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Chapter

A Practical Framework for
Probabilistic Analysis of
Embankment Dams

Xiangfeng Guo and Daniel Dias

Abstract

Uncertainties, such as soil parameters variability, are often encountered in
embankment dams. Probabilistic analyses can rationally account for these
uncertainties and further provide complementary information (e.g., failure
probability and mean/variance of a model response) than deterministic analyses.
This chapter introduces a practical framework, based on surrogate modeling, for
efficiently performing probabilistic analyses. An active learning process is used in
the surrogate model construction. Two assessment stages are included in this
framework by respectively using random variables (RV) and random fields (RF) for
the soil variability modeling. In the first stage, a surrogate model is coupled with
three probabilistic methods in the RV context for the purpose of providing a variety
of useful results with an acceptable computational effort. Then, the soil spatial
variability is considered by introducing RFs in the second stage that enables a
turther verification on the structure reliability. The introduced framework is
applied to an embankment dam stability problem. The obtained results are
validated by a comparison with direct Monte Carlo Simulations, which also allows

to highlight the efficiency of the employed methods.

Keywords: embankment dam, slope stability, reliability analysis,
sensitivity analysis, random field

1. Introduction

According to the International Commission of Large Dams (ICOLD) database
updated in September 2019 [1], there are around 58,000 large dams (higher than
15 m) over the world and 75% of them can be classified as embankment dams.
Concerning all the constructed dams, the number is much more important. For
example, over 91,460 dams were operated across the United States in 2019 [2] and
the majority is rock-filled or earth-filled ones. Therefore, safety assessment of
embankment dams is crucial for engineers considering their great population and
the considerable damages that can be induced by their failures. However, embank-
ment dams involve a high degree of uncertainties, especially for their material
properties [3] since they are constructed by natural materials (soils, sands, or
rocks), which makes their safety evaluation a difficult task. Probabilistic analysis
[4] is an effective solution which permits to rationally account for the soil variabil-
ities and quantify their effects on the dam safety condition by using a reliability
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method or a sensitivity method. Additionally, complementary results [5] can be
provided by a probabilistic analysis compared to a traditional deterministic assess-
ment, including the failure probability (Pf), design point, model response statistics
(e.g., mean and variance) and sensitivity index. Having more results are beneficial
for designers to better understand the functioning mode of the dam and make more
rational decisions. Therefore, it is worthy to implement probabilistic analyses for
the safety assessment of embankment dams, in order to account for the soil vari-
abilities and provide complementary information. Figure 1 shows a comparison
between a probabilistic and a deterministic analysis. In this figure, MCS and FORM
[4] are two reliability methods respectively referring to Monte Carlo Simulation and
First Order Reliability Method. FoS represents the factor of safety and can be
replaced by other types of model responses (like the settlement) which are also of
interest for engineers.

In a probabilistic analysis, uncertainties of soil properties can be represented by
random variables (RVs) or random fields (RFs) [4]. The former is simpler and
easier to couple with a deterministic model [4]. In the RV approach, the soil is
assumed to be homogeneous but different values are generated in different simula-
tions for one soil property according to a given distribution. Therefore, the RV
method cannot explicitly account for the soil spatial variabilities. On the contrary,
the RF approach can model the spatial variation of soils. For a soil property in one
simulation, one RF, meaning a collection of different values in a discretized grid, is
generated according to the soil parameter statistics and a given autocorrelation
structure. However, this approach is more complex and needs extra computational
efforts (e.g., quantification of the autocorrelation distances and generation of RFs)
compared to the RV one. Figure 2 illustrates the principle idea of the two
approaches.

In this chapter, a practical framework is proposed to efficiently perform the
probabilistic analysis of embankment dams. The RV and RF approaches are both
implemented into the framework, corresponding to two assessment stages. The RV
approach permits a quick estimate on the target results (e.g., Pf) while the RF one is
able to account for the soil spatial variability and update the Pf in order to be more
precise in a second stage. The proposed framework is applied to an embankment
dam stability problem to show its capacity of providing many useful results and its
high computational efficiency. A discussion section is provided as well in which the
obtained results are validated by comparing with direct MCS. Besides, some issues
such as the reliability method selection and probabilistic analysis tools are discussed.

Deterministic
analysis A singlevalue for each

A given set of
measurements

Probabilistic
analysis

Failure probability;
Distribution, mean
and variance of FoS;
Design pointetc.

T

Statistical representation; Many simulations;
Consider uncertainties; Uncertainty
ke

r~Randomvariables; : propagation
Random fields (MCS, FORM etc.)

Figure 1.
Contributions of a probabilistic analysis (ved color) to a deterministic analysis (blue color).
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Simulation 1, 2, 3 Simulation 1, 2, 3

Figure 2.
Comparison between the two approaches of uncertainty modeling (left: Random variables; right: Random
fields).

2. Presentation of the used probabilistic analysis methods

This section aims to briefly present the probabilistic analysis methods used in the
proposed framework including two reliability methods (MCS and FORM), a
surrogate modeling technique (PCE), a global sensitivity analysis method (Sobol)
and a RF generation approach (KLE).

2.1 Monte Carlo simulations (MCS)

The MCS offers a robust and simple way to estimate the distribution of a random
model response and assess the associated Pf. The idea is to largely and randomly
generate samples according to a joint input Probability Density Function (PDF) and
evaluate the model response of each sample (i.e., an input vector x) by a determin-
istic computational model. For an MCS with Nyc model evaluations, the Pf can be
approximated by [4]:

Numc

Pfx NLMC D e (=) (1)

where Iyc(+) is an indicator function with Ijc(x) = 1 if x leads to a failure,
otherwise Ipc(x) = 0. The value of N should be large enough in order to obtain
an accurate estimate for the Pf which can be assessed by its Coefficient of Variation
(CoV):

CoViy = /(1 Pf)/(Nuc - Pf) -100% )

It is important to mention that the CoVpr of Eq. (2) is independent of the
problem dimension. Additionally, the MCS works regardless of the complexity of
the Limit State Surface (LSS). However, a crude MCS suffers from a low computa-
tional efficiency. According to Eq. (2), around 100/Pf model evaluations are
required if the target CoVpr is 10%.

2.2 First order reliability method (FORM)

The FORM estimates the Pf by approximating the LSS locally at a reference
point with a linear expansion. The reference point is called as design point P*. It is
defined in the standard normal space as the point that is on the LSS and closest to
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the space origin Ogy. This point can be located by solving an optimization problem
as [6]:

P* = argmin{||u||, G(u) <0} (3)

where # is the input vector x transformed into the standard normal space and
G(+) is the performance function with G(#) < 0 representing the failure domain. For
the slope stability analysis, the performance function can be defined as: G = FoS — 1.
Once the P* is determined, the Pf can be approximated by the following equation:

Pf = ®gn(—Pyur) = Psn ([P |]) (4)

where ®gy is the standard normal Cumulative Density Function (CDF) and Sy
is the Hasofer-Lind reliability index. Additionally, based on the components of the
vector from Ogy to P*, the importance factor of each RV can be derived [6].

2.3 Polynomial Chaos expansions (PCE)

The PCE is a powerful and efficient tool for metamodeling which consists in
building a surrogate of a complex computational model. It approximates a model
response Y by finding a suitable basis of multivariate orthonormal polynomials with
respect to the joint input PDF in the Hilbert space. The basic formula of PCE is [7]:

Yo ) ka'Val() (5)

aeNM

where € are independent RVs, k, are unknown coefficients to be computed with
a being a multidimensional index and ¥, are multivariate polynomials which are
the tensor product of univariate orthonormal polynomials. The representation of
Eq. (5) should be truncated to a finite number of terms for practical applications by
using the standard or hyperbolic truncation scheme. Then, the unknown coeffi-
cients can be estimated by using the Least Angle Regression method. The accuracy
of the truncated PCE can be assessed by computing the coefficient of determination
R? and the Q? indicator: R? is related to the empirical error using the model
responses already existing in the design of experiment (DoE), while Q? is obtained
by the leave-one-out cross-validation technique [7].

In order to further reduce the number of ¥, after the truncate operation when
the input dimension is high, the sparse PCE (SPCE) was proposed [7]. The idea
came from the fact that the non-zero coefficients in the PCE form a sparse subset of
the truncation set obtained by the hyperbolic truncation scheme. Thus, it consists in
building a suitable sparse basis instead of computing useless terms in the expansions
that are eventually negligible.

2.4 Sobol-based global sensitivity analysis (GSA)

The GSA aims to evaluate the sensitivity of a Quantity of Interest (Qol) with
respect to each RV over its entire varying range. Among many methods for
performing a GSA, the Sobol index has received much attention since they can give
accurate results for most models [8]. The Sobol-based GSA is based on the variance
decomposition of the model output . The first order Sobol index is given as:

Vi(Y) _ Var[E(Y|lx:)]

S- =
7 Vi

(6)
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where V, is the total variance of Y. For the Var[E(Y]||x;)], the inner
expectation operator E(-) is the mean of Y considering all possible x..; values while
keeping x; constant; the outer variance Var(-) is taken over all possible values of x;.
The first order Sobol index measures the contribution of the variable x; solely.
Another important parameter in a Sobol-based GSA is the total effect index which is
given as:

St =S; + ZS,‘]' + ... Sl,... M )
i

where Sy, ... Sy, .. m represents the higher order Sobol index. St; is able to take
into account the interaction effects of the variable x; with other variables.

It is noted that the Sobol index is only effective for independent variables. In
order to properly account for the input correlation effect, the Kucherenko index [5]
can be employed which is also based on the variance decomposition. For the esti-
mation of the Sobol or Kucherenko index (First order and total effect), the tradi-
tional way is to use the idea of MCS however it requires a high number of model
evaluations.

2.5 Karhunen-Loéve expansions (KLE)

A random field (RF) can describe the spatial correlation of a material
property in different locations and represent nonhomogeneous characteristics. The
KLE, as a series expansions method, is widely used in the geotechnical reliability
analysis since it can lead to the minimal number of RVs involved in a RF
discretization [7]. In the KLE context, a stationary Gaussian RF H can be expressed
as follows:

Nk1,

H(xgrr) = p + GZ V hidpi (%Rp); (8)
i—1

where xgr is the coordinate of an arbitrary point in the field, 4 and ¢
represents respectively the mean and standard deviation of the RF, 4; and ¢; are
respectively the eigenvalues and eigenfunctions of the autocovariance function for
the RF, ¢; is a set of uncorrelated standard normal RVs and Ny, is used to truncate
the KLE for practical applications. The autocovariance function is the
autocorrelation function multiplied by the RF variance. The 2D exponential auto-
correlation function is commonly used in the field of reliability analysis. It can be
given by:

p(x, %) = exp <— ]x;x’l - b’;)” ) 9)

where (x,y) and (x’,y’) are the coordinates of two arbitrary points in the RF, L,
and L, is respectively the horizontal and vertical autocorrelation distance. The
autocorrelation distance is defined as the length which can lead to a decrease from 1
to 1/e for the autocorrelation function. Concerning the N, its value is determined
by evaluating the error due to the truncation term. The variance-based error glob-
ally estimated in the RF domain Q can be expressed as [9]:

Ngr

1- Zﬂiﬁbf(xRF) aQ (10)
i—1

1J
EKL = —
KL = o 5
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3. The introduced framework

This section presents the introduced framework for the probabilistic analysis of
embankment dams. A flowchart of the framework is given in Figure 3.

At the beginning, three elements should be prepared. Firstly, the distribution
type and the related parameters (e.g., mean and variance) of the concerned material
properties have to be determined. It will allow describing their uncertainties by
means of RVs. The selected material properties should be relevant to the QoI of the
problem. In case of it is difficult to properly select the relevant properties, all the
possible properties can be considered for the RV modeling. The Global Sensitivity
Analysis (GSA) which will be performed in the first stage can help to understand
the significance of each property. With the GSA results, one can then select which
properties will be modeled by RFs. The second work is to develop a deterministic
computational model by using numerical or analytical methods (e.g., Finite element
method and Limit analysis method). The objective of this model is to estimate the
Qol with a given set of input parameters. Then, the autocorrelation structure of the
concerned properties should be determined. This structure, defined by an autocor-
relation function and the autocorrelation distances, allows to describe the spatial
correlation between different locations of a property. It is a key element in the
generation of RFs. After these three preparation-works, the analyses in the two
stages can be performed. It should be noted that the focus of this chapter is to show
the benefits of a probabilistic analysis and demonstrate the proposed framework.
Concerning the way of rationally determining the distribution parameters and
the autocorrelation structure by using the available measurements, readers can
refer to [10, 11].

The objective of the first stage is to provide a variety of probabilistic results with
an acceptable computational burden. The results could be helpful to analyze the
current problem in a preliminary design phase and guide the following site investi-
gation program and the next design assessment phase. In this stage, the RV
approach is used to consider the input uncertainties. It allows quickly having a first

1 2 3

[Distribution parameters | [Deterministic model] [Autocorrelation structure]

/ Failure probability \

Model response distribution
/ MCS }/ Model response statistics

Reliability index

Stage 1 1 Fallure prabability
(RV) i—'An SPCE model( )}4— gl FORM o e
2

Importance factor
GS A(2) |Partial safety factor |

First order sensitivity index
\\ Total effect sensitivity index /

Stage 2 Failure probability. o
(RF(3)) 2 An SPCE model(¥) H MCSJ—P Model response distribution

Model response statistics

Preperation

—

Figure 3.
Flow chart of the proposed framework.
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view on the target results given that this approach can be easily coupled with any
deterministic model and any probabilistic analysis method. Three analyses are
performed in this stage by using respectively three techniques: two reliability
methods (MCS and FORM) and one sensitivity method (Sobol-based GSA). The
MCS is always considered as a reference method to evaluate other reliability
methods due to its robustness. Therefore, an MCS is conducted here in order to
obtain an accurate estimate on the Pf. It can also provide the model response
distribution and statistics. The FORM is an approximation method due to its linear
assumption. It is also adopted in this stage because this method can provide a
variety of valuable results which could be beneficial for engineers. For example, the
design point permits to know how much margin there are with respect to the
current mean values, and the partial safety factors are comparable with the conser-
vative factors used in a deterministic analysis to penalize the strength properties.
The Sobol-based GSA permits to quantify the contribution of each RV to the model
response variance. By using the Kucherenko index, the correlation effect among the
RVs can also be accounted for. According to the GSA results, the properties, which
have very slight effects, could be kept as RVs or treated as deterministic in the
second stage. This can significantly reduce the computational burden. Particularly,
the three analyses are conducted by using a surrogate model (SPCE). The aim is to
reduce the total computational time given that a direct MCS or GSA is very time-
consuming since they need usually tens of thousands of deterministic model evalu-
ations. For most cases, it is not affordable to repeatedly run a deterministic model
with a number higher than 10*. Besides, an active learning process [12] given in
Figure 4, is used to construct the SPCE model. This process starts with an initial
DoE and gradually enriches it by adding new samples. A new SPCE model is created
each time after the DoE updated with new samples. This process is stopped when
some criteria are satisfied. This algorithm is more efficient than the metamodel
training based on a single DoE and can give accurate estimate on the Pf.

Start
v

Generate an initial DoE @ and evaluate the model
responses using a deterministic mode|

o Reduce the input dimension
High dimension? (® using SIR (©) with the current
DoE and its model responses
No
topping condition 2 ¢

Yes

Construct an SPCE @ model

topping condition 1 (©

No

L___|Select the most informative samples 9 from| | Perform an MCS with the finally

a candidate pool (") and update thw SPCE model
End

Figure 4.
An active learning process for the PCE model construction.
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Figure3 1. The procedure of Figure 4 is followed to create an SPCE model

2. For independent RVs, the Sobol index is used
For correlated RVs, the Kucherenko index is used

3. The RFs are generated by the KLE
Conditional RFs can be used if knowing the measurements’ locations

4. The SIR is used to reduce the input dimension
An SPCE is created in the reduced space

Figure 4 a. The size N;,; of the initial DoE is: max [12, M]
M: input dimension
Latin Hypercube Sampling (LHS) is used for generating samples

b. There is no standard value to check if the problem is high dimensional or not. For the
SPCE model, it can easily handle 10-20 RVs. It is thus better to reduce the dimension if
M > 20 or 30.

c. An important parameter in the SIR is the slice number N,
10 < Nsir < 20 for the cases with several hundred RVs [9]
20 < Nsir < 30 when the number of input RVs is several thousands

d. The algorithm presented in [9] is used to create an SPCE
The SPCE optimal order is determined by testing in a range

e. Stopping condition 1 measures if the accuracy indicator Q? of the constructed SPCE
model is higher than a target value Q7.

f. Stopping condition 2 evaluates the convergence of the Pf estimation by computing an
error Err,,, which is the maximum value of the relative errors calculated from all the
possible pairs in a vector. The vector consists of the N, last Pf estimates in the adaptive
DoE process. The condition will be satisfied if Errc,, is lower than a given value Err;.

g. N4 samples are selected by using the strategy of [12].

h. An MCS population is generated using the LHS as a candidate pool

i. DokE is updated by adding the new samples and their model responses

Table 1.
Details remarks to some specific features of Figures 3 and 4.

The second stage aims to consider the spatial variation of the concerned properties
which are ignored in the previous stage. It can thus provide a more precise Pf
estimate in a second (final) design phase. The new data collected in the new site
investigation can be incorporated in this stage in order to update the uncertainty
modeling. The GSA results of the first stage can be used to reduce the number of the
properties that should be modeled by RFs. The probabilistic analysis becomes a high
dimensional problem in this stage due to the RF discretization. As a result, only the
MCS is used since the other two methods have difficulties of handling a large number
of input RVs (high dimension). The SPCE coupled with the adaptive DoE process is
also used at this stage in order to accelerate the MCS. Particularly, a dimension
reduction technique - Sliced Inverse Regression (SIR) [9] is used to reduce the input
dimension. The SIR is based on the principle that a few linear combinations of
original input variables could capture the essential information of model responses.
Table 1 gives a summary of the specific remarks to Figures 3 and 4.

4. Application to an embankment dam example

This section shows an application of the proposed framework to an embankment
dam stability problem. The dam initially proposed and studied in [5, 13] is selected
for this application.
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4.1 Presentation of the studied dam and deterministic model

The studied dam is given in Figure 5. It has a width of 10 m for the crest and a
horizontal filter drain installed at the toe of the downstream slope. The soil is
assumed to follow a linear elastic perfectly plastic behavior characterized by the
Mohr Coulomb shear failure criterion. In this work, the dam stability issue will be
analyzed by considering a constant water level of 11.88 m and a saturated flow.
Additionally, a horizontal pseudo-static acceleration of 2.16 m/s* toward the down-
stream part is applied on the dam body. This value represents a relatively high
seismic loading and is determined by referring to the recommendations given in
[14] for a dam of category A with a soil of type B.

Concerning the input uncertainty modeling, three soil properties (density y,
effective cohesion ¢’ and friction angle ¢') of the compacted fill are modeled by
lognormal RVs or RFs. The illustrative values for the distribution parameters and
autocorrelation distances are given in Table 2. The uncertainties in the soil hydrau-
lic parameters are not considered since the variation of the dam phreatic level in the
downstream part is not significant due to the presence of the filter drain. The mean
values are taken from a real dam case reported in [10] and the selected CoVs are
consistent with the recommendations give in [3]. A correlation coefficient of —0.3 is
considered between ¢’ and ¢’ since it usually exists a negative correlation between
these two properties and the correlation coefficient is varied with a range of [-0.2,
—0.7] [5]. The L, is assumed to be significantly larger than L, since embankment
dams are constructed by layers and the spatial variation of material properties is less
remarkable in the horizontal direction than the vertical one. The other soil proper-
ties are considered as deterministic by using the values given in [5].

The deterministic model used in this work for estimating the dam FoS is devel-
oped by using the idea of [13]. It combines three techniques: Morgenstern Price
Method (MPM), Genetic Algorithm (GA) and a non-circular slip surface generation

Backfill
Drain
(55 Foundation

16

10

Figure 5.
Geometry of the studied dam (g: gravity acceleration).

Soil property Distribution Mean CoV Correlation coefficient L, (m) L, (m)

7 (kN/m?) Lognormal 19.8 5% 40 8

¢ (kPa) Lognormal 8.9 30% -0.3 40 8

¢’ (degree) Lognormal 34.8 10% 40 8
Table 2.

Distribution pavameters and autocorrelation distance for v, ¢’ and ¢'.
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method. MPM is employed to compute the FoS of a given failure surface; GA aims
at locating the most critical slip surface (i.e., minimum FoS) by performing an
optimization work; The implementation of non-circular slip surfaces can lead to
more rational failure mechanics for the cases of non-homogeneous soils. The prin-
ciple of the model is to firstly generate a number of trial slip surfaces as an initial
population, and then to determine the minimum FoS value by modeling a natural
process along generations including reproduction, crossover, mutation and survi-
vors’ selection. The distribution of the pore water pressures inside the dam is given
by a numerical model [5]. In this work, the developed deterministic model is termed
as LEM-GA. Using a simplified deterministic model (e.g., LEM-GA) is beneficial for
a reliability analysis since it can reduce the total computational time. This strategy
can thus be adopted in a preliminary design/assessment phase for efficiently
obtaining first results. Then, a sophisticated model (e.g., Finite element model) is
required in a next phase if complex conditions should be modeled (e.g., rapid
drawdown and unsaturated flows) or multiple model responses (e.g., settlement
and flow rate) are necessary.

4.2 First stage: RV approach

This section shows the conducted works at the first stage of the proposed
framework and presents the obtained results. The RV approach is used in order to
have a quick estimate on the dam reliability and the contribution of each input
variable. The joint input PDF is defined by the mean, CoV and f,, of the three soil
properties given in Table 2. Three probabilistic analyses (MCS, FORM, and GSA)
are performed with a surrogate model, also known as meta-model, in this stage so
that a variety of useful results can be obtained.

Firstly, an SPCE surrogate model is constructed as an approximation to the
model LEM-GA. It is achieved by using the procedure of Figure 4 with the follow-
ing user-defined parameters: Qt2 =0.98; Erry = 0.1; Np=10; N,y; = 1; N;,; = 12;
the size for the MCS candidate pool is large enough so that the estimated Pf has a
CoV lower than 5%. The finally obtained SPCE is a 3-order model with a Q2% of 0.99.
Twelve new samples, determined by the active learning process, are added to the
initial DoE which corresponds to a total number of model evaluation (N, ) of 24.
Then, the SPCE model is respectively coupled with MCS, FORM and GSA in order
to provide different results. As a meta-model is usually expressed analytically, the
SPCE-based analyses are thus very fast. Therefore, the main computation burden of
the first stage lies in constructing a satisfactory SPCE model. In this work, only 24
deterministic calculations are performed for the construction, representing a sig-
nificant reduction in N,,, compared to direct MCS, FORM and GSA which require at
least tens thousands of model evaluations. This shows the main advantage of the
first stage in the proposed framework: benefiting from the computational efficiency
of a meta-model and providing a variety of useful results.

Figure 6 presents the results provided by the SPCE-aided MCS with Nyc = 10°.
According to the obtained 10° FoS values, its PDF and CDF can be plotted. The PDF
shows that the dam possible FoS under the current calculation configuration mainly
varies between 1 and 1.6 with a mean (up,s) of 1.285 and a standard deviation (cg,s)
of 0.137. Giving the CDF allows approximately estimating the probability of getting
a FoS lower than any threshold. Then, the dam Pf is obtained by computing the
ratio between two numbers: N r and Ny;c with N ¢ representing the number of the
FoS values lower than 1 (i.e., failure). Figure 7 presents the results obtained by the
SPCE-aided FORM and GSA. The FORM is an approximation method by the fact
that it assumes a linear expansion tangent to the LSS at P* for the Pf estimation.

10
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Figure 6.
PDF and CDF of the FoS values obtained in the first stage.

The advantage of the FORM is that it is able to give many results in terms of
reliability index (fy; ), design point, partial safety factor (FoS) and importance
factor of each variable. The design point represents the most probable failure point
in the FORM context, and can be used together with the partial FoS to guide a
deterministic analysis on the same problem. The GSA aims to quantify the contri-
bution of each soil property, modeled by RV, with respect to the dam FoS variance.
The results permit to make a rank of all the variables according to their importance
as shown in Figure 7. The Kucherenko index is used here for the GSA since there
exists a correlation between the input variables. The total effect index considers
both the independent impact of one variable and its correlation effect with other
variables. According to Figure 7, it is observed that the variable ¢’ is dominant for
the FoS variation under the current probabilistic input configuration (Table 2).

1 T T T

I importance factor by FORM
N First Order index by GSA
[ ITotal effect index by GSA

0.8 _
Results by FORM
o3 By 2.35
208 Pf:  9.35x10° 1
2 5 g o
= esign
= : 282 75 199
% 04 Point 1
Partial
w
FoS 1.24 1.19 1.01
0.2 y

@' c' ¥

Figure 7.
GSA and FORM results of the dam in the first stage.
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The variable ¢’ has also a noticeable contribution while the y effect is very slight. It
should be noted that the importance factor (FORM) and the sensitivity index (Sobol
or Kucherenko -based GSA) are different between each other. The former measures
the contribution of a RV with respect to the failure while the latter quantifies the
importance of a RV regarding the Qol variation. Additionally, the importance factor
by FORM holds only for the case with independent RVs. The related results are still
given in Figure 7 in order to have a rank and to compare with the GSA estimates.

In summary, this stage provides a first estimate on the dam Pf which can be used
to evaluate the design of a new dam or the safety condition of an existing dam. The
other information, such as the FoS statistics and design points, are also helpful for
this first evaluation. The sensitivity analysis results permit to know the contribution
of the considered soil properties and treat their uncertainties with different ways in
a next verification/design phase.

4.3 Second stage: RF approach

The second stage of the proposed framework is to consider the soil spatial
variability by RFs and obtain a more precise Pf estimate. According to the results of
the first stage, the effect of the variable y is almost negligible for the dam failure or
the FoS variance. Therefore, it is reasonable to only model ¢’ and ¢’ by RFs and keep
representing y by RVs in the second stage. This can make the analysis of this stage
simpler and faster given that generating RFs and mapping them to a model require
extra computational efforts. Besides, the input dimension can be reduced compared
to considering three RFs (¢/, ¢, and y) for each simulation since there is no need to
do the y discretization. In this stage, the ¢’ and ¢’ are modeled by cross-correlated
lognormal RFs using the parameters of Table 2, while the y is treated as same as the
previous stage.

The first step in this stage is to determine the truncation term number Ng;, once
the necessary probabilistic parameters (mean, CoV, L, and L,) are defined. It can be
achieved by evaluating the truncation error of a KLE RF evaluated by Eq. (10) with
a target accuracy. In this work, the Ng;, is determined for a ex;, lower than 5%.

0.4 . . . .

RF error
(o]
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==
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Figure 8.
RF truncation ervor and example of the generated RFs.
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Figure 8 plots the ex;, against the Ng;, and finally a Ng;, = 125 is adopted for the case
of Ly = 40m and L, = 8m (Table 2). Then, the input dimension for the reliability
analysis in this stage is 251 since two RFs (¢’ and ¢') and one RV (y) should be
considered for each simulation. In Figure 8, an example of the ¢’ RF generated by
the KLE with the pre-defined parameters is illustrated. It can be seen that ¢’ varies
more significantly in the vertical direction that the horizontal one.

The second step is to create an SPCE model to replace the LEM-GA coupled with
RFs. The active learning process of Figure 4 is followed for the SPCE training with
the user-defined parameters given as: Qt2 = 0.98; Erry = 0.15; Nyp=5; Ny = 2;

Niy; = 251; the size for the MCS candidate pool is large enough so that the estimated
Pf has a CoV lower than 5%. Additionally, the input dimension is reduced by using
the SIR a priori the SPCE construction at each iteration with the current DoE. This is
because that the considered reliability analysis is a high dimensional problem which
has 251 input RVs. Directly training an SPCE with the original input space will
require a large size of DoE and may lead to a less accurate meta-model. By
performing an SIR with a slice number of 20, the input dimension is reduced from
251 to 19. Then, it is possible to create an SPCE model with respect to the 19 new
RVs using an acceptable size of DoE (e.g., several hundred). At the end, the
obtained SPCE is a 2-order model with a Q? of 0.99. The final size of the DoE is 423
which means that 172 new samples are added in the adaptive process in order to
improve the SPCE performance in estimating the dam Pf.

The last step is to perform an MCS with the determined SPCE model. The
obtained results are presented in Figure 9. The dam FoS mainly varies between 1.1
and 1.5 with a mean of 1.276 and a standard deviation of 0.102. The dam Pf is
estimated as 6 x 10~ *. Compared to the analysis of the first stage, the current
analysis leads to a clearly reduced op,s corresponding to a narrower variation range
as shown by the PDF. The dam Pf is also decreased by around one order of
magnitude. The comparison between Figures 6 and 9 indicate that using RFs
instead of RVs to model the soil variabilities can reduce the FoS uncertainty and
provide a lower Pf estimate. Although considering the soil spatial variability
requires extra computational efforts for RFs generation and makes the reliability
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Figure 9.
MCS results of the dam obtained at the second stage.
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analysis more complex, it is worthy to do so since a more precise Pf estimate can be
obtained and can lead to a more economic design. A detailed explanation about the
Pf decrease from the RV to RF approach will be given later.

4.4 Parametric analysis

It needs in some cases to perform a series of parametric analyses. The objective is
to evaluate the effects of some parameters which are difficult to be precisely quan-
tified due to the lack of enough measurements. The physical range recommended in
literature for the concerned parameters can be used to define some testing values. In
the proposed framework, the computational burden for conducting such parametric
analyses is acceptable since the use of the SPCE model significantly reduces the
consuming time of one probabilistic analysis. In this work, the effects of two
parameters on the dam reliability are investigated: the cross-correlation between ¢’
and ¢’ (B.4) and the vertical autocorrelation distance (L;). In the reference case
(Table 2), the f3; is assumed to be —0.3. In this section, two testing values
(0 and — 0.6) are selected for the 3, to check its influence: §, = O represents
independent input RVs while 3., = — 0.6 is a strongly correlated case. Then for the
L,, two values (40 and 3 m) are adopted as two complementary cases to the
assumed L; in the reference case (8 m). L; = 40 m leads to isotropic RFs given that
L, is also 40 m and represents a relatively homogenous soil, while L, = 3 m allows to
consider a soil significantly varying along depth. The L, is assumed to be constant
with 40 m in this case. Such an assumption is based on the fact that embankment
dams are usually constructed by layers leading to highly correlated soil properties in
the horizontal direction if the construction materials are well selected. Table 3 gives
a summary of all the cases considered in this section. Case 1B and 2B in this table
refers to the reference case which is performed respectively in the first and second
stage of the previous sections. In the RV approach, the soil is assumed to be
homogenous which means that the values of different locations in this field are
perfectly correlated. Therefore, this approach corresponds to an infinite L, and L.
The input dimension in Table 3 means the number of input RVs for each case. The
dimension is 3 for all the cases with the RV approach which represents the three soil
properties (7, ¢ and ¢'). For the RF approach, the dimension is related to the
truncation term Ng;, as determined in Figure 8. The Ng;, should be increased if
smaller L, or L, are considered. In other words, it means than an accurate repre-
sentation of a RF with small autocorrelation distances requires more RVs.

Figure 10 presents the obtained results of the parametric analysis (1A, 1B, and
1C) for the f,; effect. The SPCE is used for the meta-model construction and it is
coupled only with MCS since the focus here is to estimate the dam Pf. From this
figure, it is observed that the FoS PDF becomes taller and narrower when the 3, is

Case Approach Distribution parameters f, L. (m) L. (m) Inputdimension

Pey 1A RV Table 2 0 oo 00 3
Bffect  1p RV Table 2 —03 o c 3
1C RV Table 2 -0.6 oo o0 3
L, Effect 2A RF Table 2 —-0.3 40 40 61
2B RF Table 2 —-0.3 40 8 251
2C RF Table 2 -0.3 40 3 621
Table 3.

The analyses conducted in this section.
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decreased from 0 to —0.6. The PDF of the independent case leads to the most
scattered FoS values. Consequently, the dam Pf estimate, being the tail probability
of a distribution, is decreased from Case 1A to 1C. The Pf decrease corresponds to a
change of one order of magnitude when f,,, is reduced from 0 to —0.6. Considering
a negative cross-correlation between ¢’ and ¢’ can reduce the total input uncer-
tainty. Therefore, the output variance can also be reduced given that these two
properties are dominant for the FoS variation according Figure 7. Additionally, the
number of small FoS values is decreased since a negative f3; can partially avoid
generating a small value for both ¢’ and ¢’ in one simulation, which then leads to a
lower Pf.

Figure 11 shows the results for the investigation on the L, effect. The results of
Case 1B are presented as well in this figure which permits a comparison between the
RV and RF approach. The SPCE-aided MCS is used by following the algorithm of
Figure 4 to perform the reliability analysis. Particularly, the input dimension is
reduced by using the SIR each time before the SPCE construction because the three
considered cases (2A, 2B, and 2C) are high dimensional problems due to the RF
discretization as shown in Table 3. It can be observed that the FoS PDF is taller and
narrower with decreasing the L.. This means that a smaller L, can lead to a FoS with
less uncertainty. As a result, the tail probability of the distribution (Pf) is also
decreased from Case 2A to 2C with a change of two orders of magnitude showing
that the L, effect is remarkable on the dam Pf. The RV approach provides the most
scattered FoS distribution and the highest Pf. A possible explanation for these
findings is given as below. Two RFs for respectively Case 2A and 2C are generated
and presented in Figure 12 in order to help the following interpretation. A large L,
or L, value means a great probability of forming large uniform areas as shown in
Figure 12 (upper part). The global average of the field could be low, medium or
high which means a large variation for the global average among different realiza-
tions of RFs. The global average is partially related to the estimated FoS so the latter
could also have a large variation as evidenced in Figure 11. Then, the Pf is higher
since it is the tail probability of a distribution. On the contrary, for the case with a
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Figure 10.
Comparison of the PDF and Pf by considering different .
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Comparison of the PDF and Pf considering different L.

Figure 12.
Example of the RFs generated in Case 2A and 2C.

low L, or L, value, there are probably some relatively higher values generated close
to the area with low values and vice versa. As a result, the global average varies in a
narrower range also the FoS, so the Pf is lower. Additionally, the failure surface
seeks the weak areas, so it is in general longer and less smooth when L, and L, are
small. For a long and rough slip surface, more energies are required for its move-
ment which means a relatively high FoS. Therefore, the Pf is lower with small L,
and L,. As these two parameters are assumed to be infinite in the RV approach, the
largest uncertainty in the FoS and the highest Pf are obtained.
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5. Discussions
5.1 Validation of the surrogate-based results

The proposed framework is based on the metamodeling to perform a probabi-
listic analysis. Therefore, the key element of the proposed framework is to create an
accurate SPCE model which can well replace the original computational model. In
the next paragraph, two recommendations are given for a good metamodeling.

Firstly, it is recommended to use a space-filling sampling technique (e.g., LHS)
to generate samples from a given PDF for the initial DoE and the MCS candidate
pool. This allows generating a set of samples which can reasonably cover the input
space. The LHS is also faster than a purely random sampling technique for the result
convergence in an MCS. Secondly, an active learning process, such as the one of
Figure 4, is highly suggested for the SPCE construction. The process is stopped only
if stable Pf estimates are reached and the added samples in this process are those
which can improve the SPCE performance in predicting failures. Therefore, one can
have more confidence on the obtained Pf estimate by using this process. Besides,
the DoE is gradually enriched until the stopping conditions are met. As a result, the
size of the DoE can be automatically determined, and the issue of overfitting may be
avoided.

Concerning the validation of the constructed surrogate model, three solutions
are provided here. The first one is to use the available results in the DoE to compute

an accuracy indicator for the meta-model, such as the Q? in the PCE. The Q* is
obtained by the leave-one-out error which is a type of the k-fold cross validation
techniques. The advantage of this solution is that no complementary model evalua-
tions are required, and the current DoE is fully explored. Then, the second solution
is to use a validation set in which new samples, not covered in the current DoE, are
generated and evaluated by both the surrogate and deterministic models. The pre-
dictions made by the two models for the new samples can be compared in order to
check the accuracy of the obtained meta-model. The new samples can be obtained
randomly by the LHS or selected close to the LSS so that the meta-model capacity in
classifying safe/failure samples is then verified. The third solution involves
performing a direct MCS, FORM or GSA to validate the results obtained by the
surrogate-aided analyses. Obviously, this solution requires a huge computational
effort if a direct MCS or GSA should be conducted which means that no surrogate
model is used, and MCS/GSA is directly coupled with the original computational
model. Therefore, it is not an applicable solution for all cases. It could be effective
when a series of analyses are performed so a direct MCS can be used to validate one
analysis.

In this section, the third validation solution is adopted since some parametric
analyses are carried out and the employed deterministic model (LEM-GA) is not too
time-consuming. Two cases (1B and 2A) are selected for the validation and are
analyzed by a direct MCS in this section. The Ny in the direct MCS is determined
so that the CoVpr is around 10%. Figure 13 compares the FoS PDF of the two
analyses obtained by the two methods (SPCE-aided MCS and direct MCS). It clearly
shows that the two PDF curves of the two methods are almost superposed with each
other for both the two cases. This indicates a good approximation of the SPCE to the
original model.

Table 4 gives a detailed comparison between the two methods in terms of Pf,
FoS statistics and computational efficiency. It is found that the Pf of SPCE-MCS is
close to the reference result (direct MCS) with an error lower than 6% for both the
two cases. The 95% confidence bounds of the Pf estimates are also given in this
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Figure 13.
Comparison of the PDF provided by the two methods.
Case Method Pf (x1073) FoS Computational efficiency
Mean LOW(I) UP(I) Hros O¥oS Ny T
1B Direct MCS 7.50 6.07 8.93 1.29 0.14 14,000 25 hours
SPCE-MCS 7.94 7.39 8.49 1.28 0.14 24 3 minutes
2A Direct MCS 2.80 2.25 3.35 1.28 0.12 35,000 63 hours
SPCE-MCS 2.84 2.69 2.99 1.28 0.12 131 25 minutes

@959 confidence bounds of the Pf estimate.

Table 4.
Comparison of the veliability vesults and computational efficiency provided by the two methods.

table. If the MCS size is large enough, the estimated Pf can be approximated by a
normal distribution which makes the confidence bounds to be available. It is found
that the Pf confidence bounds of SPCE-MCS are covered by the ones of the direct
MCS. In a surrogate-aided reliability analysis, it is acceptable to largely increase the
MCS size in order to obtain a small CoVpr. However, much more computational
efforts are required in the direct MCS if its size should be enlarged, so a CoVps of
around 10% is adopted in this work. This finding and argument mean that a precise
Pf with a small CoVprcould be easily obtained using the proposed framework. Then,
for the FoS statistics, the two methods show a good agreement between each other.
This is not surprising since the two methods provide closely similar FoS distribution
as evidenced in Figure 13. Concerning the computational efficiency, two terms are
presented in Table 4 for a comparison: N,,, (number of deterministic model evalu-
ations) and T, (total computational time). The T, is evaluated in a computer
equipped with an CPU of Intel Xeon E5-2609 v4 1.7 GHz (2 processors). It is
observed that the N,,, is significantly reduced by using the SPCE compared to a
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direct MCS (e.g., from 14,000 to 24 for Case 1B), corresponding to a considerable
reduction in the T}, (from 25 hours to 3 minutes). Due to the computational
efficiency of the SPCE-aided MCS, it is then possible to carry out some parametric
analyses in order to investigate the effects of some parameters in a probabilistic
framework. The necessary size of the DoE to construct a satisfactory SPCE model is
dependent of the input dimension. In general, a higher dimension requires more
model evaluations for the SPCE training.

5.2 Practical applications

This section provides a discussion on some issues of a probabilistic analysis. The
objective is to help engineers to better implement the proposed framework into
practical problems.

5.2.1 Probabilistic analysis tool

Probabilistic analysis has received much attention during the last decade in
literature. However, it is still not widely applied in practical engineering problems.
One major reason which hinders its application in practice is the complexity of
performing a probabilistic analysis including understanding/programming a reli-
ability method, RF generation and couple them with a deterministic model. This
problem is being addressed in recent years with the establishment of many proba-
bilistic analysis tools. A variety of reliability/sensitivity methods are available in
these tools and can be linked with a computational model developed in a third-party
software. Examples of these tools include UQlab in Matlab and OpenTURNS in
Python. A review of the structural reliability analysis tools can be found in [15].
Using a well-checked tool to perform the probabilistic analysis of practical engi-
neering problems can also avoid personal programming mistakes which could lead
to inaccurate results.

5.2.2 Reliability method selection

The proposed framework is based on the SPCE surrogate model. The SPCE is
adopted since it has been widely and successfully used in many studies of geotech-
nical reliability analysis [9, 13, 16]. Some techniques were proposed to be coupled
with SPCE in order to efficiently consider the cases with RFs [17], so the SPCE can
also handle high dimensional stochastic problems. However, the proposed frame-
work is not limited to the SPCE. It can be updated by using another metamodeling
technique (e.g., Kriging and Support Vector Machine) with some necessary modi-
fications. Besides, for estimating a very low Pf (e.g., <107°), the SPCE-aided MCS
could be time-consuming given that generating a great number of samples (e.g.,
Npc>10%) and operating them requires a big memory in a PC. To tackle this
problem, the SPCE can be coupled with other reliability methods in order to allevi-
ate the computational burden. The Subset Simulation (SS) [6, 18] is a good choice to
replace the MCS for the above-mentioned case, because SS is independent of the
input dimension and LSS complexity.

5.2.3 Parameter selection
This chapter focuses on presenting the proposed framework and showing its

application to a dam problem. The soil variability modeling is not explained in
detail. How to properly describe the soil uncertainties by using a limited number of
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measurements is also an important element for geotechnical probabilistic analysis in
practice. Some studies on this topic can be found in [10, 11]. In this chapter, the
effects of two parameters (S, and L.) on the dam reliability are discussed by
performing two parametric analyses. Both of them have a significant influence on
the dam Pf which is decreased with decreasing f3,, or L. It seems then logical to use
higher values (e.g., f.4,=0 and L,=40 m) in order to obtain conservative results if
their values cannot be precisely quantified. Attention must be paid for the selection
of L, or L, because some recent studies [19] demonstrate that it may exist a worst L
or L, which can lead to the highest Pf. Therefore, it is advised to perform a
parametric analysis on these parameters in order to avoid unsafe designs.

5.2.4 Extension of the proposed framework

The illustrative example in this chapter is based on the stability problem of a
homogeneous embankment dam. The proposed framework can also be easily
extended to perform the probabilistic analysis of other problems in dams engineer-
ing (rapid drawdown, erosion and settlements) by using an appropriate determin-
istic model and well determining the input uncertainties. Then, the proposed two
stages of RV and RF can be conducted in a hierarchical way. For embankment dams
with an earth core or multiple soil layers, the uncertainties should be separately
modeled for each zone using different RVs or RFs [17]. It is also important to
consider the correlation between the variable properties of different zones by ana-
lyzing the available measurements. In case of not enough data, a parametric analysis
is recommended in order to have an idea of the unknown correlation structure
effect. As embankment dams are artificial rock-filled or earth-filled structures
constructed with a careful control, uncertainties at the zone boundaries can be
considered as negligible. In natural soils, where stratigraphic boundary uncertainties
are expected to exist, the related effects will be noticeable and should be considered.

6. Conclusion

This chapter introduces a framework for the probabilistic analysis of embank-
ment dams. The proposed methodology can also be used for other geotechnical
works. The RV and RF approaches are both considered in the framework,
corresponding two probabilistic analysis stages. In the first stage, the RV approach
is used within three probabilistic techniques (MCS, FORM, and GSA) in order to
efficiently provide multiple results which could be beneficial for evaluating a design
and guide a further site investigation or a further analysis. The second stage intro-
duces RFs for the purpose of accounting for the soil spatial variability and giving a
more precise Pf estimate. The metamodeling technique, SPCE, is used in both the
two stages aiming to alleviate the total computational burden. Particularly, an active
learning process is adopted to construct the required SPCE model. This can further
reduce the calculation time of a probabilistic analysis and improve the SPCE accu-
racy in estimating Pf. The proposed framework is applied to an embankment dam
stability problem. A variety of interesting results for the dam considering the soil
uncertainties are obtained. The results include the Pf, FoS statistics/distribution,
sensitivity index of each soil property, design point and partial safety factors. The
provided results (Pf and FoS values) are validated by comparing with a direct MCS.
The validation also highlights the efficiency of the introduced reliability method
which can reduce the total computational time from several days to less than 1 hour
for the two considered cases.
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