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Chapter

Discrete Vortex Cylinders Method
for Calculating the Helicopter
Rotor-Induced Velocity
Evgeny Nikolaev and Maria Nikolaeva

Abstract

A new vortex model of a helicopter rotor with an infinite number of blades is
proposed, based on Shaidakov’s linear disk theory for calculating inductive speeds
at any point in space in the helicopter area. It is proposed to consider the helicopter
rotor and the behind vortex column as a system of discrete vortex cylinders. This
allows building a matrix of the influence of the vortex system under consideration
on any set of points, for example, the calculated points on the rotor itself, on the
tail rotor, etc. The model allows calculating inductive velocities at any point near
the helicopter using matrix multiplication operation. It is shown that the classical
results for the momentum theory remain constant even in the discrete simulation
of the helicopter rotor vortex system. The structure of the air flow behind the
rotor and the simulation results obtained by the proposed method is compared
with the structure of the tip vortices and the results of the blade vortex theory.
In addition, the experimental data were compared with the simulation results to
verify the correctness of the model under real operating conditions by the
helicopter trimming.

Keywords: induced velocity, intensity of circulation, discrete vortex cylinder,
influence matrix, Shaidakov’s linear disk theory

1. Introduction

The character of the load distribution on the disk rotor vortex theory affects
induced velocity. In turn, the inductive flow is the most important factor affecting
the value of the inductive losses, as well as forces and moments acting on the
helicopter’s rotor. Therefore, the efforts of many authors are aimed for creating
theories and methods for the simplest way to calculate the induced-velocity field,
without which it is impossible to calculate the determination of the aerodynamic
characteristics of the rotor.

In conditions of low velocities, induced-velocity field is particularly irregular.
This leads to significant changes of aerodynamic forces acting on the blade. The
blades begin to oscillate with higher amplitudes, causing significant variable
tensions inside blades.
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1.1 Coordinate systems of the vortex cylinder

The properties of a cylindrical vortex surface are considered in detail by
Shaidakov [1]. He analytically investigated the properties of a vortex surface that
completely covers a beveled vortex surface. Shaidakov studied a vortex surface that
starts from a disk plane, has an arbitrary shape in section, and pointed with its one
end to infinity. Vortices on the surface are parallel to the base of the cylinder, which
lies in the plane of the beginning of the vortex cylinder. When applied to the rotor
disk of a helicopter, it is more appropriate to consider not an arbitrary shape of the
vortex surface, but a very specific shape, the cross section of which is shown in
Figure 1. The disk plane is filled with closed contours formed on two sides by arcs of
circles and on the other two sides by radial segments. The number of closed con-
tours depends on the number of calculated points along the blade and the number of
points along the azimuth. However, the shape of closed contours remains the same.

To study the velocity field caused by a discrete vortex cylinder, we will select
two typical sections of it. One section is located at the beginning plane of the vortex
cylinder (lies in the plane of the screw disk); the other is parallel to it and intersects
the cylinder at an infinite distance from the first plane. The sections of the cylinder
with these planes are conventionally designated 1-1 and 2-2, respectively.

It is convenient to calculate induced velocities in the coordinate systems Oxyz
(Ox1y1z1) shown in Figure 2. The vortex cylinder is tilted from the axis Oz(Oz1) by
the inclination angle of the vortex cylinder δ. It is easy to see that the induced-
velocity calculated point is always located in a plane parallel to the disk plane, and
the projection of the vortex cylinders on this plane is a disk with a radius equal to
the radius of the rotor. The origin of the coordinate system Oxyz (Ox1y1z1) is always
located in the center of this disk.

The right rectangular coordinate system Oxyz is used to record the components
of the induced velocity vx, vy, vz. The right-linked coordinate system Ox1y1z1 with
guide orts e1, e2, e3 is used to calculate the components of the induced velocity
vx1 , vy1 , vz1 . The axis Ox1 and Oz1 coincides with the axes Ox and Oz. The axis Oy1 is

Figure 1.
Scheme for splitting the disk into discrete vortex cylinders.
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the axis of the cylinder and is inclined to the axis Ox1 at an angle δ. In both systems,
the base plane Oxz (Ox1z1) is parallel to the plane of the vortex cylinder and
contains the induced-velocity calculated point A. The left skew coordinate Oryψ
system is derived from the Ox1y1z1. The left oblique cylindrical coordinate system
Oryψ is obtained by moving the origin to a point A. It is used to bring contour
integrals to a form that is convenient for integration.

The last two axis systems are most convenient for deriving equations of the
vortex cylinder surface. It is enough to know the distance h along the axis Oy1 from
the base plane of the vortex cylinder and the equation of the projection of the
cylinder base on the base plane.

The ratio of induced-velocity’s components in systems Oxyz and Ox1y1z1 is
determined by the following dependencies

vx ¼ vx1 þ vy1 cos δ;

vy ¼ vy1 sin δ;

vz ¼ vz1 :

(1)

These component interdependences are true for any vector [3].

In the accepted coordinate system Ox1y1z1 for an arbitrary pair of vectors a, bwe
find a vector product с and a scalar product ab

cx1 ¼
1

sin δ

ay1 az1
by1 bz1

�

�

�

�

�

�

�

�

�

�

þ cos δ
ax1 az1
bx1 bz1

�

�

�

�

�

�

�

�

 !

; (2)

Figure 2.
Coordinate system of the vortex cylinder with arbitrary form [2].
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cy1 ¼
1

sin δ

ax1 az1
bx1 bz1

�

�

�

�

�

�

�

�

þ cos δ
ay1 az1
by1 bz1

�

�

�

�

�

�

�

�

�

�

 !

; (3)

cz1 ¼ sin δ
ax1 ay1
bx1 by1

�

�

�

�

�

�

�

�

�

�

; (4)

ab ¼ ax1bx1 þ ay1by1 þ az1bz1 þ ax1by1 þ ay1bz1
� �

cos δ: (5)

The modulus of the vector a is calculated by the formula (Eq. (5))

a ¼
ffiffiffiffiffi

aa
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2x1 þ a2y1 þ a2z1 þ 2ax1ay1 cos δ
q

: (6)

The projection of the vector c on the axis of the cylinder is denoted c0. Then,
using (Eq. (6)), we will have

c0 ¼ c � e2 ¼ cy1 þ cx1 cos δ: (7)

1.2 Components of the induced-velocity vector at any point in area around the
rotor

Let us consider a certain part of a cylindrical vortex surface, with the beginning
at the plane of the disk, bounded on two sides by two generatrices and leaving the
other side to infinity (Figure 2). The beginning of the generatrices is denoted by the
point’s m and n. Select a vortex element ds with circulation dΓ at any point
M ξ, η, ζð Þ in the vortex surface:

dΓ ¼ γdη, (8)

where γ is the running circulation in the direction of the cylinder generatrices.
We will calculate the induced velocities from this element at the point

A x1, 0, z1ð Þ using the formula of Biot-Savart

d2v ¼ dΓ

4π

ds� l

lj j3
, (9)

where l is connecting the point A to the point M vector; ds is a vortex element
represented as a vector. The sign of circulation dΓ (or γ) is determined by the
direction of the vector ds. A positive value corresponds to a positive direction in the
accepted coordinate system. When calculating the inductive effect from the vortex
surface, the contour integral is calculated along the vortex lines. The positive direc-
tion of the contour traversal in the right coordinate system corresponds to the right
rotation, in the left coordinate system—to the left.

We express the vectors included in the formula (Eq. (8)) in terms of affine
coordinates

ds ¼ dξ e1 þ dζ e3; (10)

l ¼ ξ� x1ð Þe1 þ ηe2 þ ζ � z1ð Þe3: (11)

The modulus of the vector l is defined by the formula (Eq. (6))

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ� x12ð Þ þ η2 þ ζ � z1ð Þ2 þ 2 ξ� x1ð Þη cos δ
q

: (12)
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Calculate the components of the inductive velocity vectors from the vortex path
ds. For this purpose, it is necessary to define expressions for projections of the

vector product ds� l on the coordinate axis.

ds� l
�

�

x
¼ 1

sin δ

0 dζ

η ζ � z1

�

�

�

�

�

�

�

�

þ cos δ
dξ dζ

ξ� x1 ζ � z1

�

�

�

�

�

�

�

�

� ��

�

�

�

x

; (13)

ds� l
�

�

y
¼ 1

sin δ

dξ dζ

ξ� x1 ζ � z1

�

�

�

�

�

�

�

�

þ cos δ
0 dζ

η ζ � z1

�

�

�

�

�

�

�

�

� ��

�

�

�

y

; (14)

ds� l
�

�

z
¼ sin δ

dξ dζ

ξ� x1 ζ � z1

�

�

�

�

�

�

�

�

� ��

�

�

�

z

: (15)

After describing the determinants, we will have the following expressions for
induced velocities

d2vx1 ¼
γ

4π

dη

lj j3
1

sin δ
cos δ ζ � z1ð Þdξ� cos δ ξ� x1ð Þdζ � ηdζ½ �; (16)

d2vy1 ¼
γ

4π

dη

lj j3
1

sin δ
ζ � z1ð Þdξ� ξ� x1ð Þdζ � cos δηdζ½ �; (17)

d2vz1 ¼
γ

4π

dη

lj j3
η sin δdξ: (18)

Let us perform integration of formulas (Eqs. (16)–(18)) along the cylinder
creators

dvx1 ¼
γ

4π

1

sin δ

ð

∞

h

dη

lj j3
cos δ ζ � z1ð Þdξ� cos δ ξ� x1ð Þdζ � ηdζ½ �; (19)

dvy1 ¼
γ

4π

1

sin δ

ð

∞

h

dη

lj j3
ζ � z1ð Þdξ� ξ� x1ð Þdζ � cos δηdζ½ �; (20)

dvz1 ¼
γ

4π
sin δ

ð

∞

h

dη

lj j3
ηdξ: (21)

After the conversion, we will have

dvx1 ¼
γ

4π

1

sin δ
cos δ ζ � z1ð Þdξ

ð

∞

h

dη

lj j3
� cos δ ξ� x1ð Þdζ

ð

∞

h

dη

lj j3
� dζ

ð

∞

h

ηdη

lj j3

2

4

3

5 (22)

dvy1 ¼
γ

4π

1

sin δ
ζ � z1ð Þdξ

ð

∞

h

dη

lj j3
� ξ� x1ð Þdζ

ð

∞

h

dη

lj j3
� cos δdζ

ð

∞

h

ηdη

lj j3

2

4

3

5 (23)

dvz1 ¼
γ

4π
sin δdξ

ð

∞

h

ηdη

lj j3
(24)
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In formulas (Eq. (22)–(24)) we will denote by

J1 ¼
ð

∞

h

dη

lj j3
¼
ð

∞

h

dη

ξ� x12ð Þ þ η2 þ ζ � z1ð Þ2 þ 2 ξ� x1ð Þη cos δ
�

�

�

�

3
2

;

J2 ¼
ð

∞

h

ηdη

lj j3
¼
ð

∞

h

ηdη

ξ� x12ð Þ þ η2 þ ζ � z1ð Þ2 þ 2 ξ� x1ð Þη cos δ
�

�

�

�

3
2

(25)

Using the following formulas ρ2h ¼ ξ� x1ð Þ2 þ ζ � z1ð Þ2 and ξ� x1 ¼ ρh cos ϑ
converting integrals (Eq. (25))

J1 ¼
ð

∞

h

dη

lj j3
¼
ð

∞

h

dη

ρ2h þ η2 þ 2ρh cos ϑ cos δη
�

�

�

�

3
2

;

J2 ¼
ð

∞

h

ηdη

lj j3
¼
ð

∞

h

ηdη

ρ2h þ η2 þ 2ρh cos ϑ cos δη
�

�

�

�

3
2

:

(26)

Integrals (Eq. (26)) are table integrals and can be denoted by the following:

J1 ¼
1

ρ2h 1� cos 2δ cos 2ϑð Þ 1� hþ ρh cos δ cosϑ

lh

� �

; (27)

J2 ¼
1

ρh 1� cos 2δ cos 2ϑð Þ
ρh þ h cos δ cos ϑ

lh
� cos δ cos ϑ

� �

, (28)

where lh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2h þ h2 þ 2ρhh cos δ
q

.

Using the already known relationships cosϑ ¼ ξ� x1ð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ� x1ð Þ2 þ ζ � z1ð Þ2
q

converting the received formulas

J1 ¼
1

ζ � z1ð Þ2 þ 1� cos 2δð Þ ξ� x1ð Þ2
1� hþ cos δ ξ� x1ð Þ

lh

� �

; (29)

J2 ¼
1

ζ � z1ð Þ2 þ 1� cos 2δð Þ ξ� x1ð Þ2

ξ� x1ð Þ2 þ ζ � z1ð Þ2 þ h cos δ ξ� x1ð Þ
lh

� cos δ ξ� x1ð Þ
 !

,

(30)

where lh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ� x1ð Þ2 þ ζ � z1ð Þ2 þ h2 þ 2h cos δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ� x1ð Þ2 þ ζ � z1ð Þ2
q

r

.

Integrals were obtained for the first time by Shaidakov [3] and are referred to in
this chapter as Shaidakov’s integrals.

Now it is possible to get expressions for differentials of induced velocity’s com-
ponents on the axis of a coordinate system Ox1y1z1

dvx1 ¼
γ

4π

1

sin δ
ζ � z1ð ÞJ1 cos δdξ� ξ� x1ð ÞJ1 cos δþ J2½ �dζf g (31)

dvy1 ¼
γ

4π

1

sin δ
ζ � z1ð ÞJ1dξ� ξ� x1ð ÞJ1 þ cos δJ2½ �dζf g (32)
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dvz1 ¼
γ

4π
sin δJ1dξ (33)

We get the formula for the component of the induced velocity directed along the
vortex cylinder generatrices. We use the expression (Eq. (7))

dv0 ¼ γ

4π

1

sin δ
ζ � z1ð ÞJ1dξ� ξ� x1ð ÞJ1dζ � cos δJ2dζ½ �þ

þ γ

4π

1

sin δ
cos δ ζ � z1ð ÞJ1dξ� cos δ ξ� x1ð ÞJ1dζ � J2dζ½ � cos δ:

(34)

After simple transformations we get

dv0 ¼ γ

4π

1� cos 2δ

sin δ
ξ� x1ð ÞJ1dζ � ζ � z1ð ÞJ1dξ½ �: (35)

To calculate the velocity from a limited width vortex cylindrical surface, we
need to take the contour integral from the projection of this surface on the base
plane (the integral along the length of the arc s).

vx1 ¼
ð

s

dvx1 ; vy1 ¼
ð

s

dvy1 ; vz1 ¼
ð

s

dvz1 ; v0 ¼
ð

s

dv0: (36)

2. Discrete vortex cylinders method

The method of discrete vortex cylinders is based on the linear disk theory of
Shaidakov described above. It allows you to calculate the induced velocity from the
rotor at any point in the space around the rotor. Consider a main rotor with an
infinite number of blades [2]. Imagine a vortex system that descends from the rotor
in the form of a vortex column, starting at the plane of the disk and going to
infinity. The vortex column is supported by a circle with a radius equal to the radius
of the rotor. The angle of vortex column inclination to the disk plane depends on the
helicopter forward flight speed and the thrust of the rotor. It is calculated using the
Shaidakov formula for the angle of inclination of the vortex column.

Each partial volume of the vortex column can be considered as an elementary
column of dipoles with a constant density of circulation. Alternatively consider it as
an elementary vortex cylinder of arbitrary shape with a linear circulation of closed
vortices γ along the generatrix.

In case of the beveled cylinder filling with dipoles, to calculate the inductive
velocity from the entire vortex column, it is necessary to make integral sums from
the n number final volumes at n ! ∞ for the limit case. In this case, the area of the
base of the cylinder is divided into n number areas dσ1, dσ2, … , dσn. The area of the
cylinder base is divided into finite regions, and the entire vortex column is divided
into infinite volumes.

When filling a vortex column with vortex cylinders, the area of the base is filled
with closed contours of a specific shape (Figure 1), and the column is entirely filled
with vortex cylinders of linear circulation γ along the generatrix. The generatrices of
the vortex cylinders are parallel to the axis of the vortex column and inclined at an
angle δ to the plane of the disk (Figure 3).

We propose to consider a vortex column as a collection of a finite number of
vortex cylinders resting on the plane of the rotor disk. The plane of the disk is filled
with closed vortex contours on two sides by arcs of circles and on the other two
sides by radial segments (Figure 4). When the disk is split in this way the size of the
contours will depend on the number of calculated points along the blade radius and
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along the circumference of the rotor disk. In this case, the induced velocities will be
calculated at points located at the vortex cylinder’s axis, and outside the vortex
column at any point other than the vortex cylinders surface. This avoids computa-
tional difficulties when calculating contour integrals on the surface of cylindrical
columns. This point is indicated by a letter A [3]. We will also follow to this
designation.

To calculate the components of the inductive velocity at point A by the method
of discrete vortex cylinders we will use Shaidakov’s formulas (Eqs. (31)–(33), (35)),
derived for a discrete vortex cylinder (Figure 4).

We assume that the circulation along the contour and along the generatrix of
each discrete vortex cylinder is constant. Then in formulas (Eq. (36)) it is possible
to take the linear circulation γ as an integral and calculate the induced velocities
from the vortex cylinder of the unit circulation, integrating along four segments of
the contour (Figure 4).

After the obvious transformations, we will have:

vx1 ¼
γ

4π

1

sin δ

ð

s

lz
dξ

ds
� lx

dζ

ds

� �

J1 cos δ� J2
dζ

ds

� 	

ds (37)

Figure 3.
Coordinate system of a discrete vortex cylinder.

Figure 4.
Scheme for calculating the influence function from a vortex cylinder (the contour integral).
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vy1 ¼
γ

4π

1

sin δ

ð

s

lz
dξ

ds
� lx

dζ

ds

� �

J1 � J2
dζ

ds
cos δ

� 	

ds (38)

vz1 ¼
γ

4π
sin δ

ð

s

J2
dξ

ds
ds (39)

v0 ¼ γ

4π

1� cos 2δ

sin δ

ð

s

lx
dζ

ds
� lz

dξ

ds

� �

J1ds, (40)

where lz ¼ ζ � z1ð Þ, lx ¼ ξ� x1ð Þ (Figure 2).

The derivatives dξ
ds ,

dζ
ds are the cosine and sine of the angle of inclination of the arc

element ds to the axis Ox1. Their values do not depend on the position of the point
A, but only on the direction of the vector ds in the base coordinate system
(Figure 4). This angle is denoted by

dξ

ds
¼ cos τ,

dζ

ds
¼ sin τ (41)

Finally, we will have

vx1 ¼
γ

4π

1

sin δ

ð

s

lz cos τ � lx sin τð ÞJ1 cos τ � J2 sin τ½ �ds (42)

vy1 ¼
γ

4π

1

sin δ

ð

s

J1 lz cos τ � lx sin τð Þ � J2 sin τ cos δ½ �ds (43)

vz1 ¼
γ

4π
sin δ

ð

s

J2 cos τds (44)

v0 ¼ γ

4π

1� cos 2δ

sin δ

ð

s

J1 lx sin τ � lz cos τð Þds (45)

To calculate integrals along the contour, we will use integrating matrices [3]. For
convenience, we will calculate the closed loop integral as the sum of integrals v ¼
Ð

abð Þdvþ
Ð

bcð Þdvþ
Ð

cdð Þdvþ
Ð

dað Þdv over four contours. On segments ab and cd the

angle τ is constant along the contour and is equal to the azimuthal angles ψab and
ψ cd þ π, respectively. On segments bc and da, the angle τ changes along the contour
length, equal to the angle of inclination of the tangent in the middle of the arc ds to
the axis Ox1. It depends only on the midpoint of the arc ds azimuthal position.

With the proposed natural partition of the disk into discrete vortex cylinders,
the problem of calculating inductive velocities in the disk plane is reduced to
multiplying the matrix of influence on the column of linear circulations γ at the
calculated points along the rotor disk. Create a matrix A½ � of dimension N �N. The
elements aij of matrix A½ � are the induced velocities are caused at the i calculated
point on the axis of the i vortex cylinder by the unit-strength vortex cylinder j

v1

v2

…

vN

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

¼

a11 a12 … a1N

a21 a22 … a2N

… … … …

aN1 aN2 … aNN

2

6

6

6

4

3

7

7

7

5

�

γ1

γ2

…

γN

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

(46)
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In hovering mode, the main diagonal (i ¼ j) of the influence matrix A½ � in the
disk plane is 0.5, and for the influence matrix in a plane far from the disk plane is 1.
Non-diagonal elements of the matrix A½ � are close to zero.

3. Helicopter trimming

3.1 The aerodynamic and inertia loads on the blades

The aerodynamic load on the blades is calculated from the known equations of
the aerodynamics of a helicopter rotor is the same for main and tail rotors of the
helicopter for the spatial movements relative to the longitudinal and transverse axis
of the helicopter

Ux ¼ r� lg
� �

cos βb þ lg þ μ sinψb þ r� lg
� �

sin βb ωx cosψb � ωx sinψbð Þ
þ vx r,ψbð Þ

Uy ¼ V sin α� vy r,ψbð Þ
� �

cos βb � μ cosψb þ vz r,ψbð Þð Þ sin βb � r� lg
� � dβb

dψb

þ r� lg þ lg cos βb
� �

ωx sinψb þ ωz cosψbð Þ
(47)

Uz ¼ μ cosψb þ vz r,ψbð Þð Þ cos βb þ vy r,ψbð Þ þ lg ωx sinψb þ ωz cosψbð Þ

 �

sin βb:

We add inertial loads [4] to the distributed aerodynamic forces in the blade cross
section

dtr ¼ сLUx þ cDUy

� �

Ubrdrþ dJyb, dqr ¼ сDUx � cLUy

� �

Ubrdrþ dJxb: (48)

As a result, we obtain the blade flap equations. The integration over the length of
the blade gives us the equation

Mt �
d2βb
dt2

Jg � cos βbJg þ lgSg
� 


Ω2 sin βb þ 2Ω ωx cosψb � ωy sinψb

� �

cos βb

 �

þ

þ dωx

dt
sinψb þ

dωz

dt
cosψb

� �

Jg þ cos βblgSg
� 


� g cos βbSg � Kβ cos βb � cos βkð Þ ¼ 0

(49)

With a trimmed helicopter flight, the flapping of the blades can be represented
as a Fourier series. This uniquely determined by the blade flaps angular velocity

dβb=dt and angular acceleration d2βb=dt
2 . The parameters of the helicopter state

X ¼ Vx,Vy,Vz,ωx,ωy,ωz,Ω, γh,ϑh
� �

are set by the main and tail rotor control
(θ0, θc1, θs1 and θtp ) and the load computation is reduced to the computation of the
Fourier series coefficients β0, βc1, βs1, … , βcn, βsn of the blade flaps βb. The Fourier
coefficients are determined from the equation (Eq. (49)) by Newton’s method. The
number of coefficients in this case should be equal to the number of rotor azimuth
steps.

3.2 The fuselage aerodynamic loads

The fuselage aerodynamic loads depend on the angle of attack or the angle of
sliding is evaluated by wind tunnel or calculation by CFD-method.
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The angle of attack

X f ¼ CDf α f

� �

� ρV2S f=2

Y f ¼ CLf α f

� �

� ρV2S f=2 (50)

Mzf ¼ CQf α f

� �

� ρV2S fL f=2:

The angle of sliding

Z f ¼ CZf β f

� 


� ρV2S f=2

Mxf ¼ CMxf β f

� 


� ρV2S fL f=2 (51)

Myf ¼ CMyf β f

� 


� ρV2S fL f=2:

In this case, the coefficients in equations (Eqs. (50) and (51)) are calculated with
CFD-method and corrected by the results of the tests in the wind tunnel.

3.3 Trimming model

The helicopter trimming equations derived from the helicopter dynamics equa-
tions. Equating to zero the linear and angular accelerations of the helicopter

ω� V
� �

Mh ¼ RMR þ RTR þ R f þ Gh

ω� Jωð Þ½ �Jh ¼ MMR þMTR þM f

(52)

The state vector X ¼ Vx,Vy,Vz,ωx,ωy,ωz,Ω, γh,ϑh
� �

is defined as a data source.

As a result of the system of equations (Eq. (52)) solving we obtain the vector

X ¼ γ,ϑ, θ0, θc1, θs1, θtp
� �T

. This vector is calculated by Newton’s method.

4. Results

To illustrate the comparison of result, we distribute the induced velocity in
the plane of the rotor disk and at a far distance from it (Figure 5). This confirms
the results of the Momentum theory: the inductive velocities in the plane of the
rotor disk are two times less than the inductive velocities at an infinite distance
from it [5].

The tip vortices structure of the rotor shown in Figure 6. Comparison of the
structure under the main rotor with the blade theory results shows an adequate
behavior of the vortex surface in modeling.

Introducing the air flow configuration, we can see which areas of the helicopter
are influenced by the induced flow and used in the analysis of information
corresponding loads.

Figure 7 shows a comparison of the position of blade vortex theory (disorderly
line) and disk theory (black line) for horizontal flight. The tip vortex is shown only
from one blade, but the influence of all blades is taken into account.

The results of calculating the normal component of induced velocity were com-
pared with experimental data for forward flight from 75 to 180 km/h. Comparison
with the experiment gave good results (Figure 8). Experimental and calculated data
have got an adequate correlation.
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The application of the described method consists in forming a matrix of influ-
ence of the main and tail rotor for any group of points around the rotor. For
example, a matrix of influence of the rotor on the fuselage, the matrix of influence
of the main rotor on the tail rotor, the matrix of influence of the main rotor on the
stabilizer, the matrix effect of the tail rotor on the main rotor, etc., the dimensions
of the matrices depend on the selected number of design points on the stabilizer,
fuselage, and tail rotor. In this case, these matrices can be formed taking into
account the mutual influence of the main and tail rotors.

Figure 5.
Normal component of induced velocity on hovering α ¼ 0°, μ ¼ 0,Ct ¼ 0:01 .

Figure 6.
Tip vortex in hovering.
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For a single arbitrary point, this will be a matrix-string for the main rotor
and a matrix-string for the tail rotor. Multiplying the row by the column of
known air circulations on the disk, we calculate the induced velocities at the
selected point.

The values of the influence matrix elements depend on only the rotor geometric
characteristics and the position of the selected point relative to the rotor and the
angle of inclination δ of the vortex cylinder. In the process of calculations, the
values of linear circulations and their corresponding induced velocities are refined.
Influence matrices must be built in advance for a possible range of angles. During
the calculation process, interpolate between the calculated matrices by the neces-
sary values δ.

At different flight speeds, induced velocities have different effects on the
tail rotor and stabilizer. In the figures, you can see that induced velocity have a
special influence on the low flight speeds mode of V ¼ 60 km/h reach 4 m/s
(Figures 7 and 9). This is 24% of the flight speed. Therefore it is very
important to know and take into account the field of induced velocity’s at low
flight speeds.

The horizontal and vertical components of induced velocity at a characteristic
point in the tail rotor and stabilizer area significantly depend on the flight speed
(Figures 7 and 9).

By drawing the configuration of the air flow, we can see which areas of the
helicopter are affected by the induced flow. This allows us to correctly configure the
loads calculating program.

Figure 10 shows the position of the tip vortex according to the blade theory
(disordered line) and the disk theory (black line) for forward flight.

Figure 7.
Induced velocity component in the tail rotor area.
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Figure 8.
The normal component of induced velocity in forward flight. (a) α ¼ �9:2,Ct ¼ 0:01, μ ¼ 0:095, x ¼ 0,
y ¼ 0:07, V = 75 km/h. (b) α ¼ �10:1,Ct ¼ 0:01, μ ¼ 0:14, x ¼ 0, y ¼ 0:07, V = 110 km/h.
(c) α ¼ �9:5,Ct ¼ 0:01, μ ¼ 0:232, x ¼ 0, y ¼ 0:07, V = 185 km/h.

Figure 9.
Components of the induced velocity in the stabilizer area.
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Comparison with the blade theory for calculating the position of the tip vortex
shows that the method of discrete vortex cylinders gives satisfactory results. The
angle of vortex cylinder δ calculated from the disk theory inclination coincides with
the angle δ calculated from the blade theory.

As the graphs show, calculating the position of the tip vortex by the method of
discrete vortex cylinders gives satisfactory results.

Figure 11 shows the results of comparison of the normal component of the
average induced velocity calculated in the cross section along the vane theory [3, 6]
and the discrete vortex cylinder method with experiment [2]. Error experiment for
flight speed μ ¼ 0:095 is �15% and the angle of attack α ¼ �9:2∘.

From these results, we can conclude that the greatest convergence with experi-

mental method of discrete vortex cylinder has got in a cross section X ¼ 0. In some

Figure 10.
Tip vortex at low speed (60 km/h, μ ¼ 0:076, α ¼ �1:23°, Ct ¼ 0:01). (a) side view and (b) overhead view.
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cases, we have strong disagreement with experiment, but similar to the results
obtained by the blade theory.
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5. Conclusion

In this chapter, the authors have developed a method of discrete vortex cylin-
ders based on the Shaydakov’s disk vortex theory. The capabilities of the discrete
vortex cylinder method are demonstrated using a helicopter balancing program
based on a “semi-rigid” model of the main and tail rotors. Data from numerical
calculations are proposed with experimental data from actual flights. Simulations
have been conducted. We found the following:

1.The complex procedure for calculating inductive velocities at any point in the
space around the rotor was reduced to the procedure of multiplying the row by
column. In this case, the row of influence of discrete vortex cylinders
coefficients is multiplied by the column of the corresponding vortex cylinders
circulations.

2.The use of pre-calculated influence matrices makes it much easier to calculate
circulations.

Figure 11.
The normal component of the induced velocity at a distance Y/R under and over of the main rotor (μ ¼ 0:095).
(a) X ¼ 0, (b) X ¼ 0, (c), X ¼ �0:5, (d) X ¼ �0:5, (e) X ¼ 1:7, and (f) X ¼ �0:5.
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3.The results showed, repeating the results of the classical impulse rotor theory
on hover mode in the plane of the rotor and in the wake far behind the rotor.

4.We showed the capabilities of the method in calculating the distribution of
inductive speeds in the plane of the rotor and the space outside it, also in
calculating the bevel of the flow in the stabilizer and tail rotor regions.

5.We confirmed the fine capabilities of the developed method in calculating
inductive speeds at the low-speed horizontal flight mode.

To study the effectiveness of the method of discrete vortex cylinder embedded
in the helicopter trimming computer program. The calculations are performed with
the original data of the helicopter “ANSAT.” The program allows calculating the
trimming characteristics of helicopter rotor: aerodynamic performance, the loading
of the blades.

The method of discrete vortex cylinders is successfully used for calculating
inductive velocities in the aeroelasticity blade model for ANSAT helicopter main
rotor loads calculation (for example, see [7]).

6. Future work

1.Modeling of the earth effect using the method of vortices reflected from the
earth’s surface.

2.Construct a discrete model of the fuselage using the CFD-method to study the
effect of main rotor blowing with the tail rotor-induced velocity.

3.Refinement of the discrete cylinders method for calculating the vortex ring
regime by the limiting of the vortex cylinder height.

4.Extension of the discrete vortex cylinder method to the nonlinear Shaidakov’s
vortex theory.

5.Application of the discrete vortex cylinder method to solving helicopter take-
off and landing problems.

6.Simulation of vortex formation when landing on a snow-covered and dusty
surface.

7.Simulation of helicopter dynamics with rotor blades dynamics using the
discrete vortex cylinders method.

Notes

This work was partially supported by the grant in accordance with the Decree of
the Government of the Russian Federation No. 220 “on attracting leading scientists
to Russian educational institutions” (Agreement No. 11.G34.31.0038).

Notations

A x1, 0, z1ð Þ induced-velocity calculated point
aij element of influence matrix
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br chord at the blade cross section
CDf ,CLf ,CQf ,CZf ,CMxf ,CMyf , fuselage coefficients

сL, cD section lift and drag coefficients
dJxb, dJyb elementary sectional inertial forces

ds vortex element
dtr, dqr elementary sectional aerodynamic forces
h distance from disk to point A location plane
J1, J2 Shaidakov’s integrals for a semi-infinite

elementary oblique vortex cylinder
Jg blade rotational inertia, first moment of inertia

Jh helicopter moment of inertia
Mh,Gh helicopter mass and weight
M ξ, η, ζð Þ vortex elements location point
Mt aerodynamic flap moment
Kβ flap hinge spring constant
lg flap hinge offset
Oxyz,Ox1y1z1,Oryψ coordinate systems
R rotor radius

RMR,RTR,R f ,MMR,MTR,M f main, tile rotors, fuselage forces and moments

r the cross-sectional radius
S f ,L f fuselage area and length

Sg first moment of inertia
V flight velocity
v1b , v2b the induced velocity in hover (at the rotor disk,

in the far wake)
~V,~v related speeds, ~V ¼ V=v1b, ~v ¼ v=v1b
v1b, v2b rotor induced velocity in hovering (at the rotor

disk, in the far wake)
v : vx, vy, vz rotor-induced velocity in Oxyz

v1 : vx1 , vy1 , vz1 rotor-induced velocity in Ox1y1z1
α f fuselage attack angle

βb,β0, βc1, βs1, … , βcn, βsn blade flap angle, Fourier series coefficients of βb
Γ, γ vortex element circulation, circulation intensity
γh,ϑh the helicopter angles of pitch and roll
δ the inclination angle of the vortex cylinder is

calculated by the Shaydakov’s transcendental
formula (δ 6¼ 0)

~V ¼ 2 1� sin δj jð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sgnδ sin 2αþ2 sin α cos αþδð Þþ sin δ cos 2 αþδð Þ 2� sin δj jð Þ
p , sgnδ ¼ δ

δj j

μ ¼ V cos α rotor advance ratio

ρ air density
θ0, θc1, θs1 main rotor controls
Ω rotor rotational speed
ψ discrete cylinder azimuth
ψb blade azimuth
Δψ ,Δr discrete vortex dimensions
dξ
ds ¼ cos τ, dζ

ds ¼ sin τ direction of the vector ds

ω : ωx,ωy,ωz helicopter angular velocity
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