems of this theory
analytically, we need to develop and use new computational modeling techniques.
So, we propose a new boundary element technique for solving such problems. The
numerical results are shown graphically to depict the effects of three temperatures
on the thermal stress waves propagation. The validity, accuracy, and efficiency of
our proposed theory and the technique are examined and demonstrated by com-
paring the obtained outcomes with those previously reported in the literature as
special cases of our general study.

Keywords: boundary element method, modeling and simulation, laser ultrasonics,
three-temperature, fractional-order, nonlinear generalized micropolar poro-
thermoelasticity, functionally graded anisotropic structures

1. Introduction

The fractional calculus has recently been widely used to describe anomalous
diffusion instead of classical diffusion, where the standard time derivative is
replaced by fractional time derivative. Indeed, fractional calculus has important
applications in electronics, wave propagation, nanotechnology, control theory,
electricity, heat conduction modeling and identification, signal and image
processing, biochemistry, biology, viscoelasticity, hereditary solid mechanics, and
fluid dynamics.

Physically, according to the medium where the waves are transmitted, there are
three wave types which are classified as mechanical waves, electromagnetic waves,
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and matter waves. Mechanical waves can travel through any medium with speed
depending on elasticity and inertia and cannot travel through a vacuum. Electro-
magnetic waves can travel through a vacuum and do not need a medium to travel
like X-ray, microwaves, ultraviolet waves, and radio waves. Matter waves are also
called De Broglie waves that have wave-particle duality property. There are two
mechanisms that have been proposed to explain wave generation, a first mechanism
at high energy density, which leads to forces that generate ultrasound, and a second
mechanism at low energy density, which generates elastic waves according to
irradiation of laser pulses onto a material. The interaction between laser light and a
metal surface led to great progress to develop theoretical models to describe the
experimental data [1]. Scruby et al. [2] proved that the thermoelastic area source
had been reduced to a surface point-source. This point-source ignores the optical
absorption, the heat source thermal diffusion, and the limited side dimensions of
the source. Based on point-source representation, Rose [3] introduced Surface Cen-
ter of Expansion (SCOE) models which predict the major features of ultrasound
waves generated by laser. Doyle [4] established that the existence of the metal
precursor is due to subsurface sources which arise from thermal diffusion.
According to McDonald [5], Spicer [6] used the generalized thermoelasticity theory
to introduce a real circular laser source model taking into consideration spatial-
temporal laser pulse design and thermal diffusion effect. The mathematical foun-
dations of three-temperature were laid for nonlinear generalized thermoelasticity
theory by Fahmy [7–12]. Fahmy [7] introduced a new boundary element strategy
for modeling and simulation of three-temperature nonlinear generalized
micropolar-magneto-thermoelastic wave propagation problems in FGA structures.
Fahmy [8] proposed a boundary element formulation for three-temperature ther-
mal stresses in anisotropic circular cylindrical plate structures. Fahmy [9] devel-
oped a boundary element model to describe the three-temperature fractional-order
heat transfer in magneto-thermoelastic functionally graded anisotropic structures.
Fahmy [10] introduced a boundary element formulation for modeling and optimi-
zation of micropolar thermoviscoelastic problems. Fahmy [11] discussed modeling
and optimization of photo-thermoelastic stresses in three-temperature anisotropic
semiconductor structures. Fahmy [12] proposed a new boundary element algorithm
for nonlinear modeling and simulation of three-temperature anisotropic generalized
micropolar piezothermoelasticity with memory-dependent derivative. This chapter
differs from the references mentioned above, because it constructs a new acoustic
wave propagation theory and allows the effective, efficient, and simple solution to
the considered complex problems related with the proposed theory.

Recently, research on nonlinear generalized micropolar thermoelastic wave
propagation problems has become very popular due to its practical applications in
various fields such as astronautics, oceanology, aeronautics, narrow-band and
broad-band systems, fiber-optic communication, fluid mechanics, automobile
industries, aircraft, space vehicles, materials science, geophysics, petroleum and
mineral prospecting, geomechanics, earthquake engineering, plasma physics,
nuclear reactors, high-energy particle accelerators, and other industrial applica-
tions. Due to computational difficulties in solving nonlinear generalized micropolar
poro-thermoelastic problems analytically, many numerical techniques have been
developed and implemented for solving such problems [13, 14]. The boundary
element method (BEM) [15–22] has been recognized as an attractive alternative
numerical method to domain methods [23–26] like finite difference method
(FDM), finite element method (FEM), and finite volume method (FVM) in engi-
neering applications. The superior feature of BEM over domain methods is that it
only needs to discretize the boundary, which often leads to fewer elements and
easier to use. In the boundary element method (BEM) formulation, boundary
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integral equations involving singular integrands, the proper treatment of the singu-
lar integration has become essential in terms of numerical accuracy and efficiency
of BEM. Also, some domain integrals may appear representing body forces,
nonlinear effects, etc. Through our BEM solution, several approaches have been
used to transform domain integrals into equivalent boundary integrals, so that the
final boundary element formulation solution involves only the boundary integrals.
The boundary element formulation of the current general study has been derived by
using the weighted residual method [27–51]. In engineering applications, both FEM
and BEM are based on the weighted residual methods with the same approximation
procedure based on interpolation functions over each element to approximate the
state variables distribution. Both methods differ in choosing the weighting func-
tions. FEM as a domain method needs discretization of the whole domain, which
usually leads to large systems of equations. This advantage of BEM over FEM has
significant importance for modeling and simulation of thermal stress wave propa-
gation problems which can be implemented using BEM with little cost and less
input data. The solutions by BEM, like boundary thermal stress wave problems, are
more accurate than by FEM, especially near the place of stress concentration. This
feature is very important for our proposed theory and the technique of solving its
related problems.

In this chapter, we introduce a novel theory called acoustic wave propagation of
three-temperature fractional nonlinear generalized micropolar poro-thermoelasticity
and we propose a new boundary element technique for modeling and simulation of
laser-generated ultrasonic wave propagation problems of functionally graded aniso-
tropic (FGA) structures which are linked with the proposed theory. Since it is very
difficult to solve general acoustic problems of this theory analytically and we need to
develop and use new computational modeling techniques. So, we propose a new
boundary element technique for solving such problems. The numerical results are
shown graphically to depict the effects of three temperatures on the propagation of
thermal stresses waves. Since there are no available data for comparison with our
proposed technique results, so, we replace the radiative heat conduction equations
with heat conduction as a special case from our present general study. In the special
case under consideration, the BEM results have been compared graphically with the
FDM and FEM in the heat conduction and radiative heat conductions cases; it can be
noticed that the BEM results are in a good agreement with the FDM and FEM results
and thus demonstrate the validity and accuracy of our proposed theory and the
technique used to solve its general problems.

A brief summary of the chapter is as follows: Section 1 introduces the back-
ground and provides the readers with the necessary information to books and
articles for a better understanding of wave propagation problems in three-
temperature nonlinear generalized micropolar poro-thermoelastic FGA structures
and their applications. Section 2 describes the BEM modeling of the new theory and
introduces the partial differential equations that govern its related problems. Sec-
tion 3 outlines BEM simulation of temperature field. Section 4 discusses BEM
simulation of micropolar porothermoelastic field to obtain the three temperatures
thermal stress wave propagation. Section 5 presents the new numerical results that
describe the thermal stress wave propagation under the effect of three-temperature
on the FGA structures.

2. BEM modeling of the problem

We consider an anisotropic micropolar porous smart structure in a rectangular
Cartesian system x1, x2, x3ð Þ shown in Figure 1, with a configuration R bounded by
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a closed surface S, and Si i ¼ 1, 2, 3, 4, 5, 6ð Þ denotes subsets of S such that S1 þ S2 ¼

g3 þ S4 ¼ S5 þ S6. The governing equations for modeling of fractional three-
temperature nonlinear generalized micropolar poro-thermoelastic problems of
functionally graded anisotropic structures (FGA) can be expressed as [7].

σij,j þ ρFi ¼ ρ€ui þ ϕρF€vi (1)

mij,j þ εijkσjk þ ρMi ¼ Jρ€ωi (2)

_ζ þ qi,i ¼  (3)

where

σij ¼ z þ 1ð Þm Cijklℵeδij � Aδijpþ α
^
uj,i � εijkωk

� �

� βijTα

h i

(4)

Cijkl ¼ Cklij ¼ Cjikl, βij ¼ βji (5)

mij ¼ xþ 1ð Þm αωk,kδij þ αωi,j þ α ¼ ω j,i
� �

(6)

ζ ¼ xþ 1ð Þm Auk,k þ
ϕ2

R
p

� �

(7)

qi ¼ xþ 1ð Þm �k p,i þ ρF €ui þ
ρ0 þ ϕρF

ϕ
€vi

� 	� �

(8)

ϵij ¼ εij � εijk χ þ 1ð Þm rk � ωkð Þ (9)

εij ¼
1
2

ui,j1þ uj,i
� �

(10)

ri ¼
1
2
εikl ul,k (11)

The time-fractional order three-temperature radiative heat conduction
equations can be written as

Da
τTα r, τð Þ ¼ ξ∇ α∇Tα r, τð Þ½ � þ ξ r, τð Þ, ξ ¼

1
cαρδ1

(12)

Figure 1.
Geometry of the FGA structure.
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where

 r, τð Þ ¼

ρei Te � Tið Þ þ ρer Te � Tp

� �

þ, α ¼ e, δ1 ¼ 1

�ρei Te � Tið Þ þ, α ¼ i, δ1 ¼ 1

�ρer Te � Tp

� �

þ, α ¼ p, δ1 ¼ T3
p

8

>

>

>

>

<

>

>

>

>

:

(13)

 r, τð Þ ¼ �δ2nα
_Tα,ij þ βijTα0 Åδ1n _ui,j þ τ0 þ δ2nð Þ€ui,j

� �

þ ρcα τ0 þ δ1nT2 þ δ2nð Þ€Tα

� �

(14)

and

ei ¼ ρeiT
�2=3
e , er ¼ ρerT

�1=2
e , α ¼ αT

5=2
α , α ¼ e, i, p ¼ pT

3þ
p (15)

The total energy is

P ¼ Pe þ Pi þ Pp, Pe ¼ ceTe, Pi ¼ ciTi, Pp ¼
1
4
cpT

4
p (16)

where we considered that θ ¼ Te þ Ti þ Tr, Te, Ti, and Tr are temperature
functions of electron, ion, and photon, respectively, e,i, and r are conductive
coefficients of electron, ion, and photon, respectively, and ρ is the material
density which is constant inside each subdomain.

3. BEM simulation for temperature field

In this section, we are interested in using a boundary element method for
modeling the nonlinear time-dependent two dimensions three temperature (2D-3T)
radiation heat equations coupled with electron, ion, and phonon temperatures.

According to finite difference scheme of Caputo at times f þ 1ð ÞΔτ and fΔτ, we
obtain [52].

Da
τT

fþ1
α þDa

τT
f
α ≈

X

k

j¼0

Wa,j T
fþ1�j
α rð Þ � T f�j

α rð Þ
� �

(17)

where

Wa,0 ¼
Δτð Þ�a

Γ 2� að Þ
, Wa,j ¼ Wa,0 jþ 1ð Þ1�a � j� 1ð Þ1�a


 �

(18)

Based on Eq. (17), the fractional order heat Eq. (12) can be replaced by the
following system

Wa,0T
fþ1
α rð Þ �α xð ÞT

fþ1
α,II rð Þ �α,I , xð ÞT

fþ1
α,I rð Þ

¼ Wa,0T
f
α rð Þ �α xð ÞT

f
α,II rð Þ

�α,I , xð ÞT
f
α,J �

rð Þ �
X

f

j¼1

Wa,j T
fþ1�j
α rð Þ � T f�j

α rð Þ
� �

þ
fþ1
m x, τð Þ

þ
f
m x, τð Þ

(19)
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where, j ¼ 1, 2, …,F, f ¼ 0, 1, 2,… , F.
Now, according to Fahmy [9] and using the fundamental solution that satisfies

the system (19), the boundary integral equations corresponding to (12) without
internal heat sources can be written as

CTα ¼

ð

s
Tαq

∗ � T ∗

α q
� �

dS�

ð

R

α

D

∂T ∗

α

∂τ
TαdR (20)

Now, to transform the domain integral in (20) into the boundary, we assume
that the time-temperature derivative can be approximated by using a series of
known functions f j rð Þ and unknown coefficients a j τð Þ as

∂Tα

∂τ
ffi

X

N

j¼1

f j rð Þ ja j τð Þ (21)

We assume that T̂
j

α is a solution of

∇
2T̂

j

α ¼ f j (22)

Thus, Eq. (20) can be written as

CTα ¼

ð

S

Tαq
∗ � T ∗

α q
� �

dS

þ
X

N

j¼1

a j τð ÞD�1 CT̂
j

α �

ð

S
T j
αq

∗ � q̂ jT ∗

α

� �

dS

� 	 (23)

where

q̂ j ¼ �α

∂T̂
j

α

∂n
(24)

and

a j τð Þ ¼
X

N

i¼1

f�1
ji

∂T ri, τð Þ

∂τ
(25)

In which, the entries of f�1
ji are the coefficients of F�1 with matrix F defined as

Ff gji ¼ f j rið Þ (26)

Using the standard boundary element discretization scheme [28], for Eq. (23)
and using Eq. (25), we get

C _Tα þHTα ¼ GQ (27)

where the matrices H and G are depending on current time step, boundary
geometry, and material properties.

The diffusion matrix can be defined as

C ¼ � HT̂α �GQ̂
h i

F�1D�1 (28)
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with

T̂
� 


ij
¼ T̂

j
xið Þ (29)

Q̂
n o

ij
¼ q̂ j χið Þ (30)

In order to solve Eq. (27) numerically, the functions Tα and q are interpolated as

Tα ¼ 1� θð ÞTm
α þ θTmþ1

α (31)

q ¼ 1� θð Þqm þ θqmþ1 (32)

The time derivative of the temperature can be written as

_Tα ¼
dTα

dθ

dθ

dτ
¼

Tmþ1
α � Tm

α

τmþ1 � τm
¼

Tmþ1
α � Tm

α

Δτm
, θ ¼

τ � τm

τmþ1 � τm
, 0≤ θ≤ 1 (33)

By substituting from Eqs. (31)–(33) into (27), we obtain

c

Δτm
þ θH


 �

Tmþ1
α � θGQmþ1 ¼

c

Δτm
� 1� θð ÞH


 �

Tm
α þ 1� θð ÞGQm (34)

which can be written as follows [10].

X ¼  (35)

where  is an unknown matrix, while X and  are known matrices.
The explicit staggered predictor-corrector procedure based on communication-

avoiding Arnoldi (CA-Arnoldi) method [53] due to its numerical stability, conver-
gence, and performance [7] has been implemented for obtaining the temperature field
in terms of predicted displacement field which will be explained in the next section.

4. BEM simulation for micropolar poro-thermoelastic fields

By implementing the weighted residual method, the governing Eqs. (1)–(3) can
be written as

ð

R
σij,j þUi

� �

u ∗

i dR ¼ 0 (36)

ð

R
mij,j þ εijkσjk þ V i

� �

ω ∗

i dR ¼ 0 (37)

ð

R
qi þ

_ζi � i

� �

p ∗

i dR ¼ 0 (38)

in which

Ui ¼ φijJ j
þ ρFi � ρ€ui � ϕρF€vi (39)

V i ¼ ρ Mi � J€ωið Þ (40)

where u ∗
i ,ω

∗
i and p ∗

i are weighting functions, ui,ωi, and pi are approximate
solutions as shown in Eqs. (4)–(11)
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The boundary conditions are

ui ¼ ui onS1 (41)

λi ¼ σiini ¼ λi on S2 (42)

ωi ¼ ωi onS3 (43)

μi ¼ mijn j ¼ μi onS4 (44)

p ¼ p onS5 (45)

L ¼
∂p

∂n
¼ L onS6 (46)

By integrating by parts the first term of Eqs. (36)–(38), we obtain

�

ð

R
σij u

∗

i,j dRþ

ð

R
Ui u

∗

i dR ¼ �

ð

S2

λiu
∗

i dS (47)

�

ð

R
mijω

∗

i,j dRþ

ð

R
εijkσjkω

∗

i dRþ

ð

R
V iω

∗

i dR

¼ �

ð

S4

μiω
∗

i dS
(48)

�

ð

R
qp ∗

i,i dRþ

ð

R

_ζip
∗

i dR�

ð

R
i p ∗

i dR ¼ �

ð

S6

Lip ∗

i dS (49)

which according to Huang and Liang [54] can be expressed as

�

ð

R

σij,ju
∗

i dRþ

ð

R

mij,j þ εijkσjk
� �

ω ∗

i dRþ

ð

R

Uiu
∗

i dR

þ

ð

R
V iω

∗

i dR�

ð

R
qp ∗

i,idRþ

ð

R

_ζip
∗

i dR�

ð

R
i p ∗

i dR

¼

ð

S2

λi � λi
� �

u ∗

i dSþ

ð

S1

ui � uið Þλ ∗

i dS

þ

ð

S4

μi � μið Þω ∗

i dSþ

ð

S3

ωi � ωið Þμ ∗

i dS

þ

ð

S6

Li � Li

� �

p ∗

i dSþ

ð

S5

pi � pi
� �

L ∗

i dS

(50)

Using integration by parts for the left-hand side of (50), we have

�

ð

R
σijε

∗

ij dR�

ð

R
mij,jω

∗

i,j dRþ

ð

R
Ui u

∗

i dR

þ

ð

R
Viω

∗

i dR�

ð

R
qp ∗

i,idRþ

ð

R

_ζip
∗

i dR�

ð

R
ip ∗

i dR

¼ �

ð

S2

λi u
∗

i dS�

ð

S1

λiu
∗

i dS

þ

ð

S1

ui � uið Þλ ∗

i dS�

ð

S4

μiω
∗

i dS�

ð

S3

μω ∗

i dS

þ

ð

S3

ωi � ωið Þμ ∗

i dS�

ð

S6

Li p ∗

i dS�

ð

S6

Lip ∗

i dS

þ

ð

S5

pi � pi
� �

L ∗

i dS

(51)
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By using the following elastic stress and couple stress (see Eringen [55])

σij ¼ ijkl εkl, mij ¼ ijklωk,l where ijkl ¼ klij and ijkl ¼ klij (52)

Hence, Eq. (51) can be rewritten as

�

ð

R
σ ∗

ij εijdR�

ð

R
m ∗

ij,jωi,jdRþ

ð

R
Uiu

∗

i dR

þ

ð

R
V iω

∗

i dR�

ð

R
qp ∗

i,i dRþ

ð

R

_ζi p
∗

i dR�

ð

R
ip ∗

i dR

¼ �

ð

S2

λiu
∗

i dS�

ð

S1

λiu
∗

i dS

þ

ð

S1

ui � uið Þλ ∗

i dS�

ð

S4

μiω
∗

i dS�

ð

S3

μiω
∗

i dS

þ

ð

S3

ωi � ωið Þμ ∗

i dS�

ð

S6

Li p ∗

i dS�

ð

S6

Lip ∗

i dS

þ

ð

S5

pi � pi

� �

L ∗

i dS

(53)

Applying the integration by parts for the left-hand side of Eq. (53), we get
ð

R

σ ∗

ij,jui dRþ

ð

R

m ∗

ij,j þ εijkσ
∗

jk


 �

ωidR

¼ �

ð

S
u ∗

i λi dS�

ð

S
ω ∗

i μi dS�

ð

S
p ∗

i Li dSþ

ð

S
λ ∗

i ui dS

þ

ð

S
μ ∗

i ωi dSþ

ð

S
L ∗

i pi dS

(54)

The weighting functions for Ui ¼ Δn and Vi ¼ 0 along the unit vector direction
el are as follows:

σ ∗

lj,j þ Δ
nel ¼ 0 (55)

m ∗

ij,j þ εijkσ
∗

jk ¼ 0 (56)

The analytical fundamental solution of Dragos [56] can be written as

u ∗

i ¼ u ∗

li el,ω
∗

i ¼ ω ∗

li el,p
∗

i ¼ p ∗

li el, λ ∗

i ¼ λ ∗

li el,
μ ∗

i ¼ μ ∗

li el, L ∗

i ¼ L ∗

li el
(57)

The obtained weighting functions for a point load Ui ¼ 0 and Vi ¼ Δn along the
unit vector direction e1 were next used as follows:

σ ∗∗

ij,j ¼ 0 (58)

m ∗∗

lj,j þ εljkσ
∗∗

jk þ Δ
nel ¼ 0 (59)

According to Dragos [56], the fundamental solution can be expressed as

u ∗

i ¼ u ∗∗

ii el, ω ∗

i ¼ ω ∗

li el, p ∗

i ¼ p ∗∗

li el, λ ∗

i ¼ λ ∗∗

li el,

μ ∗

i ¼ μ ∗

li el, L ∗

i ¼ L ∗∗

li el
(60)
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Using the weighting functions of (57) and (60) into (54), we obtain

Cn
liu

n
i ¼ �

ð

S

λ ∗

li uidS�

ð

S

μ ∗

li ωi dS�

ð

S

L ∗

li pidSþ

ð

S

u ∗

li λidS

þ

ð

S
ω ∗

li μi dSþ

ð

S
p ∗

li Li dS

(61)

Cn
liω

n
i ¼ �

ð

S

λ ∗∗

li uidS�

ð

S

μ ∗∗

li ωi dS�

ð

S

L ∗∗

li pidSþ

ð

S

u ∗∗

li λidS

þ

ð

S
ω ∗∗

li μi dSþ

ð

S
p ∗∗

li Li dS

(62)

Thus, we can write

Cnn ¼ �

ð

S
 ∗dSþ

ð

S
 ∗dSþ

ð

S
 ∗ pdSþ

ð

S
 ∗ ∂p

∂n
dS (63)

where

Cn ¼
C11 C12

C21 C22

" #

, ∗ ¼

u ∗
11 u ∗

12 ω ∗
13

u ∗
21 u ∗

22 ω ∗
23

u ∗
31 u ∗

32 ω ∗
33

2

6

6

4

3

7

7

5

, ∗ ¼

λ ∗

11 λ ∗

12 λ ∗

13

λ ∗

21 λ ∗

22 μ ∗
23

λ ∗

31 λ ∗

32 μ ∗
33

2

6

6

4

3

7

7

5

(64)

 ¼

u1

u2

ω3

2

6

6

4

3

7

7

5

, ¼

λ1

λ2

μ3

2

6

6

4

3

7

7

5

,  ∗ ¼

 ∗
1

 ∗
2

0

2

6

6

4

3

7

7

5

, ∗ ¼

 ∗

1

 ∗

2

0

2

6

6

4

3

7

7

5

In order to obtain the numerical solution of (63), we define the following
functions

 ¼ ψ  j, p ¼ ψ j, p ¼ ψ0p
j,
∂p

∂n
¼ ψ0

∂p

∂n

� 	 j

(65)

substituting above functions into (63) and discretizing the boundary, we obtain

Cnqn ¼
X

Ne

j¼1

�

ð

Γ j

p ∗ψdΓ

" #

q j þ
X

Ne

j¼1

ð

Γ j

q ∗ψdΓ

" #

p j

þ
X

Ne

j¼1

ð

Γ j

a ∗ψ0 dΓ

" #

p j þ
X

Ne

j¼1

�

ð

Γ j

b ∗
ψ0dΓ

" #

∂p

∂n

� 	 j
(66)

Equation after integration can be written as

Ciqi ¼ �
X

Ne

j¼1

̂
ij
q j þ

X

Ne

j¼1

Ĝ
ij
p j þ

X

Ne

j¼1

âijp j þ
X

Ne

j¼1

b̂
ij ∂p

∂n

� 	 j

(67)

By using the following representation

ij ¼
̂

ij
if i 6¼ j

̂
ij
þ Ci if i ¼ j

(

(68)

Thus, we can write (67) as follows
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X

Ne

j¼1

ijq j ¼
X

Ne

j¼1

Ĝ
ij
p j þ

X

Ne

j¼1

âijp j þ
X

Ne

j¼1

b̂
ij ∂p

∂n

� 	 j

(69)

The global matrix system equation for all i nodes can be written as follows

 ¼ þ þ  (70)

the vector  represents all the values of displacements and microrotations, the
vector  represents all the tractions and couple stress vector, the vector  represents
all the values of pore pressure, and the vector  represents all the values of pore
pressure gradients before applying boundary conditions.

Substituting the boundary conditions into (70), we obtain the following system
of equations

 ¼  (71)

where  is an unknown matrix, while  and  are known matrices.
Now, an explicit staggered predictor-corrector procedure based on

communication-avoiding Arnoldi (CA-Arnoldi) method has been implemented in
(71) for obtaining the corrected displacement. Then we can get the temperature
field from (35).

5. Numerical results and discussion

In order to show the numerical results of this study, we consider a monoclinic
graphite-epoxy as an anisotropic micropolar poro-thermoelastic material which has
the following physical constants.

The elasticity tensor is expressed as

Cpjkl ¼

430:1 130:4 18:2 0 0 201:3

130:4 116:7 21:0 0 0 70:1

18:2 21:0 73:6 0 0 2:4

0 0 0 19:8 �8:0 0

0 0 0 �8:0 29:1 0

201:3 70:1 2:4 0 0 147:3

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

GPa (72)

The mechanical temperature coefficient is

βpj ¼

1:01 2:00 0
2:00 1:48 0

0 0 7:52

2

6

4

3

7

5
� 106 N

km2 (73)

The thermal conductivity tensor is

kpj ¼

5:2 0 0
0 7:6 0

0 0 38:3

2

6

4

3

7

5
W=Km (74)

Mass density ρ ¼ 7820 kg=m3 and heat capacity c ¼ 461J=kgK.
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The proposed technique that has been utilized in the present chapter can be
applicable to a wide variety of wave propagation of fractional nonlinear generalized
micropolar poro-thermoelastic FGA structures problems related with the proposed
theory.

The influence of three-temperature on the propagation of thermal stress waves
plays a very important role during the simulation process. According to Fahmy [7],
who compared and implemented communication-avoiding GMRES (CA-GMRES)
of Saad and Schultz [57], communication-avoiding Arnoldi (CA-Arnoldi) of the
Arnoldi [58] and communication-avoiding Lanczos (CA-Lanczos) of Lanczos [59]
for solving the dense nonsymmetric algebraic system of linear equations arising
from the BEM. So, the efficiency of the proposed technique has been developed
using the communication-avoiding Arnoldi (CA-Arnoldi) solver to reduce the iter-
ations number and CPU time, where the BEM discretization is employed 1280
quadrilateral elements, with 3964° of freedom (DOF).

Now, in order to assess the impact of three temperatures on the thermal stress
waves, the numerical outcomes are completed and delineated graphically for
electron, ion, and phonon temperatures.

Figures 2–4 show the propagation of the thermal stress σ11, σ12, and σ22 waves
along x-axis for the three temperatures Te, Ti, and Tp and total temperature T. It
was noted from these figures that the three temperatures have significant effects on
the thermal stress waves along x-axis through the thickness of the FGA structure.

Since there are no available results for our considered problem. So, some litera-
tures may be considered as special cases from our considered complex problem.
For comparison purposes with the special cases of other methods treated by other
authors, we only considered one-dimensional numerical results of the considered
problem. In the special case under consideration, the BEM results have been plotted
in Figures 5 and 6 with the results of finite difference method (FDM) and finite
element method (FEM) in the two cases, namely, three-temperature (3T) theory
and one-temperature (1T) theory.

Figure 2.
Propagation of the thermal stress σ11 waves along x-axis for the three temperatures Te, Ti , Tp and total
temperature T.
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Figure 5 shows a comparison of the propagation of the thermal stress σ11 waves
for the BEM results of three-temperature (3T) radiative heat conduction theory for
the BEM results with those obtained using the FDM of Pazera and Jędrysiak [60]
and FEM of Xiong and Tian [61], where we replaced the 1T heat conduction theory
of their work by 3T radiative heat conduction theory of our work to obtain the
results. It can be noticed that the BEM results are found to agree very well with the
FDM and FEM results.

Figure 3.
Propagation of the thermal stress σ12 waves along x-axis for the three temperatures Te, Ti , Tp and total
temperature T.

Figure 4.
Propagation of the thermal stress σ22 waves along x-axis for the three temperatures Te, Ti , Tp and total
temperature T.
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Figure 6 shows a comparison of the propagation of the thermal stress σ11 waves
for the BEM results of one-temperature (1T) heat conduction theory with those
obtained using FDM of Pazera and Jędrysiak [60], FEM1 of Xiong and Tian [61],
and FEM2 of COMSOL multiphysics software version 5.1, where we replaced 3T
radiative heat conduction theory of our work by the 1T heat conduction theory of
their work to obtain the results. It can be noticed that the BEM results are found to
agree very well with the FDM, FEM1, and FEM2 results and thus demonstrate the
validity and accuracy of our proposed theory and the technique used to solve its
general problems.

Figure 5.
Propagation of the thermal stress σ11 waves along x-axis for 3T theory and different methods.

Figure 6.
Propagation of the thermal stress σ11 waves along x-axis for 1T theory and different methods.
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6. Conclusion

The main purpose of this chapter is to introduce a novel theory called acoustic
wave propagation of three-temperature fractional nonlinear generalized micropolar
poro-thermoelasticity and we propose a new boundary element technique for
modeling and simulation of ultrafast laser-induced thermal stress waves propaga-
tion problems in 3T nonlinear generalized micropolar poro-thermoelastic FGA
structures which are linked with the proposed theory. By discretizing only, the
boundary of the domain using BEM, where the unknowns on the domain boundary
are expressed as functions depend only on the domain boundary values. Since it is
very difficult to solve general acoustic problems of this theory analytically and we
need to develop and use new computational modeling techniques. So, we propose a
new boundary element technique for solving such problems. The numerical results
are shown graphically to depict the effects of three temperatures on the thermal
stress waves. Because there are no available results for comparison with the results
of our proposed technique, we replace the three-temperature radiative heat con-
duction with one-temperature heat conduction as a special case from our present
general study of three-temperature nonlinear generalized micropolar poro-
thermoelasticity. In the special case under consideration, the BEM results have been
compared graphically with the FDM and FEM in the two cases, namely three-
temperature (3T) theory and one-temperature (1T) theory; it can be noticed that
the BEM results are in a good agreement with the FDM and FEM results and thus
demonstrate the validity and accuracy of our proposed theory and the technique
used to solve its general problems. The numerical simulations are often faster and
cheaper than experiments, and they are easily cross-platform, reproducible, relo-
catable, and customizable. So, the validation of the numerical simulation is of
paramount importance. In this work, we implemented the explicit staggered
predictor-corrector procedure based on communication-avoiding Arnoldi (CA-
Arnoldi) solver due to its numerical stability, convergence, and performance as in
Fahmy [10] to demonstrate the efficiency of the proposed technique. Thus, the
numerical results of our proposed technique demonstrate the validity, accuracy,
and efficiency of our proposed technique.

Nowadays, the knowledge of thermal stress wave propagation in three-
temperature nonlinear generalized micropolar poro-thermoelastic problems associ-
ated with the ultrafast laser pulse proposed theory can be utilized by mechanical
engineers in ceramic production applications and designing of boiler tubes and heat
exchangers. As well as for chemists to observe the chemical reaction phenomena
such as bond formation and bond breaking.
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