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Chapter

Supported-Metal Oxide 
Nanoparticles-Potential 
Photocatalysts
Vu T. Tan and La The Vinh

Abstract

Recently, nanosized metal oxides play an essential role in the photocatalytic 
system due to their ability to create charge carriers during the light irradiation. 
Metal oxide nanoparticles display excellent light absorption properties, outstanding 
charge transport characteristics, which are suitable in the photocatalytic system 
for the treatment of wastewater. Most of the photocatalysts found in the literature 
are in the form of powders. Only a few supported photocatalytic systems have been 
reported. The advantages of supported photocatalysts, such as that they produce a 
small pressure drop, have good mechanical stability and are easily separated from 
the reaction medium, make them superior to conventional powder photocatalysts. 
In this chapter, the definition of supported-metal oxide nanoparticles as the photo-
catalyst and their synthesis methodology are detailed discussed.

Keywords: photocatalysis, metal oxides, thin film, semiconductor, substrate

1. Introduction

1.1 General description about photocatalysis

Photocatalysis by semiconductors, such as those indicated above, is a well-
established method for degrading organic contaminants in wastewaters. When the 
photon with energy greater than the band gap of the semiconductor is absorbed 
by the solid, an electron is excited from the valence band to the conduction band, 
resulting in an electron-hole pair. These exciting state conduction band electrons 
and valence band holes have several possible fates [1]:

a. they can combine and disperse the energy as heat while still in the bulk matrix 
of the crystal;

b. they can become trapped in defect traps;

c. they can migrate to the surface, where they recombine;

d. they may take part in redox reactions with electron donors or acceptors 
adsorbed onto the surface, which is the desirable pathway if degradation of 
organic contaminants is to occur.
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In aqueous systems, these adsorbed species will correspond to water molecules, 
hydroxide ions, and oxygen molecules.

It is clear to know that in semiconductors, the generation of electrons and holes 
depends on the position of the energy levels. Besides, the redox potential of a donor 
species on the surface of the photocatalyst needs to be more negative (higher in 
energy) than the valence band position of the semiconductor to fill the electron 
vacancies. Similarly, acceptor molecules must have a more positive redox potential 
(lower in energy) than the conduction band. In view of this, one of the advantages of 
TiO2 and ZnO compared to other semiconductors is that their electronic structure is 
such that it allows both the reduction of protons and the oxidation of water [2]. This 
phenomenon can be appreciated in the redox potential diagram shown in Figure 1. 
Recently, the use of TiO2 and ZnO as photocatalysts has been thoroughly investigated.

Numerous conditions of a photocatalyst are required to achieve high photo-
catalytic efficiency. Firstly, the bandgap of the semiconductor must be higher than 
the redox potential of the H2O/OH• couple, and the material must be photo-stable. 
Secondly, the recombination of electron-hole pairs must be minimized. In other 
words, they need to be kept apart to allow time for the redox reactions to occur. 
Separation can be achieved by trapping electrons or holes in defects [4] or by using 
electrically conductive supports [5].

The holes in the photocatalyst valence band can oxidize the adsorbed water or 
hydroxide ions, while electrons in the conduction band can reduce molecular oxygen 
to superoxide anions [6]. These processes are summarized in the following equations:

 Semiconductor e hhv
− ++ → +  (1)

 2 ads adsh H O OH • H+ ++ → +   (2)

 ads adsh OH OH •+ −+ →   (3)

 − −+ →2 2e O O •   (4)

 2 2O • H HO •− ++ →  (5)

 2 2 2 2 2O • HO • H H O O− ++ + → +   (6)

The degradation of organic contaminants is commonly attributed to oxidation 
by hydroxyl radicals. This process is schematically described in Figure 2. This has 
led to the use of the term “Advanced Oxidation Processes,” although there is evi-
dence that in some systems, reductive pathways also operate [7].

Among Advanced Oxidation Processes, the photocatalytic processes are focused 
on the conversion of highly toxic organic to either less toxic organic compounds or 
CO2 and H2O [8]. When the photocatalytic reaction is implemented in the presence 
of O2, the catalyst plays two main roles: to scavenge the photogenerated electrons 
and to produce active oxygen species [9]. We already know that metal oxides can 
respond to both UV-light and visible light, depending on the energy band gap of the 
materials. Newly, the photocatalytic process used visible light is widely employed 
for environmental cleanup [10].

Recently, many metal oxides (TiO2, ZnO, SnO2, and WO3) have been widely 
used for the photocatalysis process. This is due to their abundance in nature, 



3

Supported-Metal Oxide Nanoparticles-Potential Photocatalysts
DOI: http://dx.doi.org/10.5772/intechopen.93238

stability in many conditions, and the capability to create charge carriers when they 
were exposed under UV or visible light. The advantageous combination of the elec-
tronic structure, light absorption capacities, and excited lifetimes of metal oxides 
have provided of metal oxides has provided them possible for their application as 
photocatalyst. The photocatalysis employing metal oxides such as TiO2, ZnO, SnO2, 
and WO3 has demonstrated their efficiency in the degradation of various harmful 
pollutants into carbon dioxide and water.

The vast majority of the photocatalysts studied are in powder form with all 
the difficulties in handling and recovering that implies. Consequently, supported 
photocatalysts are nowadays an important research area.

Figure 2. 
Schematic diagram showing the processes involved in semiconductor photocatalysis. Reproduced from  
Gratzel et al. [2].

Figure 1. 
Band gaps (eV) and redox potentials for several semiconductors referred to the normal hydrogen electrode 
(NHE). Reproduced from Ania et al. [3].
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2. Supported TiO2 photocatalysts 

When the light is irradiated to the surface of the semiconductor, its absorp-
tion of photons provokes the photocatalytic reaction at the surface of the catalyst. 
Among many semiconductor materials, titanium dioxide (TiO2) nanoparticles 
have been widely studied for photocatalytic applications over the last two decades 
[11, 12]. TiO2 is relatively inexpensive, insoluble in water, and non-toxic. It can 
provide photogenerated holes with high oxidizing power because of its wide 
bandgap (3.2 eV) [13].

The common mechanism of the photocatalytic process of TiO2 material consists 
of the interfacial redox reactions of the generated holes and electrons when the TiO2 
materials are irradiated by light with appropriate energy (Figure 3) [14, 15].

Most of the photocatalysts found in the literature are in the form of powders. 
Only a few supported photocatalytic systems have been reported, even though they 
have clear advantages from a practical point of view [16–18]. The most important 
benefit is that the separation of the supported photocatalysts from the reaction 
medium is simple, which minimizes the power requirements. In addition, they 
can be adapted to operate in flow-type continuous reactors [19–21]. Most recently, 
research was described by Fernández et al. [21]. They reported two methods of 
deposition of TiO2 powders on different substrates (glass, quartz, and stainless 
steel) and evaluated the photocatalytic activities of these supporting materials 
through the degradation of organic compounds (Figure 4).

The authors demonstrated the influence of coating methodology and photocata-
lytic activities. The results showed that titania deposited on quartz displays a similar 
photocatalytic activity to that of the powder form. Therefore, the result opens a new 
feature for a new advantage route to immobilize catalyst for flow reactor or batch 
reactor. Because filtration step to recover the catalyst always causes many draw-
backs in water treatment.

Then some authors [22, 23] developed a new type of supported photocatalyst 
that consists of mixtures of noble metal nanoparticles and commercially available 
TiO2 nanoparticles (P25, Degussa-Evonik) deposited by dip-coating procedure 
on quartz substrate. The photocatalytic activity of the immobilized catalyst was 
evaluated by the degradation of malic acid. A comparison of the photocatalytic 
activity between supported TiO2 with the powder TiO2 Degussa P-25 shows 
slightly lower catalytic activity. This phenomenon could be explained by the 
total surface exposed of the catalyst to the light during the irradiation. However, 

Figure 3. 
The mechanism of photocatalysis process of TiO2. Reproduced from Hoffman et al. [15]. (1) The formation 
of the electrons and holes by photon absorption. (2) The recombination of the generated electrons and holes. 
(3) The electron trapping of Ti (IV) at the conduction band to form Ti (III). (4) The hole trapping of titanol 
group at the valence band. (5) The oxidative pathways at the conduction band. (6) The reductive pathways at 
the valence band. (7) Photocatalytic oxidation reactions to form harmless compounds.



5

Supported-Metal Oxide Nanoparticles-Potential Photocatalysts
DOI: http://dx.doi.org/10.5772/intechopen.93238

the result could be compensated by the advantage of eliminating the recovering 
catalyst after the treatment.

Lately, several works also reported the preparation of thin TiO2 film on quartz 
substrates (Figure 5) by coating the TiO2 sol using rotary evaporator [24], by dip-
coating [25], by spin coating [26].

Recently, Borges et al. [27] supported commercial TiO2 (Degussa P25) on glass 
spheres as a photocatalyst to treat the wastewater (Figure 6).

Figure 4. 
SEM micrographs for the three TiO2/quartz samples. Reproduced from Hoffman et al. [15].

Figure 5. 
Schematic representation of photocatalytic reactor using TiO2 supported on quartz. Reproduced by 
Natarajan et al. [25].
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Figure 7 shows the surface morphology substrate of the glass spheres without 
TiO2 particles. Figure 7b shows the TiO2 supported on the substrate and the homo-
geneous distribution of TiO2 on the surface of the glass sphere. The authors showed 
that photocatalytic treatment in photoreactor displays more advantages than in 
batch system for high volumes of industrial wastewater.

Later, several authors also used poly-vinylidene fluoride (PVDF) dual layer 
hollow fiber membrane as a support to immobilize TiO2 to treat pharmaceutical 
compound in wastewater (Figure 8) [28, 29].

Figure 6. 
Packed-bed photoreactor system and glass spheres photocatalytic bed in photoreactor. Reproduced by Borges 
et al. [27].

Figure 7. 
SEM image of the glass sphere (a), SEM image of TiO2 supported on the glass sphere (b). Reproduced by 
Borges et al. [27].
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The author demonstrated that the TiO2 supported catalyst on PVDF membranes 
improved the photo-transformation rate of wastewater compounds during the 
photocatalytic treatment. The author also claimed that the supported catalyst could 
be easily recycled without any separation systems or catalysis recovery technologies.

It is already to know that TiO2 is used as a photocatalyst in the ultraviolet light 
region due to its wide bandgap. To improve its photocatalytic efficiency in the 
visible light, efforts have been made such as, doping TiO2 with anionic species 
(Fluorine, Sulfur, Nitrogen), or combining TiO2 with other metal oxides. The 
combination of TiO2 with other metal oxides can reduce the recombination effect 
of the electron-hole before they migrate to the surface of the material [30]. In 
addition, the composite of TiO2 with other metal oxides can be generated in the 
surface hydroxyl groups, which can trap holes after the irradiation process, which 
improve the separation of the electron-holes. In some cases, the composite of TiO2 
with other metal oxides can enhance the crystallinity degree of TiO2 and increases 
the specific surface area of the composite which are two important properties for a 
photocatalyst.

Recently, TiO2 is widely combined with other metal oxides, such as ZrO2, SnO2, 
WO3, CeO2, ZnO, to improve the photocatalytic activity of TiO2 in the ultraviolet 
light and improving its photocatalytic efficiency in the visible region.

For example, the composite of mixed oxide ZrO2-TiO2 material recently gains a 
great attention. By combining TiO2 with ZrO2, the surface acidity of the composite 
can be increased, hence improved the reactivity compared to the TiO2 [31]. In 
addition, the hydroxyl groups are located on the surface of the catalyst, where the 
holes are trapped which could improve the efficiency of the degradation of organic 
pollutant [32]. Therefore, the mixed oxide ZrO2-TiO2 has been widely studied for 
the photodegradation of toxic organic compounds [31–35]. Many researchers also 
focused on the fabrication of ZrO2-TiO2 composite thin film and study its photo-
catalytic efficiency under ultraviolet or visible irradiation [36–40].

Luo et al. has fabricated the ZrO2-TiO2 composite thin film on glass substrate 
using micro-arc oxidation process and used it for the degradation of rhodamine 

Figure 8. 
Images of the PVDF membranes: (a) outer surface, (b) full cross section, (c) partial cross section, and (d) EDX 
images of TiO2 nanoparticles at the outer layer. Reproduced by Paredes et al. [29].
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B under ultraviolet irradiation [40]. The ZrO2-TiO2 composite thin film consists 
of three compounds: anatase, rutile, and ZrO2 phases, results that the generated 
electron can transfer from rutile to anatase. This phenomenon inhibits the recom-
bination of the generated electron-hole pairs, thus improved the photocatalytic 
efficiency of the composite. The photodegradation of MB under UV light irradia-
tion shows that the photocatalytic activity of ZrO2-TiO2 composite thin film is three 
times higher than that of the pure TiO2 thin film.

Alotaibi et al. have reported the preparation of ZrO2-TiO2 composite thin film 
on glass substrate using aerosol-assisted chemical vapor deposition [32]. The 
photocatalytic activity of the fabricated composite thin film was evaluated through 
the photodegradation of resazurin redox dye under Ultraviolet light irradiation 
(Figure 9). The composite shows an enhancement of photocatalytic activity 
compared to a pure TiO2 thin film fabricated by the same condition.

Tungsten oxide (WO3) is a common dopant in heterogeneous photocatalysis. In 
the last decade, WO3 was extensively combined with TiO2 to improve the photocata-
lytic activity of TiO2 in both UV and Visible light. Besides of using the catalyst in 
the powder form, the preparation of WO3-TiO2 film and its photocatalytic activity 
was extensively studied [41–44] due to its advantage of the recuperation way. The 
WO3-TiO2 film has been fabricated by several methodologies such as sol-gel and dip 
coating [45]; spin-coating [46]; solvothermal method combining magnetron sput-
tering [47]; or film on pyrex substrates by casting methodology [48].

For example, Fu et al. have fabricated the WO3-TiO2 film on quartz substrate by 
dip-coating synthesis [42]. The photocatalytic efficiency was evaluated by the deg-
radation of 4-chlorophenol-4 CP, xenobiotic micropollutants, under the irradiation 
visible light. The result shows that by incorporation of WO3 into TiO2, the WO3-TiO2 
film can shift the absorption band from near UV region to the visible region. Under 
visible light, for the degradation of 4-CP, the prepared composite film demon-
strated a higher photocatalytic activity for than that of pure TiO2 film.

Recently, Adel et al. have prepared the WO3-TiO2 thin film on glass substrate by 
reactive chemical spraying and tested its photocatalytic activity under visible light. 
The results show that the photocatalytic thin film can degrade completely dye in 
textile, wastewater leading to cleaner processes [49].

Figure 9. 
SEM images of the (a) ZrO2, (b) TiO2 and (c) ZrO2-TiO2 composite films with the high magnification. The 
side on images—(d) ZrO2, (e) TiO2, and (f) ZrO2-TiO2 composite—shows the film thickness. Reproduced by 
Alotaibi et al. [32].
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Spanu et al. have prepared Pt deposited on WO3-TiO2 nanotube arrays on Ti foil 
by sputtering method in order to improve the photocatalytic activity of the WO3-
TiO2 system. The photocatalyst was used for the fabrication of H2 by photocatalysis. 
The Pt deposited on WO3-TiO2 nanotube arrays show highly enhanced photocata-
lytic H2 evolution efficiency comparing to other single-photocatalyst system such as 
(Pt-TiO2 and WO3-TiO2) and pristine TiO2 nanotubes [50].

3. Supported ZnO photocatalysts

ZnO is a metal oxide with a broad energy band gap (3.37 eV), which is one of 
the best semiconductors in the last decade. Recently, ZnO is extensively used as a 
photocatalyst under UV or Visible light irradiation due to its outstanding electrical, 
mechanical, optical, and non-toxic properties. In addition, the production cost of 
ZnO is low cost comparing to the fabrication of other semiconductors [51].

The mechanism of photocatalysis process of ZnO to degrade organic compounds 
under irradiation light can be summarized as follows [52]:

 ( ) ( )CB VBZnO ZnO e   h− +→ +  (7)

 ( ) •.
VB 2ZnO h   H O  ZnO  H  OH+ ++ → + +  (8)

 ( ) •
VBZnO h   OH  ZnO  OH+ −+ → +  (9)

 ( ) •
CB 2 2ZnO e   O  ZnO  O− −+ → +  (10)

 
2• 2•.O  H  HO− ++ →  (11)

 
2• 2• 2 2 2HO  HO  H O  O+ → +  (12)

 ( ) •
CB 2 2ZnO e   H O  OH  OH− −+ → +  (13)

 
2 2 2• • 2H O  O  OH  OH  O .− −+ → + +   (14)

 •
2 2H O  hv  2OH+ →  (15)

 
•Organic pollutants  OH  Intermediates.+ →  (16)

 
2 2Intermediates  CO  H O.→ +  (17)

ZnO shares many similar properties with TiO2, including a similar band gap 
(see Figure 1). There have even been several examples of ZnO displaying a higher 
photocatalytic activity than TiO2 [53]. In addition, ZnO exhibits a better quantum 
efficiency because it can absorb a larger fraction of the solar spectrum than TiO2 
[54] and its price is even lower than that of TiO2 [55]. Compared to TiO2, ZnO can 
be easily supported on different types of substrates by means of low-temperature 
synthesis methods [56].

We already know that the photocatalytic efficiency of a photocatalyst is 
evaluated through the photogeneration of electron-hole pairs and their time-life. 
However, the main limitation of ZnO as a photocatalyst is the rapid recombination 
rate of photogenerated electron-hole pairs, which decreases the photocatalytic 
efficiency of ZnO. In addition, the use of ZnO as a photocatalyst is limited by the 
photocorrosion phenomenon. This process occurs because of the action of UV 
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radiation. As a consequence, the catalyst is partially dissolved, which gives rise 
to a dramatic decrease in catalytic activity [57]. The mechanism of this process is 
represented by the following self-oxidation reactions [58–60]:

 ( ) ( )2 n

2 2n
ZnO 2 h nH O Zn OH ½ O nH

− ++ ++ + → + +  (18)

 2
2ZnO 2 h Zn ½ O+ ++ → +  (19)

where h+ is the positive holes created by the action of UV radiation. 
Photocorrosion is the main obstacle to the use of ZnO as an effective photocatalyst. 
Therefore, significant efforts have been made to reduce the degradation of ZnO.

Beside TiO2 using as a photocatalyst, Jung et al. [61] studied the synthesis and pho-
tocatalytic activity of CuO-ZnO nanowires supported on stainless steel wire meshes 
(SSWM). They showed that CuO-ZnO structures supported on SSWM exhibit an 
enhanced photocatalytic activity with respect to catalysts using other supports, such 
as ITO. This result they attributed to the efficient charge separation of the electron-
hole pair favored by the SSWM support [61]. Another advantage of SSWM is its 
flexibility, which allows the mesh to be easily shaped to the desired configuration.

In general, the procedures used to achieve this involves the deposition onto the 
ZnO surface of: (a) silver nanoparticles [62–66]; (b) polyaniline monolayers [67], 
(c) graphitic carbon [68]; (d) Nafion films [69]; (e) AlSi nanoclays [70]; and (f) 
C60 fullerenes which become hybridized with ZnO [59].

Although the above modifications improve the photocatalytic stability of ZnO, 
some problems persist. For instance, Bessekhouad et al. [71] have reported that the 
photocatalytic activity of the doped materials is impaired by thermal instability and 
by an increase in the number of hole/electron recombination centers. Therefore, the 
development of novel methods that provide effective protection of the ZnO photo-
catalyst against photocorrosion is required.

An attempt must be made to increase catalytic activity under visible irradiation, 
since the solar spectrum contains a large fraction of visible light compared to UV 
radiation. Recently, the photocatalytic activity of ZnO in the visible region has 
been improved by various techniques, such as: (a) modification of the ZnO surface 
by non-metal element doping [72]; (b) transition metal doping [73, 74]; (c) the 
combination of ZnO with another semiconductor [75], etc. Of these methods, 
the coupling of different semiconductor photocatalysts offers great promise as it 
increases the charge separation of the electron-hole pairs, resulting in an increase 
in photocatalytic decolorization efficiency [76].

Recently, ZnO has been combined successfully with TiO2 [77], CdO [78],  
CdS [79], and WO3 [80]. CdO is a good candidate for coupling with ZnO due to its 
band gap, ~2.2 eV [78], so that CdxZn1-xO nanostructures are active in the visible 
range. In addition, under visible light the excited electrons from the conduction 
band (CB) of ZnO can be easily transferred to the CB of CdO since the ECB of CdO 
is lower than the ECB of ZnO. These transferal processes increase the excess of elec-
trons in the conduction band of CdO, which shifts in the Fermi level of CdO [81], 
increasing its photocatalytic efficiency. To the best of our knowledge, CdO-ZnO 
has been always synthesized in powder form. The use of CdO-ZnO supported on a 
target substrate (such as SSWM) as a photocatalyst for dye degradation processes 
in UV or visible has reported by Vu et al. [82]. They also attempt to demonstrate 
in parallel that coupling CdO and ZnO may be also an excellent method to avoid 
photocorrosion.
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4. Supported WO3 photocatalysts

Tungsten oxide (WO3) is a high-ranking material in photocatalysis [83]. The 
WO3 presents in several phases such as monoclinic, orthorhombic, triclinic, cubic, 
etc., but only the monoclinic phase exhibits the best photocatalytic efficiency. In 
addition, WO3 is a material with many advantages, such as harmless, high stability 
in acidic and oxidative ambient, and its cost fabrication cost is very low compared 
with other photocatalysts [84].

It has been shown that the band gap energy of WO3 is varied from 2.5 to 3.0 eV 
[85, 86], leading WO3 can be used as a photocatalyst at the visible region. In recent 
times, there are many studies focused on the improvement strategies of the photo-
catalytic efficiency of WO3 [84, 87].

Recently, the researchers have proposed many strategies for the fabrication of 
WO3 thin film [88], such as sputtering deposition [89–92], aerosol-assisted chemi-
cal vapor deposition [93, 94], sol-gel spin-coating [95, 96], hydrothermal-assisted 
growth [97, 98], and surfactant-assisted spray pyrolysis [99, 100]. Many works 
focused on the photocatalytic efficiency of WO3, especially the studying of WO3 
thin film as a photocatalyst in the visible region [84, 101].

For example, the author fabricated a WO3 thin film with a thickness 500–600 nm 
deposited on a quartz substrate by DC reactive magnetron sputtering [102]. The 
fabricated film WO3 used for the degradation of CH3CHO (acetaldehyde) under 
ultraviolet, standard fluorescence, and visible light. The result shows that WO3 film 
fabricated by sputtering can be a good photocatalyst under visible light region.

To improve the separation of photogenerated charged and to increase the 
photocatalytic activity, many researchers combined other elements with the WO3 
thin film. For example, Higashino et al. have fabricated a layer of WO3 on the Al-W 
allow coatings by selective solution and heat treatment (Figure 10). The formed 
thin film WO3 exhibits photocatalytic self-cleaning properties under the visible light 
irradiation [103].

Takashima et al. have taken advantage of the multielectron reduction of Pt to 
improve the photocatalytic activity of WO3 thin film on W foil. The author fabri-
cated Pt loaded WO3 thin film using a reactive DC magnetron sputtering technique 
or low damage reactive gas flow sputtering [104]. The formed Pt-WO3 thin film was 
used to photodegrade CH3CHO under visible light. The result shows that the fabri-
cated thin film demonstrates excellent photodecomposition rates under visible light.

Another approach to improve the separation of photogenerated charged, C3N4 
is combined with WO3 film to form a heterojunction composite WO3/C3N4. The 

Figure 10. 
SEM images of the surface and cross-sectional of WO3. Reproduced by Higashino et al. [103].
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fabricated composite was deposited don fluorine-doped tin oxide (FTO) substrate 
[105]. The photocatalytic activity of the composite was tested by photocatalytic 
degradation of MB and Cr6+ in wastewater under UV illumination.

The supported WO3/C3N4 composite present higher photocatalytic activity on 
the decoloration of MB and the reduction of Cr6+ to Cr3+, compared to the photo-
catalytic activity of WO3 thin film.

5. Supported SnO2  photocatalysts

SnO2 is an inorganic compound that is exhibiting high optical transparency, 
excellent thermal and chemical stability, and strong oxidizing properties [106]. The 
band gap of SnO2 is quite large, around 3.6 eV, which leads that SnO2 can be used as 
a photocatalyst at the UV region. This property makes SnO2 becoming an excellent 
photocatalyst for the degradation of many organic compounds.

Recently, SnO2 played an important role in the photo-oxidation of pollutants 
and received a lot of attention despite the outstanding properties of this material. 
However, the vast number of researches used SnO2 in the powder form as a photo-
catalyst for the degradation of the toxic organic compound, and the experiments 
are usually performed using SnO2 in the powder form. There are only a few works 
describing the use of supported SnO2 thin film as a photocatalyst.

In recent times, many methodologies have been applied for the fabrication of 
SnO2 thin films such as, sol-gel [107], pulsed plasma deposition [108], pulsed laser 
deposition [109], reactive evaporation [110], and chemical bath deposition [111] 
methods.

For example, Jana et al. used the galvanic technique to fabricate SnO2 thin film 
on transparent conducting oxide (TCO) [112].

Figure 11 shows the nanoporous flake-like structure, which allows more effi-
cient transport of reactant molecules to the active interfaces and results in a higher 
photocatalytic activity for degrading methyl orange (MO) dye than that of P25 
under UV light [112].

However, the SnO2 in the powder form presents low photocatalytic activity 
comparing with other semiconductors due to its wide-band gap, 3.6 eV, and the 
rapid recombination of the photo generated electron-hole pairs. Thus, the SnO2 thin 
film could present lower photocatalytic efficiency comparing with SnO2 in the bulk 
form. Therefore, the SnO2 thin film is widely combined with other metal ions such 
as Ni, Co, Fe [113], Cr [114], Zn [115], Sb [116], W [117], or other semiconductors, 
such as ZnO [118], TiO2 [119], etc.

For example, the W-doped SnO2 thin films are fabricated on glass (ITO) sub-
strate by simple chemical deposition techniques [120]. The result showed that the 
energy band gap is varied by the doping concentration of W, which is in the range 
of 3.46–3.35 eV. In addition, the UV-Visible absorption and Photoluminescence 
characterization results demonstrated that W-dopant SnO2 could narrow the band 
gap, thus enhancing the photocatalytic efficiency of the W-doped SnO2 in the 
visible light (Figure 12). The author used the fabricated W-doped SnO2 for the 
degradation of Methylene Blue and Rhodamine (RHB) under the visible region. 
The W-doped SnO2 thin film presents higher photocatalytic efficiency comparing 
to the pure SnO2 thin film in the visible light irradiation.

In recent time, Sr-doped metal oxides have great attention in electronic and 
optoelectronic applications. Besides, when Sr is combined with SnO2, the crystal 
growth rate of SnO2 is reduced, making the Sr-doped SnO2 to have a higher specific 
surface area. Thus, the combination of Sr with SnO2 can improve the photocatalytic 
activity of SnO2. For example, Haya et al. have prepared Sr-doped SnO2 thin film  
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on glass substrate by simple sol-gel technique and study its photocatalytic activity 
under UV-irradiation [121]. The doping of Sr makes the SnO2 thin film to decrease 
its degree of crystallinity, reducing the particle size and increasing the specific 
surface area of the thin film. The results show that the Sr-doped (8%) SnO2 film has 
higher photocatalytic activity compared to undoped SnO2 thin film.

In addition, many researchers also combined with other metal elements to 
improve the photocatalytic activity of SnO2 thin film such as Cu-doped SnO2 [122], 
Fe-doped SnO2 [123], F- or Sr-doped [124], and Cl-doped SnO2 [125] on glass 
substrate.

Recently, to improve the photocatalytic efficiency of SnO2 thin film, B/Ag/F 
was doped with the SnO2-ZnO composite film on glass by the sol-gel route. The 
fabricated composite thin film was used for the degradation of methyl green and 
formaldehyde under UV irradiation. The result showed that the synergy of ZnO 
and tri-doping B/Ag/F had improved the photocatalytic activity of SnO2 thin film 
[126]. In addition, Kong et al. also prepared B/Fe co-doped SnO2-ZnO thin film 
on glass substrates using the sol-gel technique. The prepared composite thin 
film improved the lifetime of the photogenerated charge carriers and optical 
absorption properties. The photocatalytic efficiency of the composite thin 
film was evaluated through the degradation of organic pollutants such as acid 
naphthol red and formaldehyde. The B/Fe co-doped SnO2-ZnO film exhibits the 
highest photocatalytic activity compared with an undoped or only singly doped 
SnO2 thin film [127].

Figure 12. 
Schematic representation for photocatalytic mechanism of RHB in W-SnO2 thin films. Reproduced by  
Vadivel et al. [120].

Figure 11. 
The SnO2 thin film and the photocatalytic activity of SnO2 thin film. Reproduced by Jana et al. [112].
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6. Conclusion

In this chapter, an overview of the development of supported catalysts and their 
prospects from a scientific point of view is presented. We can see that the field has 
experienced major advances in the last 5 years, especially in the area of supported 
TiO2, ZnO, WO3, SnO2, and mixed oxides on several types of substrates (SSWM, 
quartz, glass (ITO)). Based on the literature presented here, we believe that there 
is still quite a lot that can be achieved in improving the performance of supported 
catalysts for photocatalytic applications.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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