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Abstract

Metabolic syndrome (MetS) leads to microvascular dysfunction and chronic 
cerebral hypoperfusion (CCH) in an insidious way. Clinical evidence and several 
rodent models have contributed to determining the neurodegenerative effect of a 
sustained decrease in cerebral blood flow (CBF). Protein misfolding and aggrega-
tion derived from CCH might account for the establishment of vascular cognitive 
impairment and dementia (VCID) and Alzheimer’s disease (AD). However, the 
complex and multifactorial etiology of cerebrovascular disease demands the 
combination of experimental models in scientific research. In this sense, the present 
work aims at summarizing the differential available rodent paradigms for studying 
the establishment of cognitive decline resulting from protein misfolding induced 
by MetS in association with CCH. Revising experimental findings in the field will 
help further basic research on the pathophysiology of cerebrovascular disease and 
the future testing of protein-remodeling factors as neuroprotective agents for the 
prevention of cognitive impairment.

Keywords: metabolic syndrome (MetS), chronic cerebral hypoperfusion (CCH), 
protein misfolding, experimental models, cognitive impairment

1. Introduction

Metabolic syndrome (MetS) is the resulting condition of specific concurrent 
maladies, whose common pathogenic component is insulin resistance. Difficult to 
diagnose in clinical practice, there is consensus on its presence provided a cluster 
of risk factors be present, including abdominal obesity, hyperglycemia, hypertri-
glyceridemia, and hypertension [1–3]. Several murine models have contributed to 
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the knowledge of this vascular risk factors’ constellation, which has been studied 
for over 80 years [4]. The experimental evidence shows that MetS silently, though 
relentlessly, leads to microvascular dysfunction and chronic cerebral hypoperfusion 
(CCH) [5]. Clinical findings, including the multivariate association between func-
tional microvascular variables and laboratory-anthropometrical measurements [6], 
have reinforced the linkage of MetS with CCH [7], which leads to cognitive decline 
in late middle-aged adults [8]. As much as CCH might explain the considerable 
overlap between features of vascular cognitive impairment and dementia (VCID) 
and Alzheimer’s disease (AD), it might also underly as a common pathophysiologi-
cal mechanism [9]. Experimental models of CCH have also contributed to exploring 
the interplay between hypoperfusion and amyloid β (Aβ) deposition, as it relates to 
AD [9]. Scientific evidence has underscored the importance of treating dementia 
comorbid disease conditions, including hypometabolism and diminished cerebral 
blood flow (CBF) [10]. An alternative target in neuroprotection is the regulation 
of the proteostasis network since protein aggregates link MetS-induced CCH and 
sporadic AD late-onset [11]. Therefore, the present work aims at revising differ-
ent murine models of MetS and CCH, summarizing those experimental findings 
of relevance in the establishment of cerebrovascular disease. Plus, this overview 
intends to shed light on the usefulness of experimental models for the study of pro-
tein misfolding as a mechanism of neurodegeneration in CCH. Thirdly, this review 
attempts to discuss the requirement of combining MetS and CCH experimental 
models in order to resemble multifactorial conditions like VCID and AD and to test 
protein-remodeling factors as potential neuroprotective mechanisms for cognitive 
decline in the aging brain [12].

2.  Experimental models of MetS and CCH: relevant findings to  
vascular dementia

Although MetS is a multifactorial and complex condition, several rat strains 
have been developed to assemble a profile of anomalies described in human subjects 
that exhibit cerebrovascular disease. Obese Zucker rats constitute the most repre-
sentative rat strain to study this syndrome since animals present changes similar to 
those seen in patients [1]. This widely extended model of insulin resistance and obe-
sity was discovered in 1961 by Lois Zucker. The mutation in the leptin receptor fa 
leads to noticeable obesity from the third week of life [13]. Leptin is synthesized by 
adipose tissue. This hormone acts in the brain on leptin receptors [14]. Elevated lev-
els of leptin represent the molecular base of the characteristic phenotype of Zucker 
rats, which includes hyperphagia, deposition of energy in adipose tissue, dyslipid-
emia, mild glucose intolerance, hyperinsulinemia, and vascular changes [1, 15]. In 
contraposition to obese Zucker rats, the Wistar Ottawa Karlsburg W (WOKW) rat 
model is not induced by a single-gene mutation, resembling the context in which 
this pathology is developed in human subjects. However, these animals exhibit signs 
of MetS between 8 and 10 weeks of age, much later than Zucker rats [1].

Several murine models of MetS derive from the spontaneously hypertensive 
rat (SHR), which represents the of-choice experimental model of essential (or 
primary) hypertension. While the SHR rats show hypertriglyceridemia and 
abdominal obesity, corpulent SHR rats are preferable for reproducing MetS [1]. 
Different strains have been developed, including obese SHR or Koletsky rats, SHR/
NIH-corpulent (SHR/N-cp) rats and its subline, the SHR/NDmc-corpulent rats, 
and stroke-prone-SHR fatty rats. The first strain, originally developed by Koletsky 
in 1970, shows premature vascular pathology mimicking human atherosclerosis 
[16]. The SHR/N corpulent model was established to reproduce obesity and 
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non-insulin-dependent diabetes mellitus (NIDDM) [17]. Spontaneously hyper-
tensive rats (SHR), an animal model of essential (or primary) hypertension, and 
SHR/NDmc-corpulent rats are also obese, presenting hyperphagia and metabolic 
alterations, while stroke-prone-SHR fatty rats are characterized by severe hyperten-
sion, which induces atherosclerosis and stroke. The spontaneously hypertensive/
NIH-corpulent (SHR/N-cp) rat is a genetic model doomed to developing both 
non-insulin-dependent diabetes mellitus and hypertension.

Low-capacity runner (LCR) rats have been lately described, when cardiovascular 
risk factors were observed to emerge after artificial selection of low aerobic capacity 
[18]. These animals are selectively bred according to their performance in a running 
task. The LCR group is represented by rats capable of running short distances due to 
their low intrinsic aerobic capacity and bred with each other. After 11 generations, 
elevated blood pressure, insulin resistance, hyperinsulinemia, and endothelial 
dysfunction were registered in this strain [1]. Finally, from a translational perspec-
tive, both high-fat diet (HFD) and sweet carbonated beverage drinking represent 
two interesting rodent models of MetS evoking unhealthy dietary habits, increasing 
cardiovascular risk [19]. The former experimental paradigm reproduces impaired 
glucose tolerance (IGT) and type 2 diabetes. Rodents fed a HFD containing near 
58% of total energy supply from fat develop obesity over the first week of life due 
to higher energy intake in combination with lower metabolic efficiency [20]. In 
the latter, 6-month ad libitum coke beverage drinking as the only liquid source 
results in hyperglycemia, hypertriglyceridemia, hypercholesterolemia, overweight, 
systolic hypertension, cardiac, renal alterations, and oxidative stress [2, 3, 21–24]. 
Table 1 offers a translational overview of the abovementioned experimental models 
of MetS.

Disruption of CBF has been studied using focal or global ischemia. Focal 
ischemia models are used for resembling stroke pathophysiology and consist in the 
occlusion of a specific vessel, which reduces CBF by 70% due to restrictions in the 
vessel’s territory. This condition is generally induced by transient or permanent 
middle cerebral artery occlusion. Multiple infarcts can be reproduced via intra-
arterial injection of emboli (heterogeneous localization) or by inducing spontane-
ous strokes (SHRSP). Higher reductions of CBF are developed in global ischemia 
models, which include transient common carotid artery occlusion (TCAO), three- 
and four-vessel occlusion, and cardiac arrest [9].

Since focal and global ischemia leads to severe reductions in CBF, alterna-
tive models have been developed to reproduce CCH, i.e., the subtle yet sustained 
decrease in CBF relevant to VCID. Early pathological events provoking VCID were 
studied through the ligation or occlusion of unilateral or bilateral common carotid 
arteries (two-vessel occlusion) [25]. Bilateral common carotid artery occlusion 
(BCCAO) was refined to resemble modest reductions in CBF. Bilateral common 
carotid artery stenosis (BCCAS) was developed to reduce flow to 50% of baseline 
[26]. However, flow largely recovered 1 month later, which was overcome by estab-
lishing a gradual stenosis model. Aneroid devices were used to absorb extracellular 
fluid and provoke the constriction of arteries, resulting in a slower and progressive 
onset of hypoperfusion. This experimental condition is known as gradual common 
carotid artery stenosis [27]. Consequently, murine models of CCH include a wide 
spectrum of disease severity, ranging from traditional occlusion mechanisms to 
gradual stenosis methods. Despite these variants, experimental models of CCH 
induce sustained and moderate blood flow reductions by 30–50%, in contraposition 
to ischemic models that reduce CBF in 70% acutely [9].

Although stenosis represents a better theoretical approach from a clinical 
perspective, it involves difficult techniques, rendering BCCAO the most com-
monly used model [28]. An alternative experimental model of CCH comprises the 
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asymmetric common carotid artery surgery. Differential procedures are used for 
each common carotid artery (CCA), allowing interesting comparisons between 
both hemispheres. Gradual occlusion of the right artery lasts 1 month, while the 

Name of the 

model

Experimental 

induction of MetS

Characteristic phenotype Translational 

advantages

Obese Zucker rats Mutation in leptin 

receptor fa causes 

obesity in rats 

from the 3rd week 

of life.

Hyperphagia, energy deposition 

in adipose tissue, dyslipidemia, 

mild glucose intolerance, 

hyperinsulinemia, and vascular 

changes.

Reproduces phenotypic 

changes resembling 

those in patients with 

MetS.

Wistar Ottawa 

Karlsburg W 

(WOKW) rats

Derived from a 

Wistar rat outbred 

strain, WOKW 

rats first exhibit 

signs of MetS at 

8–10 weeks of age.

Obesity, moderate 

hypertension, dyslipidemia, 

hyperinsulinemia, and glucose 

intolerance.

Resembles MetS in a 

polygenetic context, as 

in humans.

Spontaneously 

hypertensive rats 

(SHR)

Rats bred with 

high blood 

pressure develop 

hypertension 

around 5–6 weeks 

of age.

Hypertension, 

hypertriglyceridemia, and 

abdominal obesity. The 

phenotype varies according to 

the respective corpulent strain:

a. Obese SHR or Koletsky rats

b. SHR/NIH-corpulent 

(SHR/N-cp) rats

c. SHR/NDmc-corpulent rats

d. Stroke-prone-SHR fatty rats

The of-choice 

experimental model of 

essential (or primary) 

hypertension.

Corpulent SHR 

rats are preferable 

for reproducing 

MetS. Some strains 

resemble human-like 

atherosclerosis (a,d) or 

non-insulin-dependent 

(type II) diabetes 

mellitus (NIDDM) 

(b,c), respectively.

Low-capacity 

runner (LCR) rats

Rats capable of 

running short 

distances due to 

their low intrinsic 

aerobic capacity 

are selectively bred 

with each other 

along various 

generations.

Elevated blood pressure, insulin 

resistance, hyperinsulinemia, 

and endothelial dysfunction.

Represents metabolic 

dysfunction associated 

with low aerobic 

capacity.

High-fat diet 

(HFD)

Rodents fed a 

diet containing 

near 58% of total 

energy supply 

from fat become 

obese over the 1st. 

week of life due 

to higher energy 

intake.

Obesity and low metabolic 

efficiency.

Evokes impaired 

glucose tolerance (IGT) 

and type-2 diabetes due 

to unhealthy dietary 

habits.

Sweet carbonated 

beverage drinking

6-month ad 

libitum coke 

beverage drinking 

as the only 

liquid source 

causes metabolic 

dysfunction in 

rats.

Hyperglycemia, 

hypertriglyceridemia, 

hypercholesterolemia, 

overweight, systolic 

hypertension, cardiorenal 

alterations, and oxidative stress.

It mimics MetS derived 

from unhealthy dietary 

habits.

Table 1. 
Experimental models of MetS: summary of phenotypic features from a translational perspective.
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left artery undergoes 50% stenosis by placing a micro-coil. Further investigation is 
necessary to assess CBF reductions at longer time points, discarding the complete 
occlusion of carotid arteries in the long term [9]. Table 2 summarizes the main 
features of the described models of CCH. For more details regarding experimental 
paradigms of CCH, including primate models, see [29].

Recent evidence using the abovementioned experimental models of CCH 
has shown that disruption of CBF leads to vascular cognitive impairment (VCI). 
Because of BCCAS induction in mice, selective recognition alterations were 
encountered in the novel object recognition (NOR) test, together with damage to 
the perirhinal cortex [30]. When CBF was gradually reduced, progressive motor 
impairment and working memory decline were found in the rotarod and Y-maze 
tests, respectively. Loss of oligodendrocytes in the white matter might underlie 
these behavioral deficits, suggesting that the GCCAS model could closely replicate 
the clinical pathogenesis of hypoperfusive vascular dementia in humans [31]. After 
implanting an aneroid constrictor on the left CCA and provoking stenosis on the 
right CCA, mice exhibited sustained motor, learning, and memory dysfunction, 
inferred from the balance beam maze, a fear conditioning task, and the NOR test. 
Histopathological analysis showed neurodegeneration in the cerebral cortex, dorsal 
striatum, and hippocampus. These findings support the usefulness of the ACCAS 
experimental model for reproducing the effect of microvascular occlusions on 
cognitive impairment [32].

3.  Experimental findings supporting protein misfolding as a 
neurodegenerative mechanism in CCH

The causative role of CCH in cognitive impairment and AD has been reported in 
several studies using the BCCAO model, an experimental paradigm of easy applica-
tion [28]. Differential mechanisms have been proposed as a potential link between 
CCH and neurodegeneration, including synaptic dysfunction, oxidative stress, 
neuronal loss, white matter lesion, neuroinflammation, and protein misfolding [28]. 

Name of the 

model

Experimental induction of 

CCH

Characteristic 

phenotype

Translational 

advantages

Bilateral common 

carotid artery 

occlusion 

(BCCAO)

Both common carotid arteries 

are ligated.

Cerebral blood 

flow (CBF) CBF 

rapidly decreases.

Represents a widely 

used model of CCH, 

characterized by its 

feasibility.

Bilateral common 

carotid artery 

stenosis (BCCAS)

Microcoils are placed on both 

CCAs.

CBF decreases 

and gradually 

recovers.

Mimics the clinical 

scenario of modest 

reductions in CBF.

Gradual common 

carotid artery 

stenosis (GCCAS)

Aneroid devices are used to 

absorb extracellular fluid and 

provoke the constriction of 

arteries.

CBF gradually 

decreases without 

recovery.

Reproduces a progressive 

onset of hypoperfusion, 

slower than induced by 

BCCAS.

Asymmetric 

common carotid 

artery surgery 

(ACCAS)

An aneroid constrictor is 

placed on the right common 

carotid artery (CCA), 

inducing a gradual occlusion 

for 1 month. The left CCA 

undergoes 50% stenosis by 

placing a micro-coil.

CBF decreases to 

different extents 

between the right 

and left CCAs.

Resembles differential 

reductions in CBF 

between both 

hemispheres.

Table 2. 
Experimental models of CCH: Summary of phenotypic features from a translational perspective.
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Figure 1. 
Protein misfolding as a neurodegenerative mechanism and novel neuroprotective target in CCH. Chronic 
cerebral hypoperfusion impairs proteostasis network, inducing protein misfolding. Under cell stress, proteostasis 
network surveillance systems degrade proteins through different mechanisms. Depending on the nature of 
misfolded proteins, different systems are activated such as ubiquitin-proteasome system or macroautophagy. 
Protein aggregates, are recognized by molecular chaperones, ubiquitinated and delivered to the autophagosome 
via Beclin-1 complex. Neuroprotective agents, which target proteostasis network, emerge as promising 
treatments for cognitive impairment following CCH.

The latter appears as a novel target for neuroprotection, according to cumulative 
evidence [11]. Figure 1 illustrates how CCH alters proteostasis network, leading to 
protein misfolding and neurodegeneration.

Degeneration of hippocampal neurons was attributed to proteostasis network 
destruction and protein aggregation induced by BCCAO [33]. This murine model 
has also led to a sustained increase in autophagy related-proteins Beclin-1, light 
chain 3B (LC3-B), and P62, suggesting a defensive reaction against protein misfold-
ing. In this study, although CBF returned to baseline, cognitive failure was irrevers-
ible and attributed to Aβ aggregation in the hippocampus [34]. This brain region is 
characterized by its vulnerability to CCH [35] and its association with memory and 
learning dysfunction in AD [36]. Hippocampal degeneration has also been related 
to BCCAO-induced macroautophagy and endoplasmic reticulum (ER) stress, as 
it was inferred from the expression of light chain 3 II (LC3-II), Beclin 1, CCAAT/
enhancer-binding protein, and C/EBP homologous protein [37].

Besides BCCAO, oxygen-glucose deprivation (OGD) provokes autophagy 
upregulation and apoptosis [35]. Recent evidence extended these findings, report-
ing CCH-induced high levels of LC3-II and Beclin-1 along with ultrastructural 
markers of apoptosis in CA1 neurons, including nuclear pycnosis, autophagosomes, 
and autolysosomes. ER fragmentation and spatial working memory impairment 
appeared as subcellular and functional correlates [38]. In addition to autophagy 
[34, 35, 38] and macroautophagy [37], ubiquitin-proteasome system (UPS) appears 
as another proteostatic pathway altered as a consequence of experimental CCH, 
which leads to CA1 degeneration. Long-term decrease peptidase activity and 
accumulation of ubiquitinated protein aggregates were observed after ligating the 
left vein and draining the transverse sinus and the bilateral external carotid arteries 
[39]. Previous studies from this laboratory had suggested the removal of misfolded 
proteins was impaired by UPS downregulation [40], and cognitive decline might be 
associated with long-term potentiation inhibition [41].

Along with aggregation of extracellular Aβ, intracellular phosphorylated tau 
protein deposition constitutes a hallmark of AD [42]. Tau hyperphosphorylation 
was observed as a result of unilateral common carotid artery occlusion (UCCAO), 
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together with decreased post-translational tau O-GlcNAcylation by β-N-
acetylglucosamine, dysregulation of synaptic proteins, and memory deficits [43]. 
According to previous findings, brain glucose metabolic dysfunction might down-
regulate tau O-GlcNAcylation mediated by tau hyperphosphorylation [44–46]. 
Recent studies have confirmed and extended this finding, suggesting CCH might 
exacerbate tau hyperphosphorylation in AD-rodents, either after UCCAO in mice 
[47] or BCCAO in rats [48]. Similarly, previous evidence prompted CCH might 
precipitate AD neuropathology since BCAS seemed to accelerate Aβ aggregation, 
the same process found in amyloid protein precursor (APP)-transgenic (APP-Tg) 
mice [49]. In fact, aberrant processing of APP has been reported after BCCAO [50].

4. Combining experimental models

Since MetS is associated with an increased risk of cerebral ischemia, recent 
investigations developed murine models of MetS combined with experimental 
paradigms of ischemia-reperfusion injury to study the impact of ischemia associ-
ated with MetS. Wistar rats fed a high-fat diet for 20 weeks were more susceptible 
to BCCAO-reperfusion than normal diet (ND)-fed animals, showing worsening 
in microvascular dysfunction and oxidative stress. These results show that MetS 
increases the vulnerability of the ischemic brain to damage, whereby BCCAO 
exacerbates cerebrovascular disease previously induced by HFD [51]. Similarly, 
BCCAO, followed by reperfusion, aggravated microvascular alterations in obese 
Zucker rats compared with lean Wistar controls. Lesions in the cortex and 
striatum were largely more pronounced in obese Zucker rats, suggesting MetS 
could increase the risk of adverse outcomes following a brain hypoperfusion-
reperfusion event [52].

Novel findings support the hypothesis that the brain under obesity’s conditions 
is more vulnerable to ischemic injury. A brief episode of transient ischemia (TI) was 
provoked in obese gerbils, commonly known as desert rats. After 12 weeks of HFD, 
the rodents underwent a 2-min experimental TI. Hyperglycemia, cholesterolemia, 
and triglyceridemia observed in gerbils fed with a HFD were associated with a 
massive loss of pyramidal neurons in the hippocampal CA1 region 5 days after TI, 
indicating that a short-lived episode of TI could evoke neuronal damage along with 
pre-existing MetS. Increased levels of dihydroethidium, 4-hydroxynonenal, tumor 
necrosis factor-α, and interleukin-1β indicated brain injury was mediated by oxida-
tive stress and neuroinflammation. On the contrary, ND gerbils did not exhibit 
neuronal death as a consequence of acute TI. In addition, these control animals 
could develop cerebral ischemic tolerance against a subsequent severer episode of 
TI [53]. Previous studies from the same laboratory have deepened the role of mam-
malian target of rapamycin (mTOR) in the pathogenesis of metabolic and neuro-
logical diseases and demonstrated that obesity and its related metabolic dysfunction 
might exacerbate the impact of TI in certain brain areas, including cerebral cortex, 
striatum, and hippocampus (CA1-3 regions) [54–56].

Conversely, cerebral ischemia itself might lead to glucose deregulation, a 
pathognomonic feature of MetS. Experimental evidence combining rodent models 
of ischemia and MetS shows that ischemic hippocampal neuronal death hampers 
glucose homeostasis, decreasing insulin secretion, which is later exacerbated by 
a HFD. In this study, gerbils were subjected to an 8-min BCCAO or a sham opera-
tion followed by either 11 or 40% fat diet for 7, 14, or 28 days. Although the initial 
occlusion provoked a 70% decrease in CA1 neurons, only HFD and longer ischemic 
periods resulted in larger hippocampal cell death. Similarly, glucose intolerance 
measured through the oral glucose tolerance test (OGTT) was overrated in gerbils 
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fed a HFD as the ischemic periods became longer. During the OGTT, insulin levels 
were significantly lower in gerbils subjected to BCCAO than in sham-operated 
controls. In addition, insulin secretion decrease was elevated the most after 28 days 
of HFD in ischemic gerbils [57]. These interesting findings using a combination 
of rodent models suggest that ischemic damage is a risk factor for glucose homeo-
stasis, which might be worsened by the experimental induction of MetS in a HFD 
paradigm.

5. Future directions

Scientific findings combining rodent models have shown that chronic MetS 
is associated with poor stroke outcomes following experimental cerebrovascular 
events [58] since HFD or the way of inducing MetS modulates ischemic mecha-
nisms of brain damage [59]. Also, experimental CBF restriction seems to hamper 
glucose homeostasis, posing a risk factor for developing MetS. When artery occlu-
sion models are followed by the experimental induction of metabolic dysfunction 
features, the resulting MetS might exacerbate previously ischemia-induced glucose 
deregulation [57]. Therefore, combining experimental models offers an interesting 
scientific paradigm for elucidating the complexity of pathophysiological mecha-
nisms underlying chronic cerebrovascular disease. In terms of Zhao and Gong [28], 
differential clinical scenarios may coexist in chronic pathologies where risk factors 
rarely exist alone or may even exert a causative role in some patients while acting as 
a consequence in others. In this regard, experimental studies using the combined 
application of murine models could help to close the gap between rodent models 
and human disease [9].

However, this complex translational perspective is still necessary for studying 
the interaction between MetS and CCH inducing neurodegeneration. Although 
brain microvascular dysfunction has been confirmed in several murine models 
of MetS, including HFD [60, 61], Zucker [62], and SHR rats [63], whether MetS 
causes cognitive impairment due to a decrease in CBF has not been fully addressed 
yet [64]. In addition, since protein misfolding is a hallmark of neurodegenerative 
diseases [65], dissecting the exact role of MetS in association with CCH in protein 
aggregation represents a relevant challenge in the field. Detailed studies on the 
time-dependent proteostatic changes after experimental MetS and CCH will shed 
light on the roles and mechanisms of these clinical conditions in the establishment 
of VCID and AD. Furthermore, these studies will contribute to testing protein-
remodeling factors [12] as putative neuroprotective agents for the prevention of 
cerebrovascular disease and cognitive decline.
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